
Unit 2: Probability and distributions
Lecture 2: Bayesian Inference

Statistics 104
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Bayesian Inference Set-up

What’s the chance of winning?

Poll

What is the probability of getting an outcome ≥ 4 when rolling a 6-sided
die? What is the probability when rolling a 12-sided die?

(a) 6-sided: 3
4 , 12-sided: 1

2

(b) 6-sided: 1
3 , 12-sided: 2

3

(c) 6-sided: 1
2 , 12-sided: 3

4

(d) 6-sided: 2
3 , 12-sided: 1

3
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Bayesian Inference Set-up

Which die is the good die?

Poll

You’re playing a game where you win if the die roll is ≥ 4. If you could
get your pick, which die would you prefer to play this game with?

(a) 6-sided

(b) 12-sided
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Bayesian Inference Set-up

Set up

I have two dice: one 6-sided, the other 12-sided.
We’re going to play a game where I keep one die on the left side
(die L) and one die on the right (die R), and you won’t know
which is the 6-sided die and which is the 12-sided.
You pick die (L or R), I roll it, and I tell you if you win or not,
where winning is getting a number ≥ 4.
We’ll play this multiple times with different contestants.
I will not swap the sides the dice are on at any point.
We’ll record which die each contestant picks and whether they
won or lost.
The ultimate goal is to come to a class consensus about whether
the die on the left or the die on the right is the “good die”.
If you pick right, you all get one extra point on your next problem
set. If you pick wrong, you all lose one point.
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Bayesian Inference Set-up

Hypotheses and decisions

Truth

Decision L good, R bad L bad, R good

Pick L You get an extra point! You lose a point :(

Pick R You lose a point :( You get an extra point !

Sampling isn’t free!
You get to pick how long you want play, but remember, there is a cost
associated with too many tries – you’re losing precious class time.
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Bayesian Inference Setting a prior

Initial guess

Poll

You have no idea if I have chosen the die on the left (L) to be the good
die (12-sided) or bad die (6-sided). Then, before we collect any data,
what are the probabilities associated with the following hypotheses?

H1: L good, R bad

H2: L bad, R good

(a) P(L good, R bad) = 0.33; P(L bad, R good) = 0.67

(b) P(L good, R bad) = 0.50; P(L bad, R good) = 0.50

(c) P(L good, R bad) = 0; P(L bad, R good) = 1

(d) P(L good, R bad) = 0.25; P(L bad, R good) = 0.75
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Bayesian Inference Setting a prior

Prior probabilities

These are your prior probabilities for the two competing claims
(hypotheses):
H1: L good, R bad
H2: L bad, R good

That is, these probabilities represent what you believe before
seeing any data.

You could have conceivably made up these probabilities, but
instead you have chosen to make an educated guess.
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Bayesian Inference Collecting data

Results

Choice (L or R) Result (win or loss)

Roll 1 L

Roll 2

Roll 3

Roll 4

Roll 5

Roll 6

Roll 7

Roll 8

Roll 9

Roll 10
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Bayesian Inference Making a decision

Decision making

What is your decision?

How did you make this decision?
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Bayesian Inference Posterior probability

Probability tree - roll 1

What is the probability, based on the outcome of the first roll, that L is
the good die (and R is the bad die)?

We want to find P(L good | outcome of 1st roll), a conditional
probability.
We know that

P(win | L good) = 3
4 = 0.75

P(lose | L good) = 1
4 = 0.25

P(L good) = 0.5 (our prior probability)

We can summarize what we know in a probability tree in order to
help us calculate the probability we’re interested in.
And we’ll implicitly make use of the Bayes’ Theorem.

P(L good | outcome of 1st roll) =
P(L good AND outcome of 1st roll)

P(outcome of 1st roll)
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Bayesian Inference Posterior probability

Probability tree - roll 1 (cont.)

What is the probability, based on the outcome of the first roll, that L is
the good die (and R is the bad die)?

P(L good | outcome of 1st roll) =
P(L good AND outcome of 1st roll)

P(outcome of 1st roll)
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Bayesian Inference Posterior probability

Probability tree - roll 1 (cont.)

What is the probability, based on the outcome of the first roll, that L is
the good die (and R is the bad die)?

P(L good | outcome of 1st roll) =
P(L good AND outcome of 1st roll)

P(outcome of 1st roll)

Hypotheses Data

L good,
R bad,  0.5

win,  0.75
0.5*0.75 = 0.375

lose,  0.25
0.5*0.25 = 0.125

L bad,
R good,  0.5

win,  0.5
0.5*0.5 = 0.25

lose,  0.5
0.5*0.5 = 0.25
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Bayesian Inference Posterior probability

Posterior probability

The probability we just calculated

P(L is good | outcome of 1st roll)

is also called the posterior probability.

Posterior probability is generally defined as P(hypothesis | data).
It tells us the probability of a hypothesis we set forth, given the
data we just observed. It depends on both the prior probability
we set and the observed data.

This is different than what we calculated at the end of the
randomization test on gender discrimination – the probability of
observed or more extreme data given the null hypothesis being
true, i.e. P(data | hypothesis), also called a p-value. (We’re going
to be seeing a lot more of these!)
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Bayesian Inference Posterior probability

Updating the prior

In the Bayesian approach, we evaluate claims iteratively as we
collect more data.

In the next iteration (roll) we get to take advantage of what we
learned from the data.

In other words, we update our prior with our posterior probability
from the previous iteration.
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Bayesian Inference Posterior probability

Probability tree - roll 2

What is the probability, based on the outcome of the second roll, that L is the
good die (and R is the bad die)? This time we update our prior for “L is good”,
based on what we found in the previous stage.

L good,
R bad

Hypotheses win

      

      

      

      

      

      

Data

L bad,
R good

lose

win

lose

Tuesday, September 11, 12
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Bayesian Inference Posterior probability

Rolls 2 through n

Calculating the posterior probabilities by hand for each iteration (roll)
is tedious and not very efficient. We can use computation instead.
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Bayesian Inference Recap

Recap: Bayesian inference

Take advantage of prior information, like a previously published
study or a physical model.

Naturally integrate data as you collect it, and update your priors.

Avoid the counter-intuitive Frequentist definition of a p-value as
the P(observed or more extreme outcome | H0 is true). Instead
base decisions on the posterior probability, P(hypothesis is true |
observed data).

Watch out!
A good prior helps, a bad prior hurts, but the prior matters less
the more data you have.

More advanced Bayesian techniques offer flexibility not present
in Frequentist models.
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Bayesian Inference Another example

Breast cancer screening

American Cancer Society estimates that about 1.7% of women
have breast cancer.
http:// www.cancer.org/ cancer/ cancerbasics/ cancer-prevalence

Susan G. Komen For The Cure Foundation states that
mammography correctly identifies about 78% of women who
truly have breast cancer.
http:// ww5.komen.org/ BreastCancer/ AccuracyofMammograms.html

An article published in 2003 suggests that up to 10% of all
mammograms are false positive.
http:// www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC1360940

Note: These percentages are approximate, and very difficult to estimate.
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Bayesian Inference Another example

Calculating the posterior

When a patient goes through breast cancer screening there are two
competing claims: patient had cancer and patient doesn’t have can-
cer. If a mammogram yields a positive result, what is the probability
that patient has cancer, i.e. what is the posterior probability of having
cancer if mammogram yield a positive result?

Hypotheses Data

cancer,  0.017

positive,  0.78
0.017*0.78 = 0.0133

negative,  0.22
0.017*0.22 = 0.0037

no
cancer,  0.983

positive,  0.1
0.983*0.1 = 0.0983

negative,  0.9
0.983*0.9 = 0.8847
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Bayesian Inference Another example

Setting a prior when retesting

Poll

Suppose a woman who gets tested once and obtains a positive result
wants to get tested again. What should be the prior probability that this
woman has cancer?

(a) 0.017

(b) 0.12

(c) 0.0133

(d) 0.88
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Bayesian Inference Another example

Calculating the posterior when retesting

Poll

What is the posterior probability of having cancer if this second mam-
mogram also yielded a positive result?

(a) 0.0936

(b) 0.088

(c) 0.48

(d) 0.52

Hypotheses Data

cancer,  0.12

positive,  0.78
0.12*0.78 = 0.0936

negative,  0.22
0.12*0.22 = 0.0264

no
cancer,  0.88

positive,  0.1
0.88*0.1 = 0.088

negative,  0.9
0.88*0.9 = 0.792

Statistics 104 (Mine Çetinkaya-Rundel) U2 - L2: Bayesian inference May 22, 2013 20 / 20


	Bayesian Inference
	Set-up
	Setting a prior
	Collecting data
	Making a decision
	Posterior probability
	Recap
	Another example


