# What's the chance of winning?

# Unit 2: Probability and distributions Lecture 2: Bayesian Inference

#### Statistics 104

Mine Çetinkaya-Rundel

May 22, 2013

#### Poll

What is the probability of getting an outcome  $\geq$  4 when rolling a 6-sided die? What is the probability when rolling a 12-sided die?

- (a) 6-sided:  $\frac{3}{4}$ , 12-sided:  $\frac{1}{2}$
- (b) 6-sided:  $\frac{1}{3}$ , 12-sided:  $\frac{2}{3}$
- (c) 6-sided:  $\frac{1}{2}$ , 12-sided:  $\frac{3}{4}$
- (d) 6-sided:  $\frac{2}{3}$ , 12-sided:  $\frac{1}{3}$

Statistics 104 (Mine Çetinkaya-Rundel)

Which die is the good die?

#### Poll

You're playing a game where you win if the die roll is  $\geq$  4. If you could get your pick, which die would you prefer to play this game with?

#### (a) 6-sided

(b) 12-sided

#### Bayesian Inference Set-up

U2 - L2: Bayesian inference

### Set up

- I have two dice: one 6-sided, the other 12-sided.
- We're going to play a game where I keep one die on the left side (die L) and one die on the right (die R), and you won't know which is the 6-sided die and which is the 12-sided.
- You pick die (L or R), I roll it, and I tell you if you win or not, where winning is getting a number ≥ 4.
- We'll play this multiple times with different contestants.
- I will not swap the sides the dice are on at any point.
- We'll record which die each contestant picks and whether they won or lost.
- The ultimate goal is to come to a class consensus about whether the die on the left or the die on the right is the "good die".
- If you pick right, you all get one extra point on your next problem set. If you pick wrong, you all lose one point.

U2 - L2: Bayesian inference

May 22, 2013

|          | Tri                     | uth                      |
|----------|-------------------------|--------------------------|
| Decision | L good, R bad           | L bad, R good            |
| Pick L   | You get an extra point! | You lose a point :(      |
| Pick R   | You lose a point :(     | You get an extra point ! |

#### Sampling isn't free!

You get to pick how long you want play, but remember, there is a cost associated with too many tries – you're losing precious class time.

# Initial guess

### Poll

You have no idea if I have chosen the die on the left (L) to be the good die (12-sided) or bad die (6-sided). Then, before we collect any data, what are the probabilities associated with the following hypotheses?

- H<sub>1</sub>: L good, R bad
- H<sub>2</sub>: L bad, R good
- (a) P(L good, R bad) = 0.33; P(L bad, R good) = 0.67
- (b) P(L good, R bad) = 0.50; P(L bad, R good) = 0.50
- (c) P(L good, R bad) = 0; P(L bad, R good) = 1
- (d) P(L good, R bad) = 0.25; P(L bad, R good) = 0.75

| Statistics 104 (Mine Çetinkaya-Rundel) | U2 - L2: Bayesian inference        | May 22, 2013 5 / 20 | Statistics 104 (Mine Çetinkaya-Rundel) | U2 - L2: Bayesian inference        | May 22, 2013 6 / 20 |
|----------------------------------------|------------------------------------|---------------------|----------------------------------------|------------------------------------|---------------------|
|                                        |                                    |                     |                                        |                                    |                     |
|                                        |                                    |                     |                                        |                                    |                     |
|                                        | Bayesian Inference Setting a prior |                     |                                        | Bayesian Inference Collecting data |                     |
| Prior probabilities                    |                                    |                     | Results                                |                                    |                     |

- These are your *prior probabilities* for the two competing claims (hypotheses):
  - H<sub>1</sub>: L good, R bad
  - H<sub>2</sub>: L bad, R good
- That is, these probabilities represent what you believe before seeing any data.
- You could have conceivably made up these probabilities, but instead you have chosen to make an educated guess.

|         | Choice (L or R) | Result (win or loss) |
|---------|-----------------|----------------------|
| Roll 1  | L               |                      |
| Roll 2  |                 |                      |
| Roll 3  |                 |                      |
| Roll 4  |                 |                      |
| Roll 5  |                 |                      |
| Roll 6  |                 |                      |
| Roll 7  |                 |                      |
| Roll 8  |                 |                      |
| Roll 9  |                 |                      |
| Roll 10 |                 |                      |

| Bayesian Inference Making a decision                                                                                                                                     | Bayesian Inference Posterior probability                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decision making                                                                                                                                                          | Probability tree - roll 1                                                                                                                                                                                                                                             |
|                                                                                                                                                                          | What is the probability, based on the outcome of the <u>first</u> roll, that L is the good die (and R is the bad die)?                                                                                                                                                |
| What is your decision?                                                                                                                                                   | <ul> <li>We want to find P(L good   outcome of 1<sup>st</sup> roll), a conditional probability.</li> <li>We know that <ul> <li>P(win   L good) = <sup>3</sup>/<sub>4</sub> = 0.75</li> <li>P(lose   L good) = <sup>1</sup>/<sub>4</sub> = 0.25</li> </ul> </li> </ul> |
| How did you make this decision?                                                                                                                                          | <ul> <li>P(L good) = 0.5 (our prior probability)</li> <li>We can summarize what we know in a <i>probability tree</i> in order to help us calculate the probability we're interested in.</li> <li>And we'll implicitly make use of the Bayes' Theorem.</li> </ul>      |
|                                                                                                                                                                          | $P(L \text{ good }   \text{ outcome of } 1^{st} \text{ roll}) = \frac{P(L \text{ good AND outcome of } 1^{st} \text{ roll})}{P(\text{outcome of } 1^{st} \text{ roll})}$                                                                                              |
| Chatiatian 104 (Nine Catinkeyo Dunda)) 10 10 Devenian inference May 20 2010 0/20                                                                                         | Statistics 104 (Miss Catislaus Dundel) I/0 10 Develop inference May 00 0010 10/00                                                                                                                                                                                     |
| Bayesian Inference Posterior probability Probability tree - roll 1 (cont.)                                                                                               | Bayesian Inference Posterior probability<br>Probability tree - roll 1 (cont.)                                                                                                                                                                                         |
|                                                                                                                                                                          | What is the probability, based on the outcome of the <u>first</u> roll, that L is the good die (and R is the bad die)?                                                                                                                                                |
| What is the probability, based on the outcome of the first roll, that L is                                                                                               | $P(L \text{ good }   \text{ outcome of } 1^{st} \text{ roll}) = \frac{P(L \text{ good AND outcome of } 1^{st} \text{ roll})}{P(\text{outcome of } 1^{st} \text{ roll})}$                                                                                              |
| the good die (and R is the bad die)?                                                                                                                                     | Hypotheses Data                                                                                                                                                                                                                                                       |
| $P(L \text{ good }   \text{ outcome of } 1^{st} \text{ roll}) = \frac{P(L \text{ good AND outcome of } 1^{st} \text{ roll})}{P(\text{outcome of } 1^{st} \text{ roll})}$ | L good, win, 0.75 = 0.5*0.75 = 0.375<br>R bad, 0.5                                                                                                                                                                                                                    |
|                                                                                                                                                                          | lose, 0.25<br>0.5*0.25 = 0.125                                                                                                                                                                                                                                        |
|                                                                                                                                                                          | L bad, win, 0.5<br>R good, 0.5                                                                                                                                                                                                                                        |
|                                                                                                                                                                          | lose, 0.5<br>0.5*0.5 = 0.25                                                                                                                                                                                                                                           |
| Statistics 104 (Mine Cetinkava-Rundel) U2 - L2: Bayesian inference May 22, 2013 11 / 20                                                                                  | Statistics 104 (Mine Cetinkaya-Rundel) U2 - L2; Bayesian inference May 22, 2013 11 / 20                                                                                                                                                                               |

The probability we just calculated

P(L is good | outcome of 1<sup>st</sup> roll)

#### is also called the *posterior probability*.

- Posterior probability is generally defined as P(hypothesis | data). It tells us the probability of a hypothesis we set forth, given the data we just observed. It depends on both the prior probability we set and the observed data.
- This is different than what we calculated at the end of the randomization test on gender discrimination - the probability of observed or more extreme data given the null hypothesis being true, i.e. P(data | hypothesis), also called a *p-value*. (We're going to be seeing a lot more of these!)

# Updating the prior

- In the Bayesian approach, we evaluate claims iteratively as we collect more data.
- In the next iteration (roll) we get to take advantage of what we learned from the data.
- In other words, we *update* our prior with our posterior probability from the previous iteration.

U2 - L2: Bavesian inference

Posterior probability

U2 - L2: Bayesian inference

# Probability tree - roll 2

Statistics 104 (Mine Çetinkaya-Rundel)

What is the probability, based on the outcome of the second roll, that L is the good die (and R is the bad die)? This time we update our prior for "L is good", based on what we found in the previous stage.



Posterior probability

# Rolls 2 through *n*

Statistics 104 (Mine Çetinkaya-Rundel)

Calculating the posterior probabilities by hand for each iteration (roll) is tedious and not very efficient. We can use computation instead.

May 22, 2013

May 22, 2013

#### yesian Inference Recap

# Recap: Bayesian inference

- Take advantage of prior information, like a previously published study or a physical model.
- Naturally integrate data as you collect it, and update your priors.
- Avoid the counter-intuitive Frequentist definition of a p-value as the P(observed or more extreme outcome | H<sub>0</sub> is true). Instead base decisions on the posterior probability, P(hypothesis is true | observed data).

#### • Watch out!

A good prior helps, a bad prior hurts, but the prior matters less the more data you have.

• More advanced Bayesian techniques offer flexibility not present in Frequentist models.

U2 - L2: Bayesian inference

### Breast cancer screening

• American Cancer Society estimates that about 1.7% of women have breast cancer.

http://www.cancer.org/cancer/cancerbasics/cancer-prevalence

 Susan G. Komen For The Cure Foundation states that mammography correctly identifies about 78% of women who truly have breast cancer.

http://ww5.komen.org/BreastCancer/AccuracyofMammograms.html

 An article published in 2003 suggests that up to 10% of all mammograms are false positive. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360940

*Note:* These percentages are approximate, and very difficult to estimate.

Statistics 104 (Mine Çetinkaya-Rundel)

May 22, 2013 16 / 20

ence Another example

# Calculating the posterior

When a patient goes through breast cancer screening there are two competing claims: patient had cancer and patient doesn't have cancer. If a mammogram yields a positive result, what is the probability that patient has cancer, i.e. what is the posterior probability of having cancer if mammogram yield a positive result?



Bayesian Inference Another example

U2 - L2: Bavesian inference

# Setting a prior when retesting

Statistics 104 (Mine Çetinkaya-Rundel)

#### Poll

Suppose a woman who gets tested once and obtains a positive result wants to get tested again. What should be the prior probability that this woman has cancer?

- (a) 0.017
- (b) 0.12
- (c) 0.0133
- (d) 0.88

May 22, 2013 17 / 20

#### Bayesian Inference Another example

# Calculating the posterior when retesting

## Poll

What is the posterior probability of having cancer if this second mammogram also yielded a positive result?



|--|