
Text Data and RegexText Data and Regex

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

05-29-2005-29-20

1 / 291 / 29

Supplementary materials

Companion videos

Introduction to stringr
Escaping metacharacters
More metacharacters and their functionality
Quantifies

Additional resources

stringr vignette
stringr cheat sheet
regex guide

2 / 29

https://warpwire.duke.edu/w/Uc4DAA/
https://warpwire.duke.edu/w/T84DAA/
https://warpwire.duke.edu/w/Tc4DAA/
https://warpwire.duke.edu/w/S84DAA/
https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html
https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
http://perso.ens-lyon.fr/lise.vaudor/Rfigures/Expressions_regulieres/regexp.png

stringrstringr

3 / 293 / 29

Why stringr?

Part of tidyverse

Fast and consistent manipulation of string data

Readable and consistent syntax

If you master stringr, you know stringi -
http://www.gagolewski.com/software/stringi/

4 / 29

http://www.gagolewski.com/software/stringi/

Usage

All functions in stringr start with str_ and take a vector of strings as the first
argument.

Most stringr functions work with regular expressions.

Seven main verbs to work with strings.

Function Description

str_detect() Detect the presence or absence of a pattern in a string.

str_count() Count the number of patterns.

str_locate() Locate the first position of a pattern and return a matrix with start and end.

str_extract() Extracts text corresponding to the first match.

str_match() Extracts capture groups formed by () from the first match.

str_split() Splits string into pieces and returns a list of character vectors.

str_replace() Replaces the first matched pattern and returns a character vector.

Each have leading arguments string and pattern; all functions are vectorised over
arguments string and pattern.

Function assistance and visuals: stringr cheat sheet 5 / 29

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf

RegexsRegexs

6 / 296 / 29

How many of t, th, and the exist?

#> [1] 10 8 2

Do these patterns exist?

#> [1] TRUE TRUE TRUE

Simple cases

A regular expression, regex or regexp, is a sequence of characters that define a search
pattern.

library(tidyverse)

twister <- "thirty-three thieves thought they thrilled the throne Thursday"

How many occurrences of t exist?

str_count(string = twister, pattern = "t")

#> [1] 10

str_count(twister, c("t", "th", "the")) str_detect(twister, c("t", "th", "the"

7 / 29

Separate our long string at each space.

twister_split <- str_split(twister, " ") %>% unlist()
twister_split

#> [1] "thirty-three" "thieves" "thought" "they"
#> [5] "thrilled" "the" "throne" "Thursday"

Do these patterns exist?

str_detect(twister_split, c("tho", "the"))

#> [1] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE

Replace certain occurrences.

str_replace(twister_split, c("tho", "the"), replacement = c("bro", "Wil"))

#> [1] "thirty-three" "thieves" "brought" "Wily"
#> [5] "thrilled" "Wil" "throne" "Thursday"

8 / 29

A step up in complexity

A . matches any character, except a new line. It is one of a few metacharacters - special
meaning and function.

twister <- "thirty-three thieves thought they thrilled the throne Thursday"

Does this pattern, .y. exist?

str_detect(twister, ".y.")

#> [1] TRUE

How many instances?

str_count(twister, ".y.")

#> [1] 2

View in Viewer pane.

str_view_all(twister, ".y.")

thirty-three thieves thought they thrilled the throne Thursday 9 / 29

How do we match an actual .?

You need to use an escape character to tell the regex you want exact matching.

Regexs use a \ as an escape character. So why doesn't this work?

str_view_all("show.me.the.dots...", "\.")

#> Error: '\.' is an unrecognized escape in character string starting ""\."

10 / 29

R escape characters

There are some special characters in R that cannot be directly coded in a string. An escape
character is a character which results in an alternative interpretation of the following
character(s). These vary from language to language but for most string implementations \ is
the escape character which is modified by a single subsequent character.

Some common examples:

Literal Character

\' single quote

\" double quote

\\ backslash

\n new line

\r carriage return

\t tab

\b backspace

\f form feed

11 / 29

Examples

mtcars %>%
 ggplot(aes(x = factor(cyl), y = hp)) + ggpol::geom_boxjitter() +
 labs(x = "Number \n of \n Cylinders", y = "\"Horse\" Power",
 title = "A \t boxjitter \t\t plot \n showing some escape \n characters") +
 theme_minimal(base_size = 18)

12 / 29

Examples

print("hello\world")

#> Error: '\w' is an unrecognized escape in character string starting ""hello\w"

cat("hello\world")

#> Error: '\w' is an unrecognized escape in character string starting ""hello\w"

print("hello\tworld")

#> [1] "hello\tworld"

cat("hello\bworld")

#> [1] hellworld

13 / 29

print("hello\"world")

#> [1] "hello\"world"

print("hello\tworld")

#> [1] "hello\tworld"

print("hello\nworld")

#> [1] "hello\nworld"

print("hello\\world")

#> [1] "hello\\world"

cat("hello\"world")

#> hello"world

cat("hello\tworld")

#> hello world

cat("hello\nworld")

#> hello
#> world

cat("hello\\world")

#> hello\world

14 / 29

Returning to: how do we match a
.?

We need to escape the \.

str_view_all("show.me.the.dots...", "\\.")

show.me.the.dots...

15 / 29

Regex metacharacters

. ^ $ * + ? { } [] \ | ()

Allow for more advanced forms of pattern matching.

As we saw with ., these cannot be matched directly. Thus, if you want to match the literal ?
you will need to use \\?.

What do you need to match a literal \ in regex pattern matching?

str_view_all("find the \\ in this string", "\\\\")

find the \ in this string

16 / 29

Regex anchors

Sometimes we want to specify that our pattern occurs at a particular location in a string, we
indicate this using anchor metacharacters.

Regex Anchor

^ or \A Start of string

$ or \Z End of string

17 / 29

Examples: metacharacters and
anchors

text <- "Who? What? where? When? WHY?"

str_locate_all(text, "\\?")

#> [[1]]
#> start end
#> [1,] 4 4
#> [2,] 10 10
#> [3,] 17 17
#> [4,] 23 23
#> [5,] 28 28

str_replace(text, "^W...", "****")

#> [1] "**** What? where? When? WHY?"

str_replace(text, "W...$", "****")

#> [1] "Who? What? where? When? ****"

18 / 29

Character classes

Special patterns exist to match more than one class.

Meta Character Class Description

. Any character except new line (\n)

\s [:space:] White space (space, tab, newline)

\S Not white space

\d [:digit:] Digit (0-9)

\D Not digit

\w Word (A-Z, a-z, 0-9, or _)

\W Not word

[:punct:] Punctuation

19 / 29

Character class overview

20 / 29

Ranges

We can also specify our own classes using the square bracket metacharacter.

Class Type

[abc] Class (a or b or c)

[^abc] Negated class not (a or b or c)

[a-c] Range lower case letter from a to c

[A-C] Range upper case letter from A to C

[0-7] Digit between 0 to 7

21 / 29

Exercises

Write a regular expression to match a

1. social security number of the form ###-##-####,

2. phone number of the form (###) ###-####,

3. license plate of the form AAA ####.

Test your regexs on some examples with str_detect() or str_view().

22 / 29

Repetition with quanti�ers

Attached to literals or character classes these allow a match to repeat some number of times.

Quantifier Description

* Match 0 or more

+ Match 1 or more

? Match 0 or 1

{3} Match Exactly 3

{3,} Match 3 or more

{3,5} Match 3, 4 or 5

23 / 29

Examples: quanti�ers

text <- c("My", "cell: ", "(610)-867-5309")

str_detect(text, "\\(\\d{3}\\)-\\d{3}-\\d{4}")

#> [1] FALSE FALSE TRUE

str_extract(text, "\\(\\d{3}\\)-\\d{3}-\\d{4}")

#> [1] NA NA "(610)-867-5309"

text <- "2 too two 4 for four 8 ate eight"

str_extract(text, "\\d.*\\d")

#> [1] "2 too two 4 for four 8"

24 / 29

Greedy matches

By default matches are greedy. This is why we get

#> [1] "2 too two 4 for four 8"

instead of

#> [1] "2 too two 4"

when we run code

str_extract(text, "\\d.*\\d")

To make matching lazy, include ? after so you return the shortest substring possible.

str_extract(text, "\\d.*?\\d")

#> [1] "2 too two 4"

What will this result be?

str_extract_all(c("fruit flies", "fly faster"), "[aeiou]{1,2}[a-z]+")

25 / 29

Groups

Groups allow you to connect pieces of a regular expression for modification or capture.

str_extract(c("grey", "gray", "gravitas", "great"), "gre|ay")

#> [1] "gre" "ay" NA "gre"

str_extract(c("grey", "gray", "gravitas", "great"), "grey|gray")

#> [1] "grey" "gray" NA NA

str_extract(c("grey", "gray", "gravitas", "great"), "gr(e|a)y")

#> [1] "grey" "gray" NA NA

Their use can improve readability and allow for backreferencing.

26 / 29

Backreferences

Backreferencing allows us to reference groups with \1, \2, etc.

text <- "Some numbers include 00, 11, 3434, 41, 1010, 23, and 1"

str_match_all(text, "(\\d)\\1")

#> [[1]]
#> [,1] [,2]
#> [1,] "00" "0"
#> [2,] "11" "1"

str_match_all(text, "(\\d{2})\\1")

#> [[1]]
#> [,1] [,2]
#> [1,] "3434" "34"
#> [2,] "1010" "10"

27 / 29

Exercises

text <- c(
 "apple",
 "219 733 8965",
 "329-293-8753",
 "Work: (579) 499-7527; Home: (543) 355 3679"
)

1. Write a regular expression that will extract all phone numbers contained in the vector
above.

2. Once that works use groups to extracts the area code separately from the rest of the
phone number.

28 / 29

References

1. Grolemund, G., & Wickham, H. (2019). R for Data Science. https://r4ds.had.co.nz/

2. Regular expressions. (2020). Stringr.tidyverse.org. Retrieved 17 February 2020, from
https://stringr.tidyverse.org/articles/regular-expressions.html

3. Regular-Expression.info

29 / 29

https://r4ds.had.co.nz/
https://stringr.tidyverse.org/articles/regular-expressions.html
http://www.regular-expressions.info/

