
R Shiny Part IR Shiny Part I

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

06-08-2006-08-20

1 / 361 / 36

Supplementary materials

Companion videos

Introduction to R Shiny
Building the UI
Creating the server function

Additional resources

Shiny documentation
Shiny Widgets Gallery
Shiny Cheat Sheet

2 / 36

https://warpwire.duke.edu/w/W9MDAA/
https://warpwire.duke.edu/w/XdMDAA/
https://warpwire.duke.edu/w/YdMDAA/
http://shiny.rstudio.com/
http://shiny.rstudio.com/gallery/widget-gallery.html
https://github.com/rstudio/cheatsheets/raw/master/shiny.pdf

Shiny is an R package.

Build web-based apps with R in
RStudio.

Shiny can incorporate CSS themes
and JavaScript actions.

What is Shiny?

3 / 36

How does Shiny work?

4 / 36

How does Shiny work?

5 / 36

How does Shiny work?

6 / 36

Getting started

Open RStudio

Run install.packages("shiny"), if needed

Go to File > New File > Shiny Web App

Enter your application's name

Keep option Single File (app.R) selected

Enter the directory of where the application should be saved

File app.R should open, click Run App to see the result

7 / 36

Function fluidPage() creates a
dynamic HTML user interface you see
when you look at an RShiny app.
Convention is to save this as an object
named ui.

Function server() is user-defined
and contains R commands your
computer or external server need to
run the app.

Function shinyApp() builds the
app based on the user interface and
server pair of code.

Main components of RShiny

 # Load package shiny
library(shiny)
Define UI for application
ui <- fluidPage(

)

Define server logic
server <- function(input, output)

}

Build and run the application
shinyApp(ui = ui, server = server)

8 / 36

Available examples

Enter any of the following in your Console to see the Shiny app in action along with the
code.

runExample("01_hello") # a histogram
runExample("02_text") # tables and data frames
runExample("03_reactivity") # a reactive expression
runExample("04_mpg") # global variables
runExample("05_sliders") # slider bars
runExample("06_tabsets") # tabbed panels
runExample("07_widgets") # help text and submit buttons
runExample("08_html") # Shiny app built from HTML
runExample("09_upload") # file upload wizard
runExample("10_download") # file download wizard
runExample("11_timer") # an automated timer

9 / 36

User interfaceUser interface

10 / 3610 / 36

User interface: inputsUser interface: inputs

11 / 3611 / 36

Input widgets

12 / 36

13 / 36

Adding an input widget

Most input widgets are set-up as *Input(inputId, label, ...) or
*Button(inputId, label, ...), where * is replaced with the widget's name.

For example, to create a slider widget we can write

sliderInput(inputId = "bins", label = "Number of bins:",
 min = 1, max = 50, value = 30)

Typically, the first two widget function argument names are not specified since most widgets
first take an inputId and label. Argument inputId is where you specify a name for
the widget (this is not seen by the user); argument label is the label that will appear in your
app (this will be seen by the user).

14 / 36

What do these widget functions
return?

sliderInput(inputId = "bins", label = "Number of bins:",
 min = 1, max = 50, value = 30)

Some HTML!

<div class="form-group shiny-input-container">
 <label class="control-label" for="bins">Number of bins:</label>
 <input class="js-range-slider" id="bins" data-min="1" data-max="50" dat
</div>

15 / 36

ui <- fluidPage(
 # add slider
 sliderInput("bins", "Number of bins:",
 min = 1, max = 50, value = 30)
)

server <- function(input, output) {

}

shinyApp(ui = ui, server = server)

Assortment of input widgets

16 / 36

Assortment of input widgets

ui <- fluidPage(
 # add slider
 sliderInput("bins", "Number of bins:",
 min = 1, max = 50, value = 30),
 # text box input
 textInput("title", "Histogram title",
 value = "Histogram")
)

server <- function(input, output) {

}

shinyApp(ui = ui, server = server)

17 / 36

Assortment of input widgets

Continue to add as many additional widgets as you want/need.

ui <- fluidPage(
 # add slider
 sliderInput("bins", "Number of bins:",
 min = 1, max = 50, value = 30),
 # text box input
 textInput("title", "Histogram title",
 value = "Histogram"),
 # combo box
 selectInput("color", "Histogram fill",
 choices = c("Red", "White", "Bl
 selected = "Red")
)

server <- function(input, output) {

}

shinyApp(ui = ui, server = server)

18 / 36

User interface: outputsUser interface: outputs

19 / 3619 / 36

Output functions

Inputs are added with *Input(). Similarly, outputs in Shiny are added with *Output().

Output function Creates

dataTableOutput() data table

htmlOutput() raw HTML

imageOutput() image

plotOutput() plot

tableOutput() table

textOutput() text

uiOutput() raw HTML

verbatimTextOutput() text

20 / 36

Output function details

The first argument for each output function is outputId. This argument is where you
specify a name for the output (this is not seen by the user). This name will serve as reference
for code in function server().

21 / 36

ui <- fluidPage(
 # add slider
 sliderInput("bins", "Number of bins:",
 min = 1, max = 50,
 value = 30),

 plotOutput(outputId = "hist")
)

server <- function(input, output) {

}

shinyApp(ui = ui, server = server)

Output function

Our code plotOutput(outputId = "hist") allocates space for a plot. We haven’t
created anything yet, hence no plot is visible.

22 / 36

What do these output functions
return?

plotOutput(outputId = "hist")

Some HTML!

<div id="hist" class="shiny-plot-output" style="width: 100% ; height: 400

23 / 36

User interface review

Build the user interface inside function fluidPage() and save it as an object named
ui.

Function fluidPage() scales its components in realtime to fill all available browser
width - dynamic HTML user interface.

Build inputs with *Input(inputId, label, ...).

Build outputs with *Output(outputId, ...).

Separate multiple inputs and outputs with commas.

Run your app after each added input or output to minimize complications later on.

24 / 36

Beyond the UI

You have a user interface built. Why does it not do anything?

You need to give R commands that react when inputs are provided or are changed. These
reactions are seen by updates to the outputs. Take a look at
https://shiny.rstudio.com/gallery/tabsets.html. As you change inputs, look at what is
highlighted in function server().

This is where function server(), that you create, will come into play.

25 / 36

https://shiny.rstudio.com/gallery/tabsets.html

ServerServer

26 / 3626 / 36

Function server()

server <- function(input, output) {

}

This function plays a special role in the Shiny process; it builds a list-like object named
output that contains all of the code needed to update the R objects in your app. Each R
object needs to have its own entry in the list.

You can create an entry by defining a new element for output within the server function. The
element name should match the name of the reactive element that you created in the user
interface. This is where inputId and outputId come into play.

27 / 36

Steps to create the server()
function

1. Save objects to display to output$<outputId>, where <outputId> is the name
given from function *Output().

server <- function(input, output) {
 output$hist <- # code
}

2. Generally, build these output$<outputId> objects with the family of functions
render*().

server <- function(input, output) {
 output$hist <- renderPlot({
 # code to build your object
 # in this case, code to create
 # the histogram
 })
}

3. Access your input values with input$<inputId>, where <inputID> is the name
given from function *Input().

28 / 36

Render functions

Render function Creates a reactive

renderDataTable() data table

renderImage() image

renderPlot() plot

renderPrint() version of the given function that captures print output

renderTable() table

renderText() version of the given function to turn its result into a character
vector.

renderUI() HTML

29 / 36

Render and Output connection

Each render*() function only requires a single argument: an R expression surrounded by
braces, { }. The expression can be one simple line of code, or it can involve many.

30 / 36

Reactivity

Assuming a well-built Shiny app, every time the user moves the slider, selects a value in a
combo box, selects a new radio button option, outputs will automatically get updated when
inputs change.

This is known as reactivity. Reactivity automatically occurs whenever you use an input value
to render an output object.

31 / 36

Function server() review

The server function does the work in terms of building and rebuilding R objects that
ultimately get displayed to the user in the user interface.

Save output you build to output$<outputId>.

Build output with a render*() function.

Access inputs with input$<inputId>.

Multiple outputs can be placed in the server function.

Reactivity happens automatically when you use inputs to build rendered outputs.

32 / 36

Share your appShare your app

33 / 3633 / 36

Upload it to shinyapps.io

34 / 36

1. Create a free account at
https://www.shinyapps.io/.

2. Build your Shiny app.

3. Publish your app.

What you get with a free account:

5 active applications

25 hours per month of active use

Distribute your app

35 / 36

https://www.shinyapps.io/

References

Shiny. (2019). Shiny.rstudio.com. https://shiny.rstudio.com/

36 / 36

https://shiny.rstudio.com/

