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When releasing data to the public, statistical agencies and sur-
vey organizations typically alter data values in order to protect
the confidentiality of survey respondents’ identities and attribute
values. To select among the wide variety of data alteration meth-
ods, agencies require tools for evaluating the utility of proposed
data releases. Such utility measures can be combined with dis-
closure risk measures to gauge risk-utility tradeoffs of compet-
ing methods. This article presents utility measures focused on
differences in inferences obtained from the altered data and cor-
responding inferences obtained from the original data. Using
both genuine and simulated data, we show how the measures
can be used in a decision-theoretic formulation for evaluating
disclosure limitation procedures.
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1. INTRODUCTION

A central mission of many statistical agencies and survey or-
ganizations is to disseminate microdata, that is, individual data
records, to researchers or the public. Dissemination of microdata
greatly benefits society, as well as facilitates research and ad-
vances in economics, public health, sociology, and many other
areas of knowledge. Disseminating microdata—as compared,
for example, to remote access servers (Gomatam, Karr, Reiter,
and Sanil 2005a)—benefits researchers, who may perform a
wide variety of analyses.

Usually, however, data disseminators cannot release micro-
data as collected, because doing so would reveal respondents’
identities or values of sensitive attributes. Agencies that fail to
protect confidentiality may be in violation of laws such as the
recently enacted Confidential Information Protection and Statis-
tical Efficiency Act of 2002 (Wallman and Harris-Kojetin 2004)
in the U.S. Additionally, if confidentiality is compromised, or-
ganizations may lose the trust of the public, so that potential
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respondents are less willing to give accurate answers, or even to
participate in surveys.

To reduce disclosure risks, data disseminators typically re-
move key identifiers and/or alter values of sensitive attributes
before releasing data. For example, they recode variables, re-
leasing ages or incomes in aggregated categories. Instead, they
may swap data values for selected records, for example, switch-
ing the sexes of some men and women in the data, in hopes of
discouraging users from matching, since matches may be based
on incorrect data. Or, they add noise to numerical data values
to reduce the likelihood of exact matching on key variables or
to distort the values of sensitive variables. Indeed, virtually all
public use data releases have undergone some form of statistical
disclosure limitation (SDL).

SDL methods can be implemented with differing degrees
of intensity. Generally, increasing the amount of alteration de-
creases the risk of disclosure, but it also decreases the accuracy
of inferences obtainable from the released data, often referred to
as data utility (Willenborg and de Waal 2001).

Although there is a plethora of SDL techniques, there exist
few principled methods for selecting which technique, and with
what degree of intensity, to employ in a particular setting. For-
mally or informally, most selection methods are based on trad-
ing off some notion of disclosure risk for some notion of data
utility, often referred to as data quality (Karr, Sanil, and Banks
2006). Such formulations have been described for data swapping
(Gomatam, Karr, and Sanil 2005b), regressions (Gomatam et al.
2005a), tabular data (Dobra, Fienberg, Karr, and Sanil 2002; Do-
bra, Karr, and Sanil 2003; Duncan and Fienberg 1999; Duncan et
al. 2001) and other settings (Domingo-Ferrer, Mateo-Sanz, and
Torra 2001; Duncan, Keller-McNulty, and Stokes 2004).

In a formal risk-utility formulation, each candidate release
R—which is a function of the original database Dorig and pos-
sibly exogenous randomness—is characterized by a quantified
disclosure risk DR(R) [which may be that of either identity or
attribute disclosure (Duncan and Lambert 1989)] and data utility
DU(R). The actual release Drel can be selected from the candi-
dates in one of two ways. The first is to maximize utility subject
to an upper bound on risk, by solving an optimization problem
of the form

Drel = arg maxR∈RDU(R), (1)

where DR(R) ≤ α, and where R is the set of all candidate
releases.

The second, and more flexible, approach is to define risk-utility
frontiers using the partial order �RU defined by

R1 �RU R2 ⇔ DR(R2) ≤ DR(R1)

and
DU(R2) ≥ DU(R1). (2)
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When R1 �RU R2, the R2 is preferred to R1 because it has both
lower disclosure risk and higher utility. Only candidate releases
on the risk-utility frontier of maximal elements of R with respect
to the partial order (2) need be considered further: for any other
candidate, some element of the frontier has lower risk and higher
utility. Calculation of the frontier can be done using existing
algorithms for finding the maxima in a set of vectors (Kung,
Luccio, and Preparata 1975).

While there has been much work on developing measures of
disclosure risk (e.g., Duncan and Lambert 1986, 1989; Lam-
bert 1993; Fienberg, Makov, and Sanil 1997; Skinner and Elliot
2002; Reiter 2005a), there has been comparatively little work
on developing measures of data utility, and so this article out-
lines a framework for defining and comparing measures of data
utility. Section 2 outlines the problem and defines utility mea-
sures that range from the very specific but very narrow—focused
on one analysis of the data—to the very broad, but correspond-
ingly blunt. Section 3.2 presents, in effect, a case study in using
utility measures to select SDL methods. Because a particular
database may not yield generalizable insights, Section 3.3, us-
ing simulated data, shows how the utility measures can be used
to evaluate the characteristics of SDL methods across differing
data structures. A concluding discussion is in Section 4.

2. UTILITY MEASURES

We begin with a general discussion of utility measures (Sec.
2.1), and then we introduce the three measures studied in this
article (Secs. 2.3 and 2.2).

2.1 Generalities

Data utility measures should be linked to the types of analyses
done on the released data, and that at some level they must mea-
sure the fidelity of analyses performed on the released database
Drel to the same analyses performed on the original database
Dorig. In a purely abstract sense, these measures are of the form
d(Drel,Dorig), where d is some possibly analysis-specific mea-
sure of distance or discrepancy.

There arises, then, a fundamental dilemma. On the one hand,
a highly specific utility measure may yield a release tailored to
a single analysis (or small class of related analyses), but that
release may—unbeknownst to users—have low utility for other
analyses. On the other hand, a broad utility measure may pro-
duce releases that are “pretty good” for a number of analyses,
but “really good” for none. Worse yet, breadth seems almost in-
variably accompanied by bluntness: a broad measure may not
be able to distinguish between quite different releases.

The principal purpose of this article is to construct a frame-
work for thinking in a principled way about these kinds of issues,
in the setting of numerical data. Inference-based measures for
categorical data were discussed by Dobra et al. (2002) and Go-
matam et al. (2005b). We illustrate our framework with:

• Two narrow measures that capture differences in the infer-
ences based on Drel and those based on Dorig. As elaborated in
Section 2.2, they are based on linear regression models for nu-
merical data. (Their definability and relevance in broader settings

are subjects of future research.)

• One broad measure—the Kullback–Liebler divergence
dKL(Drel,Dorig) (Sec. 2.3).

In some ways, these could not be more different. The former is
based on one particular model, with one designated response,
but seeks to capture how inferences—not just point estimates of
moments—relate. At the other extreme, dKL(Drel,Dorig) actu-
ally is a metric, so that (but only) in principle, if dKL(Drel,Dorig)
is small, so should be all other reasonable measures of utility.

2.2 Narrow Measures

Data users often wish to fit linear regression models to nu-
merical data. This process produces, of course, not only point
estimates of the coefficients, but confidence intervals as well.
Thus, it is clearly desirable to construct utility measures that
indicate when the confidence interval based inferences from re-
gressions using the released data are close to the corresponding
ones using the original data.

We present two such measures. Although formulated for lin-
ear regressions, they can be extended, albeit not necessarily in
a straightforward manner, to other analyses. These measures
quantify the differences between inferences for one specific re-
gression model, with the response and predictors designated in
advance by the data disseminator. (This assumption is not as
Draconian as it might seem initially. In many databases, there is
one clearly identified response. Examples are education data in
student performance is the response and epidemilogical studies
in which survival time is the response.) How utilities for multiple
models might be evaluated and combined is discussed further in
Section 4.

2.2.1 Confidence Interval Overlap

Confidence intervals are the main mechanism of inference in
regression models. Therefore, one measure of utility is the degree
of overlap between confidence intervals obtained from the same
regressions fit using the Drel and Dorig. The greater the overlap,
the higher the utility.

Consider a prescribed regression, with specified response and
predictors. Let (Lrel,k, Urel,k) be the 95% confidence interval
for the regression coefficient βk obtained from Drel, and let
(Lorig,k, Uorig,k) be the corresponding interval obtained from
Dorig. Let frel,k and forig,k be the estimated posterior distribu-
tions of βk computed under Drel and Dorig, respectively. Specif-
ically, forig,k is the usual t-distribution on n− p degrees of free-

dom with mean β̂orig,k and variance the kth diagonal element

in σ̂2
orig

(
X

′
origXorig

)−1
, where σ̂2

orig is the estimated residual

variance obtained from fitting the regression of Yorig on the as-
sociated n × p matrix of predictors, Xorig, which includes a
vector of ones for the intercept.

We define the probability overlap in the confidence intervals
for any βk to equal:

Ik =
1
2

[∫ Urel,k

Lrel,k

forig,k(t)dt +
∫ Uorig,k

Lorig,k

frel,k(t)dt

]
(3)
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and the interval overlap measure IO as

I =
1
p

p∑
i=1

Ik, (4)

where p is the dimension of the predictor variable matrix, in-
cluding the intercept.

By design, 0 ≤ Ik ≤ 0.95 (as is the case for I), with effec-
tively no overlap corresponding to Ik = 0 and perfect overlap
corresponding to Ik = 0.95. Averaging the two integrals in the
definition of Ik helps deal with cases where (Lorig,k, Uorig,k) ⊆
(Lrel,k, Urel,k), or vice versa. For an illustrative example, con-
sider the case where (Lorig,k, Uorig,k) = (8, 10), and for two
different proposed releases the (Lrel1,k, Urel1,k) = (−12, 30)
and (Lrel2,k, Urel2,k) = (3, 15). From a utility perspective, the
second release is clearly preferable over the first release. The IO
as defined favors the second release. A criterion that just equals∫ Urel,k

Lrel,k
forig,k(t)dt does not clearly distinguish the releases, be-

cause this integral for both procedures is essentially one. Similar
examples can be constructed to show the inadequacy of using∫ Uorig,k

Lorig,k
frel,k(t)dt alone.

The IO does not distinguish among intervals that have Ik es-
sentially equal to zero, some of which may be “less worse” than
others. To adjust for this, the measure can be modified by adding
some distance-based penalty when I is essentially zero, or per-
haps even when Ik is essentially zero for some k, where dis-
tance is defined as some function of the |β̂rel,k − β̂orig,k| or of
min {|Lrel,k − Uorig,k|, |Lorig,k − Urel,k|}.

An alternative measure is the overlap in the interval lengths.
Let (Lover,k, Uover,k) be the overlap in these intervals, defined as
{b : b ≥ Lorig,k, b ≥ Lrel,k, b ≤ Uorig,k, b ≤ Urel,k}. Then, the
average relative overlap in the confidence intervals for any βk

equals

Jk =
1
2

[
Uover,k − Lover,k

Uorig,k − Lorig,k
+

Uover,k − Lover,k

Urel,k − Lrel,k

]
. (5)

The interval overlap measure then could be defined as J =
(1/p)

∑p
i=1 Jk.

2.2.2 Ellipsoid Overlap

The IO measure considers each interval separately, effectively
using all the conditional distributions of the coefficients rather
than their joint distribution. Some analysts may be interested in
simultaneous intervals, which are defined by multidimensional
ellipsoids. We therefore create an ellipsoid overlap measure, EO.
Higher values of EO mean greater utility.

To construct EO it is convenient to consider posterior proba-
bilities of regions defined by ellipsoids, that is, to use a Bayesian
perspective. Generically, let β̂ be the maximum likelihood esti-
mate of β, the p×1 vector of true coefficients in the regression of
Y on X , and let σ̂2 be the estimated residual variance for that re-
gression. Under the standard linear regression assumptions and
assuming standard noninformative prior distributions for β and
σ2, the (1−α)100% joint highest posterior density ellipsoid for
β is defined by all the values of β such that

(β − β̂)T (XTX)(β − β̂)
pσ̂2 ≤ F (α; p, n − p),

where F (α; p, n−p) is the critical value from the F distribution
with p and n − p degrees of freedom. The ellipsoid from the
Dorig, which we call Eorig, is obtained by setting β̂ = β̂orig,
σ̂2 = σ̂2

orig, and X = Xorig. The ellipsoid from the Drel, which

we call Erel, is obtained by setting β̂ = β̂rel, σ̂2 = σ̂2
rel, and

X = Xrel.
The utility measure EO is the average of two posterior proba-

bilities: (1) the probability of Eorig computed using the posterior
distribution of β based on Drel, and (2) the probability of Erel
computed using the posterior distribution of β based on Dorig. To
determine these probabilities, we use Monte Carlo simulations.
For the first probability, we draw values of β from its posterior
conditional on Drel which is a p-variate t-distribution with mean
β̂rel and covariance matrix Σ̂rel = σ̂2

rel(X
t
relXrel)−1 with n − p

degrees of freedom. We then calculate the percentage of these
drawn β that lie within Eorig. A similar process is used to obtain
the second probability by drawing from the posterior of β given
Dorig and finding the percentage of these that lie inside Erel.
As with IO, the EO can be extended to any parameters whose
distribution is well-approximated by a multivariate normal dis-
tribution.

2.3 Broad Measures

At the opposite end of the utility spectrum, one can employ
broad measures of the overall difference between Drel and Dorig,
of which the broadest are metrics on some set of distributions.

This article focuses on the Kullback-Liebler divergence be-
tween (the empirical distribution of) Drel and that of Dorig, which
we denote by dKL(Drel,Dorig). Since Drel and Dorig are discrete
distributions, calculation of dKL(Drel,Dorig) entails two com-
putationally onerous steps:

1. Construction of density estimators f̂rel and f̂orig.

2. Approximation of

dKL(Drel,Dorig) =
∫

log
[
f̂rel/f̂orig

]
f̂rel (6)

by numerical quadrature.

In high (in practice, three or more) dimensions, both of these
may be infeasible.

When both Drel and Dorig have multivariate normal distribu-
tions, dKL(Drel,Dorig) can be calculated in closed form. The
resultant expression (A.4), which is used in Section 3.3, is de-
rived in the Appendix.

3. ILLUSTRATIVE APPLICATIONS OF THE
UTILITY FRAMEWORK

This section presents two applications of the utility frame-
work. The first illustrates the risk-utility framework using “real
data” from the Current Population Survey (CPS). The second
uses a simulation study to explore the properties of utility mea-
sures and SDL procedures as a function of the size and correla-
tion structure of the original data.

In both applications, we use a representative set of SDL meth-
ods investigated by Oganian (2003), which are described in
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Section 3.1. This should not be construed as endorsing these
methods—indeed, one of them seems to have rather undesir-
able properties, nor should it be construed as disparaging other
methods.

To measure disclosure risk, following the example of Yancey,
Winkler, and Creecy (2002), we determine the percentage of
records in Drel that we can match correctly to records in Dorig us-
ing standard record linkage techniques (Felligi and Sunter 1969;
Jaro 1989). For simplicity, we do not consider other measures
of identity disclosure risk, nor measures of attribute disclosure
risk, although we believe that data disseminators should consider
such measures.

3.1 Disclosure Limitation Methods

In a taxonomy of SDL methods that release microdata, the
highest level distinction is whether they are record-level or
database-level. For record-level methods, the released data are

Drel = {f(r) : r ∈ Dorig}, (7)

where r is a record in Dorig and f is a function that does not
depend on Dorig, but may involve exogenous randomness. That
is, records are simply altered individually, for example, by ad-
dition of noise. Database-level methods are more complex: in
effect, the function f in (7) is replaced by f(D0

orig(r)), where

D0
orig(r) is a subset of Dorig that in general depends on r and of-

ten involves exogenous randomness. Microaggregation and data
swapping are of this nature. In the extreme case of synthetic data
(Raghunathan et al. 2003; Reiter 2005b), D0

orig(r) = Dorig for
all r. We consider both record-level and database level methods.

Virtually all SDL methods can be implemented with differing
degrees of intensity. For example, one can add large or small
amounts of noise to data. Hence, we write each SDL method
as a function of the parameter that can be varied. Because our
purpose is to illustrate the utility measures framework, in our
experiments we select only one value of the parameter for each
method. In future work, we plan to use the risk-utility framework
to assess the sensitivity of SDL procedures to different parameter
values.

3.1.1 Additive Noise

Additive noise (Brand 2002; Duncan and Pearson 1991; Kim
1986; Little 1993; Sullivan and Fuller 1989; Tendik and Mat-
loff 1994) consists of adding random noise to the original data.
Generally, the noise distribution has mean zero, to preserve, on
average, the sample means. The variance of noise distribution
can be generic, although most commonly it reflects either com-
plete independence or the correlation structure of the original
data.

In Sections 3.2 and 3.3, we employ Gaussian noise with the
same correlation structure as the original data. Specifically, let
X be original multivariate dataset with covariance matrix Σorig.
The corresponding masked data are generated as

X′ = X + E (8)

E ∼ N(0, cΣorig) (9)

where the constant c is defined by the data disseminator. When
adding noise with the same correlation structure as Dorig, the c
is the parameter that defines the procedure. We set c = 0.16 in
the simulations. We abbreviate this SDL method as Noise(.16).

3.1.2 Rank Swapping

Rank swapping is a form of data swapping (Dalenius and Reiss
1982). It was originally designed for ordinal variables (Moore
1996), but works equally for numerical variables. To implement
rank swapping, we first rank the values of variable Xi in as-
cending order. Each ranked value then is swapped with another
ranked value randomly chosen within a restricted range. This
process is repeated for each variable.

Typically, the swaps are defined by setting a parameter p so
that the ranks of two swapped values are not allowed to dif-
fer by more then p percent of the total number of records. In
the example above, p = 10% corresponding to swapping with
the next ordered value. Large values of p lead to greater distor-
tions in the data whereas the smaller ones to higher disclosure
risk. In Domingo-Ferrer and Torra (2001), Oganian (2003), and
Domingo-Ferrer et al. (2001), p = 15% was reported as one
of the best parameter choices for rank swapping. We therefore
used this parameter value in our simulations. We abbreviate this
method as Rank(.15).

3.1.3 Microaggregation

Microaggregation involves clustering records into small ag-
gregates or groups of size at least k. Rather than releasing the
original value of Xi for a given record, the disseminator re-
leases the average of the original values of Xi for a group of
records. Classical microaggregation requires that all groups, ex-
cept perhaps one, be of size k, where k is selected by the data
disseminator (Defays and Nanopoulos 1993).

We examined several variants of microaggregation in our sim-
ulations, each a function of which and how many variables and
records are grouped together. These include: (1) individual rank-
ing, in which each variable is grouped independently of other
variables; (2) multivariate ranking, in which the variables are
grouped by similarity of values for subsets of variables; and (3)
z-scores projection and principal components projection (Anwar
1993; Defays and Nanopoulos 1993; Defays and Anwar 1995),
in which the multivariate data first are ranked by projecting them
onto a single axis, using either the sum of z-scores or the first
principal component, and then are aggregated into groups of size
k, except possibly for one group of larger size (from k + 1 to
2k − 1).

Microaggregation methods are functions of the number of
variables used in the similarity measures (v), and the group sizes
(k). We set values for v and p according to the research done by
Domingo-Ferrer and Torra (2001) and Oganian (2003). For indi-
vidual ranking, we used all variables in the similarity measures
(v = p) and ten records per group (k = 10). This method is
abbreviated as Micir(p,10). For multivariate ranking, we con-
sidered several approaches. First, we used all variables in the
similarity measures and three records per group. This method is
abbreviated as Micm(p,3). Second, we used three variables at a
time in the similarity measures—for example, replace variables
X1 through X3 with a group average, then replace variables X4
through X6 with an independently formed group average, and
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Figure 1. Risk-utility plots for the 1995 CPS data. Left: IO measure. Right: EO measure. Higher values of IO and EO represent greater utility.

so on—and seven records per group. This method is abbreviated
as Micm(3,7). Finally, for both forms of microaggregation on
projected data, we used all variables in the projection scores and
three records per group. These are abbreviated as Micp(p,3)for
principal components projection and Micz(p,3)for z-scores pro-
jection.

3.1.4 Resampling

Resampling is a generic term, but here we mean a specific
approach to protecting data that involves elements of bootstrap-
ping. This version was used by Domingo-Ferrer and Mateo-
Sanz (1999) and Heer (1993). Let X1 be the first variable in
a dataset with n records. We give each row a ranking based on
its value of X1, which is determined by its position in an as-
cending sort of X1. We then draw n values from the data in X1,
with replacement, and order them consistent with the ordering
of the row ranks to obtain a bootstrap sample V11. This process
is repeated independently t times, resulting in bootstrap samples
V11, . . . , V1t. The released X1 is V̄1 = (1/t)

∑t
k=1 V1k. We re-

peat this process independently for each Xi, for i = 1, . . . , p, by
ranking the rows in ascending order of the Xi and bootstrapping
to obtain Vi1, . . . , Vit. The released dataset is (V̄1, V̄1, . . . , V̄p).

For resampling, the parameter is t, the number of bootstrap
samples, and we use t = 3. This method is abbreviated as
Resamp(3).

3.2 Application 1: Risk-Utility Tradeoffs on CPS Data

Utility measures must be assessed in combination with disclo-
sure risk measures to quantify the risk-utility tradeoffs of var-
ious SDL procedures. Here, we illustrate such quantifications
using microdata extracted from the 1995 CPS. The data com-
prise 1080 records containing 12 numerical variables, including
adjusted gross income (agi), employer contribution for health
insurance (emcontrb), business or farm net earnings (ernval),
federal income tax liability (fedtax), social security retirement
payroll reduction (FICA), amount of interest income (intval),
total person earnings (pearnval), total other persons income

(pothval), total person income (ptotval), state income tax li-
ability (statetax), taxable income amount (taxinc), and total
wage and salary (wsalval). These variables are highly corre-
lated; in fact, the income variables contain a perfect linear com-
bination.

We quantify disclosure risk as the percentage of records in
Drel that can be linked correctly to their “parent” records in
Dorig, assuming that the intruder knows the exact values for
six variables in the data set—fedtax,  agi,  emcontrb, ptotval,
 taxinc, and  statetax, and that these values equal the corre-
sponding values in Dorig. These six were chosen because each
alone uniquely identified all individuals in the dataset, so that
they are the “riskiest” set of six variables one could know in
these data. In general, data disseminators can assess disclosure
risk under a variety of assumptions about intruders’ knowledge,
as was done for example by Fienberg et al. (1997) and Reiter
(2005a).

For the model-specific utility measures, the regression of in-
terest is

agi = β0 + β1 emcontrb + β2 fedtax

+β3 taxinc + β4 ptotval + β5 statetax + ε. (10)

We fit the regression using both Dorig and the Drel resulting
from the various SDL strategies.

Figure 1 displays (risk, utility) scatterplots of the values of
IO and EO (x-axis) and disclosure risk (y-axis) for each of the
SDL strategies in Section 3.1. We do not calculate the Kullback-
Liebler divergence dKL(Drel,Dorig) of (6) because Dorig does
not follow a multivariate normal distribution. In all cases, EO ≤
IO; for some measures the drop is precipitous.

The risk-utility frontiers associated with (2), in order of de-
creasing utility, are:

For IO, Micz(p,3), Noise(.16), Micp(p,3), Rank(.15).

For EO, Micz(p,3), Noise(.16), Micz(p,3), Micp(p,3),
Rank(.15).
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Not surprisingly, the former is a subset of the latter. The data dis-
seminator can ignore Micm(3,7), Micm(p,3) and Resamp(3)for
both utility measures.

The choice among the SDL methods lying on the risk-utility
frontier lies with the data disseminator. To illustrate the first ap-
proach described in Section 1, if the risk threshold were 10%
(in some settings, not a very conservative value), then accord-
ing to either IO or EO, Noise(.16) would be the preferred SDL
method. It is also clear from Figure 1 that compared to Micz(p,3)
or Noise(.16), Micir(p,10) produces only a minor increase
in utility at an enormous cost in terms of disclosure risk. Simi-
larly, Rank(.15) yields only a modest improvement in disclosure
risk over Micp(p,3) and Noise(.16), but incurs an immense
penalty in terms of data utility, especially for EO. Thus, it ap-
pears that in practice the disseminator would choose Noise(.16)
or Micp(p,3) for the model in (10).

How data disseminators might examine multiple analyses and
multiple SDL strategies in the process of selecting Drel is dis-
cussed in Section 4.

3.3 Application 2: Properties of SDL Procedures and Util-
ity Measures

In Figure 1, there is no clear difference between IO and EO.
Moreover, the one case study in Section 3.2, which involves
only one database, does yield insight into how characteristics
of Dorig might affect utility measures and consequent choice of
SDL methods. This section reports simulation studies designed
to provide answers to these kinds of questions.

The design for the simulation consists of:

• Six data types constructed by crossing two correlation
structures—high and low—with three dimension structures—
three, six, and ten variables. Each simulated data set comprises
10,000 observations drawn from a multivariate normal distribu-
tion.

• Five replicates for each data type, to assess the effects of
replicate variability.

• The eight SDL measures from Section 3.1.

• The two narrow utility measures from Section 2.2 and the
one broad measure from Section 2.3. For the model-specific util-
ity measures, we selected one variable as the response (this vari-
able is present regardless of the dimension) and regressed it on
all other (2, 5, or 9) variables in the dataset.

Disclosure risk is the percentage of records identified correctly
using record linkage on all variables in the dataset.

For the Kullback–Liebler divergence measure KL =
dKL(Drel,Dorig), we assume that Drel has a multivariate nor-
mal distribution (Dorig has one by construction). Equation (A.4)
in the appendix was used to calculate KL, using maximum like-
lihood estimators (µ̂orig, Σ̂orig) for the mean and covariance of
Dorig and (µ̂rel, Σ̂rel) for the mean and covariance of Drel. The
assumption that Drel is multivariate normal is an approximation
at best. In what follows, it is important to keep in mind that
smaller values of KL indicate higher utility.

Table 1. Risk and Utility Values in Simulated Low-Correlation, Multivari-
ate Normal Data. Values in  boldface are on the risk-utility frontier.

Method Dim EO IO KL Risk

Micir(p,10) 3 0.949 0.950 3.93E-07 0.948
6 0.950 0.950 2.36E-06 0.974

10 0.945 0.948 3.47E-05 0.985

Resamp(3) 3 0.780 0.916 1.71E-04 0.455
6 0.622 0.843 0.001 0.735

10 0.106 0.867 0.004 0.846

Micp(p,3) 3 0.000 1.87E-20 0.902 0.018
6 0.000 0.038 2.237 0.030

10 0.000 0.614 4.067 0.057

Rank(.15) 3 0.000 2.16E-12 0.081 0.001
6 0 6.01E-05 0.334 0.004

10 0 0.156 0.987 0.066

Micm(3,7) 3 0.761 0.83 0.001 0.110
6 0.008 0.644 0.010 0.245

10 0.000 0.666 0.287 0.550

Micm(p,3) 3 0.930 0.933 1.55E-04 0.120
6 2.78E-05 0.423 0.080 0.141

10 0.134 0.738 0.449 0.238

Micz(p,3) 3 0 0.0 0.903 0.005
6 0 0.219 2.260 0.005

10 0.15 0.755 4.129 0.009

Noise(.16) 3 0.916 0.926 0.016 0.003
6 0.907 0.929 0.031 0.017

10 0.870 0.920 0.053 0.108

Tables 1 and 2 present the utility and risk values, averaged
over replicates, for the low- and high-correlation datasets. The
standard errors of the reported averages are all small enough that
observed differences do not result solely from replicate variabil-
ity in the simulations. Boldface utility values indicate that the
SDL procedure is on the risk-utility frontier for that utility mea-
sure; that is, the procedure is not dominated by other procedures.

Looking at the Tables 1 and 2, differences in risk and util-
ity across methods are larger than differences due to either di-
mension or correlation structure. Micir(p,10) typically pro-
vides the highest utilities but also the highest disclosure risks,
which is consistent with the results in Section 3.2. (And not
surprising—this method usually alters the observed data only
slightly.) Resamp(3) tends to have the second highest disclosure
risk, with relatively high utility. At the “low end,” Rank(.15) typ-
ically has among the lowest disclosure risks and the lowest utili-
ties, because it alters significantly the correlation structure of the
data, greatly distorting regression inferences. Micm(3,7), which
does microaggregation on three variables at a time, tends to have
high disclosure risk and low utility, due to independent aggrega-
tions of different triplets of variables. Among the microaggre-
gation methods that operate on all variables simultaneously—
Micm(p,3), Micp(p,3), and Micz(p,3)—Micm(p,3)generally
has highest utility, especially for the KL measure, and high-
est risk. Noise(.16)is characterized by relatively high utility
and low disclosure risk; it is the only method that purposefully
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Table 2. Risk and Utility Values in Simulated High-Correlation, Multi-
variate Normal Data. Values in boldface are on the risk-utility frontier.

Method Dim EO IO KL Risk

Micir(p,10) 3 0.946 0.948 4.65E-06 0.947
6 0.834 0.760 0.003 0.972

10 0.763 0.735 0.027 0.985

Resamp(3) 3 0.364 0.883 0.001 0.402
6 0.000 0.873 0.018 0.664

10 0.000 0.487 0.118 0.833

Micp(p,3) 3 0.000 0.428 0.888 0.035
6 0.000 0.602 2.264 0.034

10 0.108 0.811 4.051 0.043

Rank(.15) 3 0.000 9.23E-15 0.720 0
6 0.000 0.034 2.887 0.001
10 0.000 0.097 5.908 0.004

Micm(3,7) 3 0.739 0.706 0.004 0.150
6 0.000 0.150 0.387 0.155

10 0.000 0.118 1.736 0.419

Micm(p,3) 3 0.923 0.912 0.001 0.161
6 0.000 0.443 0.512 0.181

10 0.539 0.843 1.359 0.281

Micz(p,3) 3 0.000 0.694 0.930 0.015
6 0.306 0.846 2.267 0.021

10 0.367 0.750 4.072 0.032

Noise(.16) 3 0.920 0.930 0.016 0.002
6 0.871 0.921 0.031 0.011

10 0.827 0.904 0.053 0.040

preserves the correlation structure of the data.
The first three columns of Table 3 display, for each of the

three utility measures, the number of times—out of a possible
six corresponding to the six database structures—each method
is on the risk-utility frontier.

The corresponding column totals indicate that the frontiers
for the model-specific measures are smaller than the frontier for
KL. That is, more methods are dominated by others when using
IO and EO. The results highlight Noise(.16), Micir(p,10),
Micz(p,3), and Rank(.15)as being on the frontier most of-
ten. As shown in Tables 1 and 2, as well as in Section 3.2,
Micir(p,10)and Rank(.15)tend to be at the extreme ends of
the utility or risk portion of the frontier, whereas Noise(.16)

and Micz(p,3) lie in the middle of the frontier.
One advantage of the risk-utility frontier formulation in (2)

is that it extends to more than one utility measure (or more
than one measure of risk). If there are multiple utility measures
DU1, . . . ,DUk, then the partial order is defined by

R1 �RU R2 ⇔ DR(R2) ≤ DR(R1)
and

DUi(R2) ≥ DUi(R1) for i = 1, . . . , k.
(11)

Of course, as the number of measures increases, so does the
relative size of the frontier, reducing the savings from restricting
attention to the frontier.

The fourth and fifth columns of Table 3 show how many times
each method is on the joint frontier for IO and EO and how many
times on the joint frontier for all three utility measures. The joint
{IO, EO} frontier is reasonably close to the individual frontiers,
while the three-measure frontier is quite different, especially
for procedures Micm(p,3)and Resamp(3). This reflects the low
discriminatory power of KL.

Tables 1 and 2 also provide some insight into the effects of di-
mension and correlation structure. For several methods, the value
of EO is essentially zero, indicating little probability mass in the
intersections of the ellipsoids. Because EO measures simultane-
ous overlap, any substantial disparity between the distributions
of the parameters, even in just one dimension, results in a low
value of EO. This issue also explains why values of EO tend to
decrease as dimension increases: there are more opportunities
for disparities, and small disparities add up to produce bigger
joint differences. A similar behavior applies for the KL mea-
sure. In contrast, the IO measure rarely equals zero, and there
is no strong dimension effect. This is because IO averages indi-
vidual overlaps, so that overlap in several dimensions contribute
positive values even when one dimension is poorly specified.

In general, the differences in the confidence intervals based on
Dorig and Drel are larger in the high-correlation data than in the
low-correlation data, but this effect is weak relative to that of dif-
fering methods. Some methods, such as Noise(.16), seem to be
essentially unaffected by the correlation structure, whereas oth-
ers, such as Micz(p,3), are strongly affected. Among the utility
measures, KL appears most sensitive to the correlation struc-
ture, especially for Rank(.15)and some of the microaggregation
methods.

We also examined the performance of the methods when the
analyst fits an incorrect model—one that excludes important
predictors—but have omitted detailed numerical results. Some
of the SDL methods produced regressions bearing little resem-
blance to the corresponding regressions fit with the original data.
This was especially true for some of the microaggregation meth-
ods, which should give pause to disseminators considering use of
microaggregation. The finding also emphasizes the importance
of checking several inferences when doing risk-utility analyses.

Table 3. Numbers of Times Each SDL Method Appears on the Marginal
and Joint Risk-Utility Frontiers for the Six Simulated Datasets

Joint Joint EO,
Methods EO IO KL EO, IO IO, KL Total

Noise(.16) 6 6 6 6 6 30
Rank(.15) 5 5 6 5 6 27
Micir(p,10) 4 4 6 4 6 24
Micz(p,3) 2 3 2 3 3 13
Micm(p,3) 2 1 2 2 2 9
Micm(3,7) 0 0 3 0 3 6
Resamp(3) 0 0 3 0 3 6
Micp(p,3) 0 0 1 0 1 2

Total 21 20 31 20 30
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4. DISCUSSION

As threats to data confidentiality grow, agencies and survey or-
ganizations must implement disclosure limitation with increas-
ing intensity. Deciding which procedures to use, as well as how
intensely to use them, can—and, we would argue, should—be
framed in the context of a risk-utility analysis. The utility mea-
sures presented here can aid in quantifying that tradeoff.

These measures have strengths and weaknesses. The interval
and ellipse overlap measures can be used for many types of in-
ferences, but they are specific not just to a class of models, but to
one model within a class. One of the attractive features of public
use data releases is that a variety of analyses can be performed on
them. This makes it infeasible to predict all inferences that will
be attempted, but clearly certain inferences can be identified as
more typical, and hence more important to preserve, than others.
For example, predicting income from age is more typical than
predicting age from income.

When multiple models are of interest, one approach is to em-
ploy multidimensional utilities (as, albeit in a different context,
in Section 3.3), and to define risk-utility frontiers using analogs
of (11). In this case, there is one utility measure per model of in-
terest. When there are many models of interest, this approach is
cumbersome at best, since most or nearly all candidate releases
may be on the frontier (especially if both IO and EO are to be
considered).

An alternative is to use a loss function to combine model-
specific utilities for a large number of representative models that
have been identified from existing literature and subject matter
expertise. For instance, a weighted linear combination of model-
specific utilities could be used, as in the experimental design
literature, where design points can be selected to optimize for a
set of linear regressions.

Indeed, as suggested by a referee of this article, there may
be deeper connections between microdata release and experi-
mental design. To illustrate, random sampling (of records) from
a database is a common SDL strategy because it increases in-
truder uncertainty about whether a target record is present in the
released data. While choice of a design matrix, as in Chaloner
(1984), has no direct parallel in SDL, one intriguing analog
would be to release a set of records that preserve fidelity of a
family of regressions. Doing so produces a formulation very
similar to ψ-optimality in Chaloner (1984). However, instead of
the unconstrained optimization problem there, one faces a daunt-
ing discrete optimization problem because the “design” must be
selected from the underlying database. Of course, the disclosure
risk consequences of such a strategy are completely unclear.

These kinds of approaches, methods of selecting represen-
tative analyses, and useful and workable tools for combining
model-specific utilities are topics for future research.

We investigated one broad measure, KL, but it relies on the
multivariate normality assumption to be meaningful. Data dis-
seminators would benefit greatly from the development of com-
putationally feasible techniques to measure distances between
empirical distributions.

Finally, it may be important for data disseminators to evalu-
ate relationship-specific measures of utility, although we did not
illustrate them here. One such measure is the number of sub-
stantively important, statistically significant relationships that

experience a directional switch, for example, the estimated re-
gression coefficient goes from positive to negative, when going
from Dorig to Drel. Clearly, a release that involves many direc-
tional switches is undesirable. The rationale is that a change
in sign mis-states the direction of an effect. A related measure
is the number of relationships that go from statistically signifi-
cant to statistically insignificant, or vice versa: many significance
changes are undesirable from a utility perspective. These rela-
tionship measures complement the model-specific measures in
the utility evaluation process.

APPENDIX: DERIVATION OF THE
KULLBACK-LIEBLER DIVERGENCE FOR

MULTIVARIATE NORMAL DISTRIBUTIONS

Let X1 and X2 be p-dimensional random variables with
multivariate normal densities φ1 = MVN(µ1,Σ1) and φ2 =
MVN(µ2,Σ2). Then by (6),

dKL(X1‖X2) = EX1

[
1
2

log (|Σ2|/|Σ1|)

−1
2

[
(X − µ1)′Σ−1

1 (X − µ1)

−(X − µ2)′Σ−1
2 (X − µ2)

] ]

=
1
2

log (|Σ2|/|Σ1|) − 1
2
EX1 [T1]

+
1
2
EX1 [T2] ,

where T1 = (X − µ1)′Σ−1
1 (X − µ1) and T2 = (X −

µ2)′Σ−1
2 (X − µ2). Under the distribution of X1, T1 ∼ χ2

p, so
that

EX1 [T1] = p. (A.1)

Also, we can re-express T2 as

T2 = (X − µ2)′Σ−1
2 (X − µ2)

= (X − µ1)′Σ−1
2 (X − µ1)

+2X ′Σ−1
2 (µ1 − µ2) − µ1Σ−1

2 µ1 + µ2Σ−1
2 µ2

= (X − µ1)′Σ−1
2 (X − µ1) + (µ1 − µ2)′Σ−1

2 (µ1 − µ2).
(A.2)

Under the distribution of X1 the quadratic form (X −
µ1)′Σ−1

2 (X − µ1) has a weighted χ2 distribution of the form∑p
i=1 λiχ

2
1, where λi are the eigenvalues of Σ1Σ−1

2 (Guttman
1982). Hence,

EX1 [T2] =
p∑

i=1

λi + (µ1 − µ2)′Σ−1
2 (µ1 − µ2). (A.3)

After noting that 1
2 log (|Σ2|/|Σ1|) = −∑p

i=1 log(λi), we
obtain from (A.1) and (A.3) that

dKL(X1‖X2) =
1
2

[
(µ1 − µ2)′Σ−1

2 (µ1 − µ2)

−
p∑

i=1

(1 − λi + log[λi)]

]
. (A.4)

[Received TKK. Revised TKKK.]
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