STATISTICS ON MANIFOLDS
FRECHET MEANS AND THEIR ESTIMATION

Project Submitted by: Abhishek Bhattacharya
Advisor: Dr. Rabi Bhattacharya
Overview

• Frechet mean on Metric Spaces

• Extrinsic Mean

• Examples on some common Manifolds

• Intrinsic Mean

• Examples

• Numerical Calculations

• Other Work
Frechet Mean on Metric Spaces

• \((M, \rho)\) a metric space and \(Q\) a probability measure on \(M\).

• The Frechet function of \(Q\),
 \[F(p) = \int_M \rho^2(p, x)Q(dx), \quad p \in M. \]

• The Frechet Mean set of \(Q\) is the set of all \(p\) for which \(F(p)\) is the minimum.

• \(X_1, X_2, \ldots, X_n\) are iid with common distribution \(Q\), and \(Q_n = \frac{1}{n} \sum_{j=1}^{n} \delta_{X_j}\) is the corresponding empirical distribution.

• The Frechet mean set of \(Q_n\) is the sample (Frechet) mean set.
• If this set is a singleton, it is the **sample (Frechet) mean**.

• Suppose every closed and bounded subset of M is compact. If the Frechet function $F(p)$ of Q is finite for some p, then the Frechet mean set of Q is nonempty and compact.

• If the Frechet mean of Q is unique, then every measurable selection from the Frechet sample mean set is a strongly consistent estimator of the Frechet mean.
Extrinsic Means

• $\phi : M \to \mathbb{R}^k$ an isometric map of M onto $\tilde{M} = \phi(M) \subset \mathbb{R}^k : \rho(x, y) = \|\phi(x) - \phi(y)\|$, is the Euclidean distance.

• $P_{\tilde{M}}u = \{x \in \tilde{M} : \|x - u\| \leq \|y - u\| \forall y \in \tilde{M}\}$.

• If this set is a singleton, u is a nonfocal point of \mathbb{R}^k (w.r.t. \tilde{M}); o.w. it is a focal point of \mathbb{R}^k.

• The Frechet mean (set) of Q is the Extrinsic mean(set) of Q.
• If $X_i(i \geq 1)$ are iid observations from Q, and $Q_n = \sum_{i=1}^{n} \delta_{X_i}$, then the Frechet mean(set) of Q_n is the **Extrinsic sample mean(set)**.

• Let \tilde{Q}, \tilde{Q}_n be the images of Q, Q_n respectively on \mathbb{R}^k: $\tilde{Q} = Q \circ \phi^{-1}, \tilde{Q}_n = Q_n \circ \phi^{-1}$.

• If $\tilde{\mu} = \int_{\mathbb{R}^k} \mu \tilde{Q}(du)$ is the mean of \tilde{Q}, then the extrinsic mean set of Q is $\phi^{-1}(P_{\tilde{\mu}}_{\tilde{M}})$.

• If $\tilde{\mu}$ is a nonfocal point of \mathbb{R}^k (relative to \tilde{M}), then the extrinsic sample mean μ_n is a strongly consistent estimator of the extrinsic mean $\mu = \phi^{-1}(P_{\tilde{\mu}}_{\tilde{M}})$.
Examples

• Example 1 (S^{k-1}): The inclusion map $i: S^{k-1} \to \mathbb{R}^k$, $i(x) = x$. The extrinsic mean set of Q on S^{k-1} is the point(set) $P_{S^{k-1}}\tilde{\mu}$ on S^{k-1} closest to $\tilde{\mu} = \int_{\mathbb{R}^k} x\tilde{Q}(dx)$, where \tilde{Q} is Q regarded as a probability on \mathbb{R}^k. $\tilde{\mu}$ is non-focal iff $\tilde{\mu} \neq 0$.
• **Example 2** \(\mathbb{RP}^{k-1} \): \(\mathbb{RP}^{k-1} = \) All lines \((\lambda x : \lambda \in \mathbb{R} \setminus \{0\}) \) through the origin in \(\mathbb{R}^k, x \neq 0 \). Can be regarded as the quotient space of \(S^{k-1} \) under the relation \(u \sim v \) iff \(u = -v \).

• Another representation is via the **Veronese-Whitney embedding** \(\phi \) into the space of all \(k \times k \) matrices identified with \(\mathbb{R}^{k^2} \), \(\phi([u]) = uu', (u = (u_1, .., u_k)' \in S^{k-1}) \).

• \(\phi \) is an **Equivariant Embedding** of \(\mathbb{RP}^{k-1} \).

• **Metric** \(\rho \) on \(\mathbb{RP}^{k-1} \), \(\rho^2([u], [v]) = \|uu' - vv'\|^2 = \text{Trace}(uu' - vv')^2 \).
• Q be a probability measure on \mathbb{RP}^{k-1}, and $\tilde{\mu}$ the mean of $\tilde{Q} = Q \circ \phi^{-1}$ considered as a probability measure on \mathbb{R}^{k^2}.

• $\tilde{\mu}$ is **nonfocal** iff its largest eigenvalue is **simple**.

• Then the extrinsic mean of Q is $[\mu_m]$, $\mu_m (\neq 0)$ is a unit eigenvector corresponding to the largest eigenvalue of $\tilde{\mu}$.
Example 3 (Planer Shape Space of k-ads, Σ_2^k). Suppose k points on the plane, e.g., k locations on a skull projected on a plane, not all points being the same. Such a set a k-ad (or a set of k landmarks). Denoted by k complex numbers $(z_j = x_j + iy_j, 1 \leq j \leq k)$. The shape of a k-ad $z = (z_1, z_2, \ldots, z_k)$, the equivalence class, or orbit of z under translation, rotation and scaling.

To remove translation, substract $\langle z \rangle \equiv (\langle z \rangle, \langle z \rangle, \ldots, \langle z \rangle)$ ($\langle z \rangle = \frac{1}{k} \sum_{j=1}^{k} z_j$) from z to get $z - \langle z \rangle$. Rotation of the k-ad by an angle θ and scaling by a factor $r > 0$ achieved by multiplying $z - \langle z \rangle$ by $\lambda = r \exp i\theta$. Hence the shape of the k-ad, the complex line passing through $z - \langle z \rangle$.
• Structure of the complex projective space \(\mathbb{C}P^{k-2} \). Represent the element of \(\Sigma^k_2 \) corresponding to a k-ad \(z \) by the curve \(\gamma(z) = [z] = \{ e^{i\theta} \frac{(z-\langle z \rangle)}{\|z-\langle z \rangle\|} \mid 0 \leq \theta < 2\pi \} \) on the unit sphere in \(H_{k-1} = \{ z \in \mathbb{C}^k : z.1 = 0 \} \approx \mathbb{C}^{k-1} \).

• The Veronese-Whitney embedding of \(\Sigma^k_2 \) given by \(\phi : \Sigma^k_2 \rightarrow \mathbb{C}^k, \phi([z]) = uu^*, \) where \(u = \frac{(z-\langle z \rangle)}{\|z-\langle z \rangle\|}. \)

• The distance \(\rho \) on \(\Sigma^k_2 \), \(\rho^2([z],[w]) = \|uu^*-vv^*\|^2 \).
• Q a probability measure on Σ_{-2}^{k}, and μ_0 the mean vector of $Q_0 \doteq Q \circ \phi^{-1}$, regarded as a probability measure on C_{2}^{k} (or, \mathbb{R}^{2k^2}).

• The **extrinsic mean** μ_E, of Q is unique iff the eigenspace for the largest eigenvalue of μ_0 is (complex) one dimensional, and then $\mu_E = [w]$, $w(\neq 0) \in$ eigenspace of the largest eigenvalue of μ_0.

• Then it follows that any measurable selection from the sample extrinsic mean set is a consistent estimator of μ_E.
• **Example 4 (Size and Shape of Planer k-ads, $SΣ^k_2$)** Comprised of all equivalence classes $[z]$ of landmarks $z = (z_1, z_2, \ldots, z_k) \in \mathbb{C}^k$, defined by $[z] = \{e^{i\theta}(z - <z>): 0 \leq \theta < 2\pi\}$.

• The **Veronese-Whitney** embedding ϕ of $SΣ^k_2$ into \mathbb{C}^{k^2} (identified with the set of all $k \times k$ matrices with complex elements):

\[
\phi([z]) = ((u_j \bar{u}_{j'}))_{1 \leq j, j' \leq k} = uu^*
\]
\[
u = (u_1, \ldots, u_k)', \quad u^* = \bar{u}'
\]
\[
u_j = \frac{z_j - <z>}{\sqrt{r[z]}} \quad (1 \leq j \leq k)
\]
\[
r^2[z] = \|z - <z>\|^2 = \sum_{j=1}^{k} |z_j - <z>|^2
\]

• $\rho^2([z], [w]) = Trace(uu^* - vv^*)^2$.

• $\phi(S\Sigma^k_2)$ is a closed subset of $\mathbb{C}^{k^2}(\approx \mathbb{R}^{2k^2})$, but unbounded and, therefore not compact.

• Q a probability measure on $S\Sigma^k_2$, $Q \circ \phi^{-1}$, regarded as a probability measure on $\mathbb{C}^{k^2}(\approx \mathbb{R}^{2k^2})$ has finite second moments.

• $\tilde{\mu}$ the mean ($k \times k$ matrix) of $Q \circ \phi^{-1}$. If the largest eigen value of $\tilde{\mu}$, λ_k is simple, then the Extrinsic mean of Q is $\mu_E = [\lambda_k u_0]$, where u_0 is a unit eigen vector in the eigenspace of λ_k.
Intrinsic Mean

• (M, ρ) a Riemannian manifold, with ρ being the \textbf{geodesic distance} inherited from the natural connection on M.

• If Q is a probability measure on M, the Frechet mean (set) of Q wrt the distance ρ is called the \textbf{Intrinsic mean (set)} of Q.
Examples

• **Example 1** (S^{k-1}: Directional Space). At each $p \in S^{k-1}$, the metric tensor $g_p : T_p(S^{k-1}) \times T_p(S^{k-1}) \to \mathbb{R}$ is the restriction of the scalar product at p of the tangent space of \mathbb{R}^k : $g_p(v_1, v_2) = v_1 \cdot v_2$. g is a smooth metric tensor on the tangent bundle TS^{k-1}.

• The geodesics are the big circles, $\gamma_{p,v}(t) = (\cos t)p + (\sin t)v, -\pi < t \leq \pi)$. $\rho = \rho_g$ is the geodesic distance on S^{k-1}:

$$\rho_g(p, q) = |\cos^{-1}(p.q)| \in [0, \pi]$$
• Q be a probability measure on S^{k-1}. If Q is concentrated in a ball (w.r.t. the distance ρ_g) of radius less than $\pi/4$, then the Frechet mean exists as a unique minimizer. Such a mean is called the **intrinsic mean**.

• Then the sample Frechet mean based on a random sample from Q is consistent.
• **Example 2 (Shape Space Σ^k_2 of Planer k-Ads)** For $v_1, v_2 \in T_{[z]} \Sigma^k_2$, the metric tensor on $T \Sigma^k_2$ is taken to be the Euclidean scaler product $v_1.v_2$.

• The geodesic distance for this metric is (proportional to)

$$d_g([z], [w]) = \arccos |z' \bar{w}|$$

• Given a sample of n k-ads $z_r (1 \leq r \leq n)$, the intrinsic mean $[z]_I$, is a minimizer of

$$nF_n(\tau) \equiv \sum_{r=1}^{n} \arccos^2(|z'_r \bar{\tau}|^2), \quad (||\tau|| = 1; \tau' \in H_{k-1})$$
• **Example 3** (Axial Space $\mathbb{R}P^{k-1}$) The Geodesic distance is

$$\rho_g([x],[y]) = \arccos(|u^tv|)$$

• The intrinsic mean based on a sample x_1, x_2, \ldots, x_n is a minimizer of

$$nF_n([y]) = \sum_{r=1}^{n} \arccos^2(|x'_r y|)$$
Applications

Referring to Example 3 of Extrinsic Mean, this is the plot of 8 landmarks from 20 gorilla skull pictures, along with the Extrinsic mean shape. The mean has been translated, rotated and scaled appropriately.
Landmark plot, *s denote the coordinates of the mean
Further Work done

- Found the asymptotic distribution of the sample Frechet mean, when the Frechet mean of Q is uniquely defined.

- Worked it out explicitly in case of Σ_2^k.

- Computed asymptotic Confidence Intervals for the mean of Q.

- Test for equality of means in two sample problems.

- Worked out the corresponding Bootstrap statistics.