Analyzing Stochastic Diffusion Processes

Introduction

- Many interesting ecological diffusions
- Emerging diseases - avian flu, H1N1 flu
- Exotic organisms - invasive plants, gypsy moths
- Size and age distributions
- Transformation of landscape, deforestation, land use classifications, urban growth
The objective

- Our objective: forecast likely spread in space and time with associated uncertainty
- Nonlinear, nonhomogeneous in space and time
- Explanatory covariates
- Start with deterministic integro-differential equations or with partial differential equations
- How to add uncertainty?
cont.

- Theoretical models, “varying” around them
- Too much simplification required to obtain analytical solutions
- Discretization to fit models
- Do we care of the deterministic equation? Should we just work with the discrete time version we want? Dynamic spatial models?
Hierarchical modeling

The hierarchical paradigm:

\[\text{data} | \text{process, parameters} | \text{process} | \text{parameters} | \text{parameters} \]

- A paradigm shift - designed experiments to observational studies; controlled experiments to integrated (big picture) investigation
- Prior information from: empirical studies, mechanistic knowledge, ecological theory, etc.
- Multiple information sources
- Conditional uncertainty in components (a natural way to specify models)
- Different resolutions in space and time
- Structured dependence in space and time
- Complex dependence structure through latent variables
Computation

- Fit within a Bayesian framework; enables full inference, exact inference
- Model fitting, associated computation is challenging
- High dimension, sparsity, dimension reduction
- MCMC/Gibbs sampler model fitting
- Model validation? model comparison?
Dynamics

- Continuous space, discrete time, i.e., $w_t(s)$
- Without loss of generality $t = (1, 2, ..., T)$
- Envision $w_t(s)$ as a \textit{dynamical} process
- In fact, simplify to first order Markov, i.e., for locations $s_1, s_2, ..., s_n$, let $w_t = (w_t(s_1), w_t(s_2), ..., w_t(s_n))^T$. Then

\[
[w_t | w_0, w_1, ... w_{t-1}] = [w_t | w_{t-1}]
\]

- For example, $w_t = H w_{t-1} + \eta_t$ where $\eta_t(s)$ incorporates spatial structure
- A vector AR(1) model and H is called the \textit{propagator} matrix
- ??Specifying H??
Specifying H

- $H = I$ - not stationary (explosive), no interaction across space and time, not realistic for most dynamic processes of interest

- $H = \text{Diag}(h)$ where $\text{Diag}(h)$ has diagonal elements $0 < h_i < 1$ - Still no interactions

- Integro-difference equation (IDE) dynamics:

\[w_t(s) = \int h(s, r; \phi) w_{t-1}(r) dr + \eta_t(s) \]

- h is a “redistribution kernel” that determines the rate of diffusion and the advection
cont

- If require \(w > 0 \), work with

\[
\log w_t(s) = \log(\int h(s, r; \phi)w_{t-1}(r)dr) + \eta_t(s)
\]

- Alternatively,

\[
v_t(s) = \int h(s, r; \phi)v_{t-1}(r)dr
\]

and

\[
\log w_t(s) = \log v_t(s) + \eta_t(s)
\]

- Discretization to obtain \(H \)

- Forms for \(h(s, r; \phi); h(s, r; \phi(r)) \), \(h_t(s, r; \phi) \)?
Recall linear PDE, $\frac{dw(s,t)}{dt} = h(s)w(s,t)$

Finite differencing yields
$w(s, t + \Delta t) - w(s, t) = h(s)w(s, t)\Delta t$, i.e.,
$w(s, t + 1) \approx \tilde{h}(s)w(s, t)$. Same limitations as above.

Need more general PDE’s

PDE can motivate IDE, can clarify H

“forward” vs. “backward” perspective

IDE’s can be specified directly without using PDE’s,
e.g., $h(s, r)$ can be a sum of a survival/spread term + a
birth/replenishment term
Diffusion PDE’s

- Diffusion in one dimension - Fick’s Law: diffusive flux from high concentration to low is $-\delta \frac{\partial w(x,t)}{\partial x}$ with δ, the diffusion coefficient. Location varying diffusion $\delta(x)$

- And, diffusion equation is $\frac{\partial w}{\partial t} = -\frac{\partial \text{flux}}{\partial x}$, i.e.,
 \[\frac{\partial w(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(\delta(x) \frac{\partial w(x,t)}{\partial x} \right) \]

- That is, the 1-dim diffusion equation is
 \[\frac{\partial w(x,t)}{\partial t} = \delta'(x) \frac{\partial w(x,t)}{\partial x} + \delta(x) \frac{\partial^2 w(x,t)}{\partial x^2} \]

- In 2-dim, diffusive flux is $-\delta(x,y) \nabla w(x,y,t)$ ($\nabla w(x,y,t)$ is the concentration gradient at time t)

- The resulting diffusion PDE is
 \[\frac{\partial w(x,y,t)}{\partial t} = \frac{\partial}{\partial x} \left(\delta(x,y) \frac{\partial w(x,y,t)}{\partial x} \right) + \frac{\partial}{\partial y} \left(\delta(x,y) \frac{\partial w(x,y,t)}{\partial y} \right) \]
Discretizing the diffusion equation

- Complete the differentiation of the diffusion equation
- Yields second order partial derivatives, $\frac{\partial^2 w}{\partial x^2}$ and $\frac{\partial^2 w}{\partial y^2}$
- Introduce Δt, Δx, Δy
- Replace ∂’s with finite differences (first forward and second order centered) - careful detail, ugly expression!
- After the smoke clears, we obtain $w_{t+\Delta t} = Hw_t$
- Again, add η_t
- We are back to our earlier redistribution form
Add growth rate

- Previous dynamics simply redistribute existing population spatially over time
- In many situations, there is also growth of the population
- Population growth can be captured by a logistic differential equation

\[\frac{\partial w(s, t)}{\partial t} = rw(s, t)(1 - w(s, t)/K) \]

- \(r \) is the growth rate, \(K \) is the carrying capacity
- Add growth to the diffusion PDE for \(\frac{\partial w(s,t)}{\partial t} \)
- \(r(s) \), \(K(s) \)
Eurasian collared dove data

- An example from Wikle et al., using data from the Breeding Bird Survey (BBS)
- Escaped to U.S. from Bahamas, introduced in Florida, expanding dramatically across North America
- 4000+ routes in the survey (some sampled more than once per year, others not sampled in a given year), length of route is \(\approx 40 \) kms, 50 stops per route, count birds by sight for 3 minutes item 18 years: 1986-2003
- Route is a “point”, response at a point is a count
- Aggregate to grid boxes
- \(Z_{it} \) is count in box \(i \) in year \(t \), \(n_{it} \) is number of visits to cell \(i \) in year \(t \).
- \(\lambda_{it} \) is intensity for box \(i \) in year \(t \)
Modeling specifics

- \(Z_{it} \sim \text{Po}(n_{it}\lambda_{it}) \)
- \(\log \lambda_{it} = w_{it} + \varepsilon_{it} \)
- \(\varepsilon_{it} \) are i.i.d. (pure error or micro-scale variation)
- The focus is on the \(w_{it} \). They tell the diffusion story, i.e.,
 \(w_{t} = H(\delta)w_{t-1} + \eta_{t} \)
- Model for \(\eta_{t} \)?
- \(w_{0} \sim N(0, 10I) \)
- \(\delta \) is the vector of local diffusion coefficients, one for each grid cell
- A dimension reduction for \(\delta \); many possibilities here - basis functions, EOF's, predictive processes
Figure 8.1. Location of BBS survey routes (+) and observed Eurasian Coloured Dove count for years 1985–2003. The radius of the circles are proportional to the observed count.
Figure 8.2. Sum of BBS Eurasian Collared-Dove counts over space for years 1986–2003.
Figure 8.3. Log of Eastern Collared-Dove BBS counts aggregated to a grid for years 1986–2010.
Figure 8.7. Posterior mean of δ, the diffusion coefficients.
Figure 8.8. Posterior mean of log(\(\mu\)) for years 1986-2003.
Enriching the modeling

- Again, we focus on $w(s, t)$
- $w(s, t)$ can arise as a mean model for a geostatistical model or in a space-time GLM (as in Wikle) or as a cumulative intensity $\Lambda(s, t)$ for a space-time point pattern (which drives the cumulative diffusion)
- A general diffusion PDE (nonstochastic) looks like
 \[
 \frac{\partial w(s, t)}{\partial t} = a(w(s, t), z(s, t), \theta) \text{ where } z(s, t) \text{ are other potential variables (} z(s, t) = t \text{ for example)}
 \]
- $\theta(s)$?, $\theta(s, t)$?
- How to make the PDE stochastic?
- For the remainder, we use the logistic DE, i.e., a diffusion driven by a logistic growth model
- Discretization as proposed above
First a DE

Ignoring location s for the moment, we have:

$$dw(t) = a(w(t), t, \theta)dt \quad \text{with} \quad w(0) = w_0$$

Simplest way to add stochasticity is to make θ random.

Instead:

$$dw(t) = a(w(t), t, \theta)dt + b(w(t), t, \theta)dZ(t)$$

where $Z(t)$ is Brownian motion over R^1 with a and b the “drift” and “volatility” respectively. Now a stochastic differential equation (SDE)

θ would still be random
Next: \(dw(t) = a(w(t), t, \theta(t))dt \) where (with \(Z(t) \) is variance 1 Brownian motion)

\[
d\theta(t) = g(\theta(t), t, \beta)dt + h(\theta(t), \sigma)dZ(t)
\]

This includes the previous example.

For the logistic equation:

\[
dw(t) = \theta(t)w(t) \left[1 - \frac{w(t)}{K} \right] dt
\]

If \(\theta(t) = \mu + \zeta(t) \) with \(d\zeta(t) = -a\zeta(t)dt + \sigma\zeta dZ(t) \)
equivalently

\[
d\theta(t) = -\alpha(\mu - \theta(t))dt + \sigma\zeta dZ(t),
\]
a self-reverting Ornstein-Uhlenbeck (OU) process and \(\theta(t) \) is a stationary GP with

\[
cov(\theta(t), \theta(t')) = (\sigma^2/\alpha)\exp(-\alpha|t - t'|).
\]
Add space

Now, we add space. First,

$$dw(s, t) = a(w(s, t), t, \theta(s))dt \text{ with } w(s, 0) = w_0(s),$$

a PDE. Randomness through $\theta(s)$, a process realization, so $\theta(s)$ provides the spatial dependence. Hence, a stochastic process of differential equations.

Next,

$$dw(s, t) = a(w(s, t), t, \theta(s))dt + b(w(s, t), t, \theta(s))dZ(s, t)$$

Modeling $Z(s, t)$? For a fixed finite set of spatial locations assume independent Brownian motion at each location.

Or a discrete space approximation to spatial Brownian motion employing a Gaussian process (GP) on R^2.
Next,

\[dw(s, t) = a(w(s, t), t, \theta(s, t))dt \]

where say

\[d\theta(s, t) = \gamma(\theta(s, t) - \theta(s))dt + bdZ(s, t) \]

Again, \(\theta(s) \) is process realization

Now, \(\theta(s, t) \) given through an infinite dimensional SDE

This version produces a covariance function that is separable in space and time
Important points

- A differential equation in time at every spatial location, i.e., parameters indexed by location

- The parameters vary spatially as realizations of a spatial process

- Instead, the differential equation is a stochastic differential equation (SDE), e.g., a spatial Ornstein-Uhlenbeck (O-U) process

- For the logistic PDE, the rate parameter in the differential equation is assumed to change over time. It can be modeled as a realization of a spatio-temporal process

- It can be modeled using a SDE, yielding an SDE embedded within the differential equation
Spatio-temporal modeling settings for the above?

The usual “geostatistics” setting with observations at locations and times:

\[Y(s, t) = \Lambda(s, t) + \epsilon(s, t) \]

with \(\Lambda(s, t) \) modeled through a differential equation as above, i.e., process model is a stochastic PDE.

Space-time point pattern setting with data of the form \((s_i, t_i), i = 1, 2, \ldots, n\), i.e., random locations at random times. Now, we model the space-time intensity associated with the point pattern, again, say \(\Lambda(s, t) \), through a differential equation as above resulting in a space-time Cox process.
A Geostatistical Example

- The logistic PDE in space and time:

\[
\frac{\partial \Lambda(t,s)}{\partial t} = r(t,s) \Lambda(t,s) \left[1 - \frac{\Lambda(t,s)}{K(s)} \right]
\]

- Time discretized to intervals \(\Delta t \), indexed as \(t_j, j = 0, 1, 2, \ldots, J \). At location \(s_i \), data \(Y(t_j, s_i) \)

- Dynamic model: \(Y(t_j, s_i) = \Lambda(t_j, s_i) + \varepsilon(t_j, s_i) \)

- Using Euler’s approximation yields difference equation:
\[
\Delta \Lambda(t_j, s) = r(t_{j-1}, s) \Lambda(t_{j-1}, s) \left[1 - \frac{\Lambda(t_{j-1}, s)}{K(s)} \right] \Delta t,
\]
\[
\Lambda(t_j, s) \approx \Lambda(0, s) + \sum_{l=1}^{j} \Delta \Lambda(t_l, s)
\]

- No spatial flux, no \(\Delta x \), no \(\Delta y \), \(\Lambda_t = \text{Diag}(h) \Lambda_{t-1} \)
cont.

- Can not add scaled Brownian motion to the logistic PDE.
- Instead a time-varying growth rate at each location
- An O-U process for $r(t, s)$:

 $$\frac{\partial r(t, s)}{\partial t} = \alpha_r (\mu_r(s) - r(t, s)) + \frac{\partial B(t, s)}{\partial t}$$

- Model the initial $\Lambda(0, s)$ and $K(s)$ as log-Gaussian spatial processes with regression forms for the means
- Below we assume $K(s)$ known and set to 1, i.e., 100% is the capacity.
- Similar modeling for $\mu_r(s)$
A Simulation Example

- 10 × 10 study region
- 44 locations over 30 time periods
- 4 sites for holdout
- Matérn covariance function used for \(\Lambda_0(s) \), for \(r(s) \),
 \((\nu = 3/2 \text{ used in the example}) \)
- E.g., the space time covariance function for \(r(t, s) \)
 becomes \(\rho(t_{j_1} - t_{j_2}, s_{i_1} - s_{i_2}) = \sigma_r^2 \exp(-\alpha_r |t_{j_1} - t_{j_2}|) (\phi_r |s_{i_1} - s_{i_2}|)^\nu \kappa(\phi_r |s_{i_1} - s_{i_2}|) \)
- weak priors on \(\sigma^2 \)'s, weak log normal prior on \(\alpha_r \),
 discrete prior on \(\phi \)'s
Posterior Inference

Table 1: Parameters and their posterior inference for the simulated example

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>True Value</th>
<th>Posterior Mean</th>
<th>95% Equal-tail Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_Λ</td>
<td>-4.2</td>
<td>-4.14</td>
<td>(-4.88, -3.33)</td>
</tr>
<tr>
<td>σ_Λ</td>
<td>1.0</td>
<td>0.91</td>
<td>(0.62, 1.46)</td>
</tr>
<tr>
<td>ϕ_Λ</td>
<td>0.7</td>
<td>0.77</td>
<td>(0.50, 1.20)</td>
</tr>
<tr>
<td>σ_ε</td>
<td>0.05</td>
<td>0.049</td>
<td>(0.047, 0.052)</td>
</tr>
<tr>
<td>μ_r</td>
<td>0.24</td>
<td>0.24</td>
<td>(0.22, 0.26)</td>
</tr>
<tr>
<td>σ_r</td>
<td>0.08</td>
<td>0.088</td>
<td>(0.077, 0.097)</td>
</tr>
<tr>
<td>ϕ_r</td>
<td>0.7</td>
<td>0.78</td>
<td>(0.60, 1.10)</td>
</tr>
<tr>
<td>α_r</td>
<td>0.6</td>
<td>0.64</td>
<td>(0.51, 0.98)</td>
</tr>
</tbody>
</table>
Figure 2: Observed space-time geostatistical data at 4 locations, actual (dashed line) and fitted mean growth curves (solid line), and 95% predictive intervals (dotted line) by our model (16) for the simulated data example.
Figure 3: Hold-out space-time geostatistical data at 4 locations, actual (dashed line) and predicted mean growth curves (solid line) and 95% predictive intervals (dotted line) by our model (16) for the simulated data example.
Figure 4: Hold-out space-time geostatistical data at 4 locations, actual (dashed line) and predicted mean growth curves (solid line) and 95% predictive intervals (dotted line) by the benchmark model (20) for the simulated data example.
Space-time point patterns

- Spatio-temporal Cox process models using SDEŠs
- Differential equation models for cumulative intensity
- We have 21 years of urban development data for Irving, TX but we just show a simulation example with five years
Urban Development Problem

Residential houses in Irving, TX

1951

1956

1962

1968
Spatio-temporal Cox Process

In a study region D during a period of $[0, T]$, N_T events:

Point pattern: $X_T = \left\{ x_{1,t_1}, \ldots, x_{N_T,t_{N_T}} \right\}$

where $x_{i,t_i} = (x^1_i, x^2_i, t_i)$

X_T is a Poisson process with inhomogeneous intensity

$$\Omega(t, s), s \in D, t \in [0, T]$$

Specifying the intensity?

$$\Omega(t, s) = f(t, \theta_l(t, s); l = 1, \ldots, p)$$

$\theta_l(t, s), s \in D, l = 1, \ldots, p$ are processes for parameters of interest.
The cumulative intensity

Discretize the spatio-temporal Cox process in time:

Spatial point pattern: \(X_{[t_1,t_2]} \) during \(t \in [t_1, t_2) \)

\[x_i = (x_i^1, x_i^2), \quad x_i \in X_{[t_1,t_2]} \]

The cumulative intensity for \(X_{[t_1,t_2]} \) is

\[
\int_{t_1}^{t_2} \Omega(t, s) \, dt = \int_{t_1}^{t_2} f(t, \theta(l(t, s)); l = 1, \ldots, p) \, dt
\]

We consider models for the cumulative intensity

\[
\Lambda(t, s) = \int_0^t \Omega(\tau, s) \, d\tau
\]
Comments

- So house locations and times over $(0, T] \times D$
- Need a Δt and an area A in order to observe a point pattern
- If $\Omega(t, s) \geq 0$ then $\Lambda(t, s)$ increases in t; we do not allow house removal
- Work with cumulative intensity $\Lambda(t, s)$ - easier to think about mechanistically. In fact, $\Lambda(t_2, s) - \Lambda(t_1, s)$ provides the intensity for the interval $(t_1, t_2]$.
- Dynamics in $\Lambda(t, s)$ provide dynamics for the discretized spatial point process
Illustrative growth models (each of which has an explicit solution)

- **Exponential growth**
 \[
 \frac{d\Lambda(t, s)}{dt} = r(s) \Lambda(t, s)
 \]

- **Gompertz growth**
 \[
 \frac{d\Lambda(t, s)}{dt} = r(s)e^{-\alpha(s)t}\Lambda(t, s)
 \]

- **Logistic growth**
 \[
 \frac{d\Lambda(t, s)}{dt} = r(s)\Lambda(t, s) \left[1 - \frac{\Lambda(t, s)}{K(s)}\right]
 \]

 - local growth rate
 - local carrying capacity
Logistic Population Growth

\[\frac{d\Lambda(t,D)}{dt} = r(D)\Lambda(t,D) \left[1 - \frac{\Lambda(t,D)}{K(D)} \right] \]

population growth at time \(t \)

current population at time \(t \)
growth rate for region \(D \)
carrying capacity for region \(D \)

Model for the aggregate intensity.
Proper Scaling

Local growth model should scale with the global growth model:

\[
\lim_{|\delta_s| \to 0} \frac{\Lambda (t, \delta_s)}{|\delta_s|} = \Lambda (t, s); \quad \text{cumulate}
\]

\[
\lim_{|\delta_s| \to 0} \frac{K (\delta_s)}{|\delta_s|} = K (s); \quad \text{cumulate}
\]

\[
\lim_{|\delta_s| \to 0} r(\delta_s) = r (s). \quad \text{average}
\]

\[
\lim_{|\delta_s| \to 0} \frac{d\Lambda (t, \delta_s)}{|\delta_s|} dt = \lim_{|\delta_s| \to 0} r(\delta_s) \frac{\Lambda (t, \delta_s)}{|\delta_s|} \left[1 - \frac{\Lambda (t, \delta_s)}{K (\delta_s) / |\delta_s|} \right] \Rightarrow
\]

\[
\frac{d\Lambda (t, s)}{dt} = r(s)\Lambda (t, s) \left[1 - \frac{\Lambda (t, s)}{K (s)} \right]
\]
Process Models for the Parameters

r(s), K(s) and initial intensity

\[\Lambda_0 (s) = \int_{-\infty}^{0} \Omega (\tau, s) \, d\tau \]

are parameter processes which are modeled on log scale as

\[\log \Lambda_0 (s) = \mu_\Lambda (s; \beta_\Lambda) + \theta_\Lambda (s), \quad \theta_\Lambda (s) \sim GP (0, C_\Lambda (\phi_\Lambda)) \]

\[\log r (s) = \mu_r (s; \beta_r) + \theta_r (s), \quad \theta_r (s) \sim GP (0, C_r (\phi_r)) \]

\[\log K (s) = \mu_K (s; \beta_K) + \theta_K (s), \quad \theta_K (s) \sim GP (0, C_K (\phi_K)) \]

Hence, given \(r (s), K (s) \) and \(\Lambda_0 (s) \)

the growth curve is fixed. Also, the \(\mu \)'s are trend surfaces.
The problem

- We want the differential equations to be dependent at every location BUT
- We would not insist that the process exactly follows a logistic differential equation at every location
- We want to introduce some noise so convert to an SDE
- Again a time varying rate at each location
- Again $Z(t(s)) = \log r(t(s))$ with

$$dZ(t(s)) = \xi(Z(t(s)) - \log r(s)) + \sigma_Z dW(t, s)$$

- Induces a stationary process with a separable space-time covariance function
Discretizing Time (Euler Approximation)

Back to the original model, the intensity for the spatial point pattern in a time interval:

\[
\Delta \Lambda_j (s) = \int_{t_{j,1}}^{t_{j,2}} \Omega(\tau, s) \, d\tau \approx \Omega(t_{j,1}, s) \Delta t
\]

Difference equation model:

\[
\Delta \Lambda_j (s) = r(s) \Lambda_{j-1} (s) \left[1 - \frac{\Lambda_{j-1} (s)}{K(s)} \right] \Delta t
\]

\[
\Lambda_j (s) = \Lambda_0 (s) + \sum_{l=1}^{j-1} \Delta \Lambda_l (s)
\]

- explicit transition
- a recursion
Discrete-time Model

- Model parameters and latent processes:

\[\theta_r(s), \theta_K(s) \text{ and } \theta_\Lambda(s) \]
\[\beta_\Lambda, \beta_r, \beta_r \]
\[\phi_\Lambda, \phi_r, \phi_K \]

- Likelihood

\[
\prod_{j=1}^{J} \left\{ \exp \left(- \int_D \Delta \Lambda_j(s) \, ds \right) \prod_{i=1}^{n_j} \Delta \Lambda_j(x_{ji}) \right\} \cdot \exp \left(- \int_D \Lambda_0(s) \, ds \right) \prod_{i=1}^{n_0} \Lambda_0(x_{0i})
\]
Discretizing Space

Divide region D into M cells. Rescaling and assuming homogeneous intensity in each cell. We obtain (with $r(m)$, $k(m)$ average growth rate and cumulative carrying capacity):

$$\frac{d\Lambda(t, m)}{dt} = r(m)\Lambda(t, m)\left[1 - \frac{\Lambda(t, m)}{K(m)}\right]$$

with induced transition

$$\Delta\Lambda_j(m) = r(m)\Lambda_{j-1}(m) \left[1 - \frac{\Lambda_{j-1}(m)}{K(m)}\right] \Delta t.$$

The joint likelihood (product Poisson):

$$\prod_{j=1}^{J} \left[\exp \left(- \sum_{m=1}^{M} \Delta\Lambda_j(m) A(m) \right) \prod_{m=1}^{M} \Delta\Lambda_j(m)^{n_{jm}} \right] \cdot \exp \left(- \sum_{m=1}^{M} \Lambda_0(m) A(m) \right) \prod_{m=1}^{M} \Lambda_0(m)^{n_{0m}},$$
Simulated Data Analysis

Initially and successive 5 years
Simulated Data Analysis: Estimation

<table>
<thead>
<tr>
<th>Model Parameters</th>
<th>True Value</th>
<th>Posterior Median</th>
<th>95% Equal-tail Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>3.0</td>
<td>2.998</td>
<td>(2.815, 3.211)</td>
</tr>
<tr>
<td>β_1</td>
<td>1.0</td>
<td>0.897</td>
<td>(0.741, 1.091)</td>
</tr>
<tr>
<td>μ_r</td>
<td>-3.0</td>
<td>-2.991</td>
<td>(-3.135, -2.855)</td>
</tr>
<tr>
<td>μ_K</td>
<td>5.0</td>
<td>5.011</td>
<td>(4.844, 5.188)</td>
</tr>
<tr>
<td>ψ_Λ</td>
<td>2.0×10^{-3}</td>
<td>2.37×10^{-3}</td>
<td>(1.62 $\times 10^{-3}$, 3.23 $\times 10^{-3}$)</td>
</tr>
<tr>
<td>ψ_r</td>
<td>1.0×10^{-3}</td>
<td>1.35×10^{-3}</td>
<td>(9.07 $\times 10^{-3}$, 1.95 $\times 10^{-3}$)</td>
</tr>
<tr>
<td>ψ_K</td>
<td>1.0×10^{-3}</td>
<td>7.46×10^{-4}</td>
<td>(7.91 $\times 10^{-5}$, 2.18 $\times 10^{-3}$)</td>
</tr>
<tr>
<td>ξ_Λ</td>
<td>0.2</td>
<td>0.204</td>
<td>(0.171, 0.251)</td>
</tr>
<tr>
<td>ξ_r</td>
<td>0.2</td>
<td>0.288</td>
<td>(0.21, 0.376)</td>
</tr>
<tr>
<td>ξ_K</td>
<td>0.6</td>
<td>0.241</td>
<td>(0.148, 0.505)</td>
</tr>
</tbody>
</table>
Simulated Data Analysis: Estimation

Posterior:

\[\Lambda_0 \quad r \quad K \]

Actual:
Simulation: One Step Ahead Prediction

Predicted

Actual