Analyzing Stochastic Diffusion
Processes

Introduction

Many interesting ecological diffusions

Emerging diseases - avian flu, H1N1 flu

Exotic organisms - invasive plants, gypsy moths
Size and age distributions
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Transformation of landscape, deforestation, land use
classifications, urban growth



The objective

Our objective: forecast likely spread in space and time
with associated uncertainty

Nonlinear, nonhomogeneous in space and time
Explanatory covariates

Start with deterministic integro-differential equations or
with partial differential equations

How to add uncertainty?
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cont.

Theoretical models, “varying” around them

Too much simplification required to obtain analytical
solutions

Discretization to fit models

Do we care of the deterministic equation? Should we
just work with the discrete time version we want?
Dynamic spatial models?
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Hierarchical modeling
The hierarchical paradigm:
[data|process, parameters|[process|parameters||[parameters]

A paradigm shift - designed experiments to
observational studies; controlled experiments to
integrated (big picture) investigation

Prior information from: empirical studies, mechanistic
knowledge, ecological theory, etc.

Multiple information sources

Conditional uncertainty in components (a natural way to
specify models)

Different resolutions in space and time
Structured dependence in space and time
Complex dependence structure through latent variables
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Computation

Fit within a Bayesian framework; enables full inference,
exact inference

Model fitting, associated computation is challenging
High dimension, sparsity, dimension reduction
MCMC/Gibbs sampler model fitting

Model validation? model comparison?
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Dynamics

Continuous space, discrete time, i.e., w;(s)

Without loss of generality t = (1.2..... 1)

Envision u¢(s) as a dynamical process

In fact, simplify to first order Markov, i.e., for locations

S1:59, .., Sp, €T Wi = (wy(s1), we(s2), ..., H‘;(ﬁﬂ_}}T. Then
(Wi | Wo. Wi, ... Wi_1] = [We|We_q]

For example, w; = Hw;_| + m, where 1;(s) Incorporates

spatial structure

A vector AR(1) model and H is called the propagator
matrix

??Specifying H?7



Specifying H

H = I - not stationary (explosive), no interaction across
space and time, not realistic for most dynamic
processes of interest

H = Diag(h) where Diag(h) has diagonal elements
0 < h; < 1 - Still no interactions

Integro-difference equation (IDE) dynamics:
i) = /'h('“"- @ )we_1(r)dr + ne(s)

h is a “redistribution kernel” that determines the rate of
diffusion and the advection
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cont

If require w > 0, work with
loguy(s) = Iog{/h(,ﬁ_ r w1 (r)dr) + ne(s)

Alternatively,

ve(s) = /h(n‘. ri@)oe_q(r)dr

and

loguy(s) = logui(s) + m(s)
Discretization to obtain H
Forms for h(s,r;¢); his,r ¢(r)?, he(s,r; ¢)?

L
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cont

Recall linear PDE, 2241 — j(s)uw(s, t)

Finite differencing ylelds
w(s, t+ At) —w(s, t) = his)w(s, t)AtL, l.e.,
w(s,t+1) ~ h(s)w(s,t). Same I|m|tat|ons as above.

Need more general PDE’s
PDE can motivate IDE, can clarify H

“forward” vs. “backward” perspective

IDE’s can be specified directly without using PDE’s,

e.d., h(s.r) can be a sum of a survival/spread term + a

birth/replenishment term



Diffusion PDE’s

Diffusion in one dimension - Fick’'s Law: diffusive flux
from high concentration to low is a““{" Y with 5, the
diffusion coefficient. Location varying dlffusmn o)

And, diffusion equation is dw/dt = —oflux/ox, i.e.,

ow(x,t) u‘ / .}( xdu(r t)
at Jr )

That is, the 1-dim diffusion equation is

=0 () ———— + o(x :
fh% ST @) a2

w(x,t) o Ow(xty o 0%w(w,t)

In 2-dim, diffusive flux is —d(x,y)Vw(x,y,t) (Vw(x.y.t)
Is the concentration gradient at time ¢)

The resulting diffusion PDE is

Ow(x,y.t) oA Qw(x,y, 1) d Ow(x,y,t)

= ol I
ot ap oY) T )t g Oy



Discretizing the diffusion equation
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Complete the differentiation of the diffusion equation
Yields second order partial derivatives, 1%‘ and %2—;;

Introduce At, Az, Ay

Replace 's with finite differences (first forward and
second order centered) - careful detail, ugly expression!

After the smoke clears, we obtain wiyar = Hwy

#» Again, add n;,

We are back to our earlier redistribution form



Add growth rate

Previous dynamics simply redistribute existing
population spatially over time

In many situations, there is also growth of the
population

Population growth can be captured by a logistic
differential equation

Jwl(s.t o
(5,%) = rw(s. t)(1 —w(s,t)/K)
fj_f Y \ \ s 4

# ris the growth rate, K is the carrying capacity

# Add growth to the diffusion PDE for u“{ﬁ;f

r(s)?, K(s)?
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Eurasian collared dove data
An example from Wikle et al., using data from the

Breeding Bird Survey (BBS)

Escaped to U.S. from Bahamas, introduced in Florida,
expanding dramatically across North America

4000+ routes in the survey (some sampled more than
once per year, others not sampled in a given year),

length of route is ~ 40 kms, 50 stops per route, count
birds by sight for 3 minutes item 18 years: 1986-2003

Route is a “point”, response at a point is a count
Aggregate to grid boxes

Zit 1s count in box 7 In year ¢, nj IS number of visits to
cell 7 in yeart.

it 1S intensity for box i in year ¢
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Modeling specifics

Zj_f_ ~ PO(N.HAQ:_;:J
log\it = wir + €
eir are i.i.d. (pure error or micro-scale variation)

The focus is on the w;. They tell the diffusion story, i.e.,
wy=H(O)we 1 +1

Model for n,?
wp ~ N(0,10])

d 1s the vector of local diffusion coefficients, one for
each grid cell

A dimension reduction for §; many possibilities here -
basis functions, EOF’s, predictive processes
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Enriching the modeling

Again, we focus on w(s.t)

w(s,t) can arise as a mean model for a geostatistical
model or in a space-time GLM (as in Wikle) or as a
cumulative intensity A(s,t) for a space-time point
pattern (which drives the cumulative diffusion)

A general diffusion PDE (nonstochastic) looks like

M‘L;—tl = a(w(s,t), z(s,t),0) where z(s,t) are other
potential variables (z(s.t) =t for example)
0(s)?, 0(s.1)7?

How to make the PDE stochastic?

For the remainder, we use the logistic DE, i.e., a
diffusion driven by a logistic growth model

Discretization as proposed above



First a DE

# [gnoring location s for the moment, we have:
dw(t) = alw(t), t,0)dt with w(0) = wy
Simplest way to add stochasticity is to make ¢ random.
# Instead:

dw(t) = alw(t),t,0)dt +blw(t),t,0)dZ(t)

where Z(t) is Brownian motion over 1! with « and b the
“drift" and “volatility” respectively. Now a stochastic
differential equation (SDE)

# ¢ would still be random
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Next: dw(t) = a(w(t).t.0(t))dt where (with Z(t) is
variance 1 Brownian motion)

do(t) = g(0(t). 1, 3)dt + h(0(1),0)dZ(1)
This includes the previous example
For the logistic equation:

K

If 6(t) = p+ C(t) with dC (1) = —aC (t) dt + o¢dZ (1)
equivalently

dw (1) = 0(H)w (1) {1 _ “1“1 i

d (1) = —a(p — 0 (1)) dt +opdZ (1) .

a self-reverting Ornstein-Uhlenbeck (OU) process and
f(t) is a stationary GP with
cov(B(t).0(t") = (0% /a)exp(—alt — t']).



Add space
Now, we add space. First,

dw(s.t) = alw(s,t),t,0(s))dt with w(s,0)) = wp(s),

a PDE. Randomness through #(s), a process
realization, so #(s) provides the spatial dependence.
Hence, a stochastic process of differential equations.

Next,
dw(s,t) = alw(s. t),t,0(s))dt +blw(s.t),t,0(s))dZ(s.t)

Modeling Z(s,t)? For a fixed finite set of spatial
locations assume independent Brownian motion at
each location.

Or a discrete space approximation to spatial Brownian
motion employing a Gaussian process (GP)on [z?
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cont.

Next,
dw(s,t) =alw(s,t).t.0(s,t))dt

where say
df(s,t) = ~v(0(s,t) — O(s))dt +bdZ(s.t)

Again, f(s) is process realization
Now, #(s.t) given through an infinite dimensional SDE

This version produces a covariance function that is
separable in space and time



Important points

A differential equation in time at every spatial location,
|.e., parameters indexed by location

The parameters vary spatially as realizations of a
spatial process

Instead, the differential equation is a stochastic
differential equation (SDE), e.g., a spatial
Ornstein-Uhlenbeck (O-U) process

For the logistic PDE, the rate parameter in the
differential equation is assumed to change over time. It
can be modeled as a realization of a spatio-temporal
process

It can be modeled using a SDE, yielding an SDE
embedded within the differential equation



#® Spatio-temporal modeling settings for the above?

#® The usual “geostatistics” setting with observations at
locations and times:

Y (s.t) = A(s, 1) + €(s, 1)

with A(s,t) modeled through a differential equation as
above, i.e., process model is a stochastic PDE.

#® Space-time point pattern setting with data of the form
(s;,1;),7 = 1,2,...n, 1.e., random locations at random
times. Now, we model the space-time intensity
associated with the point pattern, again, say A(s. ?),
through a differential equation as above resulting in a
space-time Cox process.



A Geostatistical Example

The logistic PDE in space and time:
ON (t,s) A (t,s)
= r(t,s)A(t, s) — —
Ot r(t,s)A(E,5) [l K (s) }

Time discretized to intervals Atf, indexed as
tj.7=0,1.2,...J. Atlocation s;, data Y'(¢;, s;)

Dynamic model: Y (t;.5;) = A (tj.5;) + = (t;. 5i)
Using Euler's approximation yields difference equation:
AN (tj,5) = R‘{?L.j'_l. SIA (tj—1, ) [1 — "'”};(—;}'3)} At,
A(tj.s) = A(0, Z AN (1, s)

No spatial flux, no Az, no Ay, Ay = Diwag(h) A1




cont.

Can not add scaled Brownian motion to the logistic
PDE.

Instead a time-varying growth rate at each location
An O-U process for r(t, s):

Ir (t,s) ( \ , H+HBU-HJ
o = ar(ur (s) —7(t.s)) Y

Model the initial A (0,s) and K (s) as log-Gaussian
spatial processes with regression forms for the means

Below we assume K (s) known and setto 1, i.e., 100%
IS the capacity.

Similar modeling for ji,(s)
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A Simulation Example

10 x 10 study region
44 locations over 30 time periods
4 sites for holdout

Matern covariance function used for Agy(s), for »(s).
(v = 3/2 used in the example)

E.g., the space time covariance function for r(t. s)
becomes o(t;, —tj,. 5, — Si2) =

(7;2 exp (—ay ‘th — 1, ‘) (@ ‘52'1 — '92'2‘)” Ky (Or “’21 — Siy ‘)

weak priors on ¢°’s, weak log normal prior on «,,
discrete prior on ¢'s



Space-time point patterns

Spatio-temporal Cox process models using SDESs

Motivation: Urban development using spatio-temporal
point processes.

Differential equation models for cumulative intensity

We have 21 years of urban development data for Irving,
TX but we just show a simulation example with five
years



Spatio-temporal Cox Process

In a study region D during a period of [0,T], N; events:

Point pattern: X, = {:I‘ul-. - ---.21-‘_.-"\TT.tNT}

where Tit, = (:1?.},511????&)

X 1s a Poisson process with inhomogeneous intensity

Q(t,s),se D, te|0,T]
Specifying the intensity?

parameters of interest.



The cumulative intensity

Discretize the spatio-temporal Cox process in time:

Spatial point pattern: X', ;) during 7 < [t1,13)

e — (]l 2y o =¥
v = (¢},27),2i € Xpty 1]

The cumulative intensity for Xy, ¢, is

) 12
/ Q(t,s)dt = / f(tofts):l=1...p)
t t1

1

We consider models for the cumulative intensity

A(t,s) = fg Q(7.s)dr



Comments

So house locations and times over (0.7] x D

Need a A7 and an area A in order to observe a point
pattern

If Q(t.s) > 0then A(t. s) Increases in t; we do not allow
house removal

Work with cumulative intensity A(t. s) - easier to think
about mechanistically. In fact, A(to. s) — A(#1. s) provides
the intensity for the interval (¢4, 12].

Dynamics in A(z. s) provide dynamics for the discretized
spatial point process



lllustrative growth models (each of which

has an explicit solution)
@ Exponential growth

d\ (t, s)
dt

= (s) A(t, s)

@ Gompertz growth

dA (t, s)
dt

= r(s )E_“[S-:'T;"L (1, s)

@ Logistic growth

d\ (t, s) (A (t ) |1 A (1, s)
— T7\5)i Y S — —
dt LSRR S, K (s)

4M

local growth rate local carrying capacity




Process Models for the Parameters

r(s), K(s) and initial intensity
0
1""1[] (9) — / () (T._, ‘:.r"]l dT

are parameter processes which are modeled on log scale as

log Ao () = pa (s:04) +0a(s), Oa(s) ~GP(0,C (¢a))
log 7 (5) = ir (53 ) + 6, (5), 00 () ~ GP(0,C, ()
log K (s) = px (8; Bk) + 0k (s), Ok (s) ~GP(0,Ck (¢k))
@ Hence, given 7 (s), K (s) and Ag (s)

the growth curve 1s fixed. Also, the
W’s are trend surfaces.



The problem

We want the differential equations to be dependent at
every location BUT

We would not insist that the process exactly follows a
logistic differential equation at every location

We want to introduce some noise so convert to an SDE
Again a time varying rate at each location
Again Z(t(s)) = logr(t(s)) with

dZ(t(s)) = &(Z(t(s)) — logr(s)) + azdW (t, s)

Induces a stationary process with a separable
space-time covariance function



Discretizing Time (Euler Approximation)

Back to the original model, the intensity for the spatial
point pattern in a time interval:

tj,2
AN (s) :/ Q(7,8)dT =~ Q(t;1,s) At
ti1

@ Difference equation model:

Ajq(s)
K (s)

AN (s) = r(s)Nj—q1 (s) ll - } At

j—1
A; (8) = Ao (s) + Z AN (s)

2NN

explicit transition a recursion




Discrete-time Model

@ Model parameters and latent processes:

6, (s), B (s) and 6, (s)
I_:i—’l : .3?'-. LZ?T

ON» Pry OK

@ Likelihood

point 7 in period ;

1] {exp (— / AA; (s) ds) [] 24, [;rﬁ.)} . exp (— / Ao () ds) I Ao (20
. JD - JD -

j=1

stochastic integral




Discretizing Space

Divide region D into M cells. Rescaling and assuming
homogeneous intensity in each cell. We obtain (with r(m), k(m)
average growth rate and cumulative carrying capacity):

dAN(t, m) _ - At m)
= r(m)A(t,m)[l — — :

dt K{m)
with induced transition
A1 (m
AN; (m) =r(m)A;_y (m) |1 — —2 Jrl (m) At.
‘ K (m)

The joint likelihood (product Poisson):

H [exp( ZA‘L (m)A(m ) HA‘L [mrrl’”]

=1 m=1 m=1

. exp ( Z Ao (m) 4[m+) H Ao (m)™™

m=1 m=1
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