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16.1 Multiple Regression

Recall the regression assumptions:

1. Each point (Xi, Yi) in the scatterplot satisfies:

Yi = β0 + β1Xi + ǫi

where the ǫi have a normal distribution with mean zero and

(usually) unknown standard deviation.

2. The errors ǫi have nothing to do with one another. A large error does

not tend to be followed by another large error, for example.

3. The Xi values are measured without error. (Thus all the error

occurs in the vertical direction, and we do not need to minimize

perpendicular distance to the line.)
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In multiple regression, there is more than one explanatory variable. The

model is

Yi = β0 + β1X1i + β2X2i + · · ·βpXpi + ǫi.

Again, the ǫi are independent normal random variables with mean 0.
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As an example, the Princeton economist and enophile Orley Ashenfelter

built a model to predict the price of wine, along the following lines:

price = β0 + β1(avg. rainfall) + β2(avg. temp.) +

β3(calcium in soil) + β4(soil pH) + ǫ.

This general kind of model is used by wine speculators.

In building such a model, Ashenfelter considered many possible

explanatory variables. He wanted to include only those that were relevant

to viticulture (e.g., the shoe size of the vineyard owner is probably not

helpful). If the model includes irrelevant explanatory variables, then it

tends to give poor predictions.

To determine which variables to include and which to remove from his

model, Ashenfelter did hypothesis tests to decide whether each estimated

coefficient was significantly different from zero.
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To make this test, the null and alternative hypotheses are:

H0 : βi = 0 vs. HA : βi 6= 0.

The test statistic is

ts =
β̂i − 0

σ̂βi

where σ̂βi
is the standard error of the estimate β̂i. It is a bit complicated,

but can be found from the all standard statistics packages.

This ts is compared to a t-distribution with n− p− 1 degrees of freedom.

(Recall: we lose information equivalent to one observation for each

estimate we make, and we had to estimate β0, . . . , βp.) If n − p − 1 > 30,

we can use the z-table.
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In 1979, Harris Trust and Savings Bank was accused of gender

discrimination in starting salaries. In particular, one main question was

whether men in entry-level clerical jobs got higher salaries than women

with similar credentials.
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Harris Trust and Savings denied that they discriminated. They claimed

that their starting salaries were based on many other factors, such as

seniority, education, age and experience.

To assess that claim, the plaintiffs’ lawyers used multiple regression:

salary = β0 + β1(sex) + β2(seniority) + β3(age) + β4(educ) +

β5(exper) + ǫ.

Sex was recorded as 1 if the person was female, 0 for males.

Age, seniority, and experience were measured in months. Education was

measured in years.

The legal question was whether the coefficient β1 was significantly less

than 0. If so, then the effect of gender was to lower the starting salary.
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These are some of the residual plots. The seniority plot looks pretty

good, there is something at little odd for age at around 400 months (age

33), and the education scatterplot shows the striping associated with

high school and college.
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These are more residual plots. Experience may show some patterning.

Gender shows that there is more variance for men than for women.

One residual may be the boss’s son?
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Using the 93 available cases of entry-level clerical workers, the JMP

statistical package found that the estimated model is

salary = 6277.9 − 767.9(sex) − 22.6(seniority) + 0.63(age) +

92.3(educ) + 50(exper) + ǫ.

The output showed that the standard error for the estimate of the

coefficient on sex (i.e., the σ̂β1
) was 128.9.

We observe that the coefficient on sex is negative, which suggests

that there may be discrimination against women. But we still need a

significance test. We cannot interpret the size of the effect without one.

Without a small significance probability, Harris Trust and Savings might

argue in court that this result is only due to random chance.
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The null and alternative hypotheses are:

H0 : b1 ≥ 0 vs. HA : b1 < 0.

The test statistic is

ts =
b̂1 − 0

se
=

−767.9 − 0

128.9
= −5.95.

This is compared to a t-distribution with n − p − 1 = 93 − 5 − 1 = 87

degrees of freedom. Since this is off our t-table scale, we use a z-table.

The result is highly significant. Reject the null; there is evidence of

discrimination.
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16.2 Nonlinear Regression

A biologist wants to predict brain weight from body weight, based on a

sample of 62 mammals. A portion of the data are shown below:

bodywt brainwt log(bodywt) log(brainwt)

arctic fox 3.385 44.5 0.529 1.648

owl monkey 0.48 15.5 -0.318 1.190

cow 465 423 2.667 2.626

grey wolf 36.33 119.5 1.560 2.077

roe deer 14.83 98.2 1.171 1.992

vervet 4.19 58 0.622 1.763
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The regression equation is

Y = 90.996 + 0.966X

The correlation is 0.9344, but it is heavily influenced by a few outliers

(the Indian and African elephants). The standard deviation of the

residuals is 334.721. This is the typical distance of a point to the line (in

the vertical direction).

A 95% confidence interval on the brainweight of a mammal that weighed

100 kg would be

L, U = 90.996 + 0.966(100) ± (334.721)(1.96)

so U = 843.65 and L = −468.46. This isn’t very helpful.
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The scatterplot of the brainweight against bodyweight showed the the

line was probably controlled by a few large values. These are sometimes

called influential points.

Even worse, the scatterplot did not resemble the cigar-shaped point

cloud that supports the regression assumptions listed before.

In cases like this, one can consider making a transformation of the

response variable or the explanatory variable or both. It is hard to

know what transformation to choose; usually this choice depends upon

scientific knowledge or the judgment of a good statistician.

For this data, consider taking the logarithm (base 10) of the brainweight

and body weight.

The following scatterplot is much better.
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Taking the log shows that the influential points are not surprising. The

regression equation is now:

log Y = 0.908 + 0.763 log X

The coefficient of determination shows that 91.23% of the variation in

log brain weight is explained by log body weight. Both the intercept and

the slope are highly significant. The estimated standard deviation of ǫ is

0.317; this is the typical vertical distance between a point and the line.

Thus a 95% confidence interval on the log brain weight of a 100 kg

mammal is

L, U = 0.908 + 0.763(log 100) ± (0.317)(1.96)

so U = 3.06 and L = 1.81.
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Making transformations is an art. Here the analysis suggests that

Y = 100.908 ∗ X0.763 = 8.1 ∗ X0.763.

So there is a power-law relationship between brain mass and body mass.

Note: We are ignoring a technical issue about additivity of the errors.

Some standard transformations:

function transformation linear form

y = a exp bx y∗ = ln y y∗ = ln a + bx

y = axb y∗ = log y, x∗ = log x y∗ = log a + bx∗

y = a + b/x x∗ = 1/x y = a + bx∗
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