
10.0 Lesson Plan

• Answer Questions

• Robust Estimators

• Maximum Likelihood Estimators
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10.1 Robust Estimators

Previously, we claimed to like estimators that are unbiased, have minimum

variance, and/or have minimum mean squared error. Typically, one cannot

achieve all of these properties with the same estimator.

An estimator may have good properties for one distribution, but not for

another. We saw that n

n−1
Z, for Z the sample maximum, was excellent in

estimating θ for a Unif(0, θ) distribution. But it would not be excellent for

estimating θ when, say, the density function looks like a triangle supported on

[0, θ].

A robust estimator is one that works well across many families of

distributions. In particular, it works well when there may be outliers in the

data.
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The 10% trimmed mean is a robust estimator of the population mean. It

discards the 5% largest and 5% smallest observations, and averages the rest.

(Obviously, one could trim by some fraction other than 10%, but this is a

commonly-used value.)

Surveyors distinguish errors from blunders. Errors are measurement jitter

attributable to chance effects, and are approximately Gaussian. Blunders

occur when the guy with the theodolite is standing on the wrong hill.

A trimmed mean throws out the blunders and averages the good data. If all

the data are good, one has lost some sample size. But in exchange, you are

protected from the corrosive effect of outliers.
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10.2 Strategies for Finding Estimators

Some economists focus on the method of moments. This is a terrible

procedure—its only virtue is that it is easy.

But easy virtue is always problematic. I don’t think this topic is worth our

attention.

Instead, we shall focus on

• maximum likelihood estimators

• Bayesian estimators.
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10.3 Maximum Likelihood Estimators

Recall the function that links the probability of random variables to

parameters:

f(x1, . . . , xn; θ1, . . . , θm).

When the x1, . . . , xn are treated as variables and the the parameters θ1, . . . , θm

are treated as constants, this is the joint density function.

But when the x1, . . . , xn are treated as constants (the values observed in the

sample) and the the θ1, . . . , θm are treated as variables, this is the likelihood

function.
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The maximum likelihood estimates of the parameters θ1, . . . , θm are the

values θ̂1, . . . , θ̂m that maximize the likelihood function.

This procedure was invented by Sir Ronald Fisher

when he was an undergraduate at Cambridge.

His intuition was that one wants the estimate of

the parameter values that gives the largest “prob-

ability” of having obtained the sample X1, . . . , Xn

that was actually observed, i.e., the x1, . . . , xn.

Fisher was an astonishing statistician. He also invented the mathematical

theory of population genetics, the theory of experimental design, and other

areas.
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In general, one can show that maximum likelihood estimators

• have bias that goes to zero for large sample sizes

• have approximately minimum variance for large sample sizes

• often have approximately normal distributions for large sample sizes.

Additionally, if one is interested in estimating some function h(θ) rather

than the actual parameter itself, one can prove that the maximum likelihood

estimate of h(θ) is h(θ̂). This is not generally true for unbiased estimators or

minimum variance unbiased estimators.

Trick: When maximizing the likelihood function, it is often easier to maximize

the log of the likelihood function. Taking the log converts the product to the

sum. Since the log is a monotonic function, its maximum must occur for the

same value of θ as does the likelihood function.
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Example 1: Let x1, . . . , xn be an observed random sample from an

exponential distribution with parameter λ. We want to find the maximum

likelihood estimate of λ.

First, we find the likelihood function (i.e., the joint density of the data, where

the sample values are known but the λ is not):

f(x1, ..., xn; λ) =

n
∏

i=1

λ exp(−λxi)

= λn exp(−λ

n
∑

i=1

xi).

Next, we solve this to find the value of λ that maximizes the likelihood

function. We could try to do this directly, but that leads to a difficult

derivative. Instead, we use the Trick: the value of λ which maximizes

f(x1, ..., xn; λ) is the same value that maximizes ln f(x1, ..., xn; λ).
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Let ℓ(λ) = ln f(x1, ..., xn; λ). Then

ℓ(λ) = n lnλ − λ

n
∑

i=1

xi

and to maximize this we take the derivative with respect to λ, set it to 0, and

solve:
dℓ(λ)

dλ
=

n

λ
−

n
∑

i=1

xi = 0

so the MLE of λ, denoted by a circumflex, is

λ̂ =
n

∑

n

i=1
xi

= 1/x̄.

Is this MLE biased?

IE[λ̂] = IE[1/X̄] 6=1/
(

IE[X̄]
)

So it is a biased estimator. In fact, with more work, one can show

IE[λ̂] = n

n+1
λ.
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Example 2: Sometimes the trick of taking the log does not work. Consider

again the problem of estimating θ in a Unif(0, θ) distribution.

The joint density function is

f(x1, . . . , xn; θ) =
n
∏

i=1

f(xi; θ) Why?

=
n
∏

i=1

1

θ
I(0 ≤ xi ≤ θ)

=
1

θn

n
∏

i=1

I(0 ≤ xi ≤ θ)

where I(0 ≤ xi ≤ θ) is an indicator function that takes the value 1 iff

0 ≤ xi ≤ θ and is zero otherwise.

The indicator function is a slick way to carry the information that the density

is zero below 0 and above θ.
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Let z = max{x1, . . . xn}. Then

n
∏

i=1

I(0 ≤ xi ≤ θ) = I(0 ≤ z ≤ θ)

and so the likelihood function is

f(x1, . . . , xn; θ) =
1

θn
I(0 ≤ z ≤ θ).

We need to maximize this function with respect to θ. Clearly the function

is 0 for all values of θ that are less than z. For values greater than z, as θ

increases, (1/θ)n gets smaller. So the maximum must occur at θ̂ = z.

Thus the maximum likelihood estimate of θ is the sample maximum. From

previous work we know this is slightly biased—recall that the bias is

−θ/(n + 1)—but the bias goes to zero as the sample size increases.
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Example 3:

Let x1, .., xn be an observed random sample from a Normal distribution with

unknown mean µ and unknown standard deviation σ.

First, we find the likelihood function:

f(x1, . . . , xn; µσ) =
n
∏

i=1

1√
2πσ

exp

[

− 1

2σ2
(xi − µ)2

]

=

(

1√
2πσ

)

n

exp

[

− 1

2σ2

n
∑

i=1

(xi − µ)2

]

.

This is a case in which the trick of taking the logarithm is helpful:

ℓ(x1, . . . , xn; µ, σ) = n ln
1√
2πσ

− 1

2σ2

n
∑

i=1

(xi − µ)2.
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Take partial derivatives to compute µ̂ and σ̂ and solve

0 =
∂ℓ(x1, . . . , xn; µ, σ)

∂µ

0 =
∂ℓ(x1, . . . , xn; µ, σ)

∂σ
.

Specifically, for the mean, we see:

0 =
∂ℓ(x1, . . . , xn; µ, σ)

∂µ

=
1

σ2

n
∑

i=1

(xi − µ)

=

n
∑

i=1

(xi − µ) =

(

n
∑

i=1

xi

)

− nµ.

and solving this for µ shows that the maximum likelihood estimate (denoted

by the circumflex on the parameter) is µ̂ = x̄.
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Now, to find the MLE for σ, we take the derivative of the log-likelihood with

respect to σ, set it to 0, and solve:

0 =
∂ℓ(x1, . . . , xn; µ, σ)

∂σ

=
∂

∂σ

[

n ln
1√
2πσ

− 1

2σ2

n
∑

i=1

(xi − µ)2

]

=
∂

∂σ

[

−n ln
√

2π − n lnσ − 1

2σ2

n
∑

i=1

(xi − µ)2

]

=
−n

σ
+

1

σ3

n
∑

i=1

(xi − µ)2.

Note that in the penultimate step we used properties of the logarithm to

simplify the first term. Specifically, we used the fact that

n ln
1√
2πσ

= −n ln
√

2πσ = −n ln
√

2π − n ln σ.
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Thus

n

σ
=

1

σ3

n
∑

i=1

(xi − µ)2 so σ =

√

√

√

√

1

n

n
∑

i=1

(xi − µ)2.

We do not know µ, but it turns out the joint maximization wrt both

parameters occurs when we substitute in the MLE of µ, so

σ̂ =

√

√

√

√

1

n

n
∑

i=1

(xi − x̄)2

We cut some corners in this derivation:

• A full solution requires checking a condition on the second derivatives to

ensure we are maximizing the log-likelihood instead of minimizing it or

finding an inflection point;

• The joint minimization wrt to both parameters requires solving a set of

simultaneous equations, which is why we can substitute x̄ for µ in finding

the MLE for σ.
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