12.0 Lesson Plan

- Answer Questions
- Confidence Intervals
- Interpreting Confidence Intervals
- Specific Confidence Intervals
- Examples
12.1 Confidence Intervals

A **two-sided confidence interval** is an interval $[L, U]$ such that $C\%$ of the time, the parameter of interest (e.g., the population mean or proportion) will be greater than L but less than U.

The analyst gets to pick the **confidence level** C. Usually one talks about a 95% confidence interval, but sometimes the situation demands more or less confidence.

The purpose of the confidence interval is to describe the uncertainty in a point estimate. A wide confidence interval indicates large uncertainty.

Usually, L and U are obtained from the sample via the CLT.
In the lecture notes, I use C to represent the confidence, where $C/100$ is the probability that an interval constructed in this way will contain the parameter of interest.

Here, $1 - C$ is the error rate of the procedure. So for a two-sided interval, the error probability in each tail is $(1 - C)/2$.

When we get to hypothesis testing, you will see that the error rate is called α. There is a tight connection between hypothesis testing and confidence intervals. In many cases the two are equivalent.
The general formula for many (not all) two-sided confidence intervals is

\[L, U = pe \pm se \times cv_C \]

where \(pe \) is the point estimate, \(se \) is the standard error of the estimate, and \(cv_C \) is a critical value from a table.

For example, a confidence interval on a population mean is:

\[L, U = \bar{X} \pm \frac{\sigma}{\sqrt{n}} \times z_C \]

where \(z_C \) is the value from the standard normal table such that the area between \(z_C \) and \(-z_C\) is \(C \). (For a 95% confidence interval, \(z_{95} = 1.96 \), but some people approximate this by 2.)

Since \(se = \sigma/\sqrt{n} \), the width \(U - L \) of the confidence interval goes to zero as \(n \) increases.
Similarly, the formula for a confidence interval on a proportion is:

\[L, U = \hat{p} \pm \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \times z_C. \]

Actually, this is essentially the same formula as before, since the sample proportion is just an average of zeroes and ones.

The standard deviation of a binomial is \(\sqrt{np(1 - p)} \), but we do not know \(p \). So we estimate the standard deviation by \(\sqrt{n\hat{p}(1 - \hat{p})} \).

\[se = \sqrt{\text{Var} [\hat{p}]} = \sqrt{\text{Var} \left[\frac{X}{n} \right]} = \sqrt{\left(\frac{1}{n} \right)^2 np(1 - p)} \approx \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}. \]

Note: The confidence interval on the proportion is an approximation based upon the CLT. There are ways to be a bit more accurate. If you need that, you should look at the Klopper-Pearson tables.
Where do CIs come from? To indicate the general strategy, we consider estimation of the population mean μ when the population variance σ^2 is assumed to be known.

The CLT says

$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

so

$$P[-z_C \leq \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_C] \approx C/100$$

where z_C is the value from a normal table that has area C between it and its negative value. (Note: We take $C/100$ since C is a percent, and we want to convert it to a number between 0 and 1, as shown in the standard normal table.)

Now we can use ordinary algebra to manipulate the terms inside the probability statement to solve for L and U.
\[
\frac{C}{100} \approx P\left[-z_C \leq \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_C\right]
\]
\[
= P\left[-\frac{\sigma}{\sqrt{n}} * z_C \leq \bar{X} - \mu \leq \frac{\sigma}{\sqrt{n}} * z_C\right]
\]
\[
= P\left[-\frac{\sigma}{\sqrt{n}} * z_C - \bar{X} \leq -\mu \leq \frac{\sigma}{\sqrt{n}} * z_C\right) - \bar{X}
\]
\[
= P\left[\frac{\sigma}{\sqrt{n}} * z_C + \bar{X} \geq \mu \geq \bar{X} - \frac{\sigma}{\sqrt{n}} * z_C\right]
\]

SO

\[
L = \bar{X} - \frac{\sigma}{\sqrt{n}} * z_C
\]
\[
U = \bar{X} + \frac{\sigma}{\sqrt{n}} * z_C.
\]
12.2 Interpreting Confidence Intervals

One has to be careful when interpreting this confidence interval. It is technically **wrong** to say that the probability is 0.95 that the true population mean is between L and U.

Instead, one should say that “In 95% of similarly constructed intervals, the true mean will lie within the interval.”

The reason for this is that the true mean is either within the interval or it isn’t—there is no randomness in the parameter (unless you are a Bayesian...). Instead, the randomness comes from the sample. So all we can say is that 95% of the time, we will draw a sample that generates a confidence interval that contains the true value.
A $C\%$ confidence interval is a random region that has probability $C/100$ of containing the parameter of interest. These regions can be two-sided, with upper and lower bounds U and L, or they can be one-sided.

One-sided intervals are quite practical. For example, General Motors wants to know that the average lifespan of a car is greater than some amount (so as to write warranties that are profitable). They have no need for nor interest in an upper limit on the mean lifespan.

For one-sided intervals, find a U or an L such that the parameter of interest has probability $C/100$ of being below U or above L, respectively.
Here

• pe is the point estimate of the parameter of interest,

• se is the standard error of our estimate, or an estimate of that standard error,

• cv_C is the value from a table that has area C under the curve in the appropriate place (i.e., middle, left tail, or right tail, respectively).
There are several cases of special interest:

1. For a CI on the population mean μ, when either
 - the population standard deviation σ is known, or
 - $n > 31$, so the population σ is accurately estimated by the sample standard deviation
 \[
 \hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}
 \]
 then the pe is \bar{X} and the se is σ/\sqrt{n} or $\hat{\sigma}/\sqrt{n}$, as appropriate. The cv comes from the z table.

2. For a CI on the population mean μ when $n \leq 31$ and one estimates the population σ by the sample $\hat{\sigma}$, then the pe is \bar{X} and the se is $\hat{\sigma}/\sqrt{n}$. The cv comes from the t_{n-1} table.
3. For a CI on the population proportion p, the pe is \hat{p}, the proportion of successes in n trials; the se is $\sqrt{\hat{p}(1-\hat{p})}/n$. The cv comes from the z-table.

Note: The book derives an interesting and more accurate variation on the formula for this interval, but it is not widely used.

4. For a CI on the population variance σ^2 for a normal distribution, the interval is asymmetric since the reference distribution is the asymmetric chi-squared distribution.

$$L = \frac{(n - 1)\hat{\sigma}^2}{\chi^2_{\alpha/2,n-1}} \quad U = \frac{(n - 1)\hat{\sigma}^2}{\chi^2_{1-\alpha/2,n-1}}$$

where $\alpha = 1 - C/100$. The value $\chi^2_{\alpha/2,n-1}$ is the number in the chi-squared table that has area $\alpha/2$ under the curve and to the left for a chi-squared density with $n - 1$ degrees of freedom.
Recall: When one samples from a finite population without replacement, one should multiply estimates of the standard error by the Finite Population Correction Factor (FPCF):

$$FPCF = \sqrt{\frac{N-n}{N-1}}.$$

In finite populations, sampling without replacement provides more information than random sampling, and the FPCF reflects this by shrinking the sample standard deviation $\hat{\sigma}$.

Note: When the standard deviation of a normal population is unknown, we can estimate that by the sample standard deviation. In that case, it is more accurate to use the values from a Student’s t-table than from the standard normal table.

The t-distribution is indexed by degrees of freedom. One loses a degree of freedom for each estimate one must make. For Case 2, one loses one df because the sample sd is an estimate.
12.4 Examples

Example 1: Suppose you want a 95% lower confidence interval on the proportion of U.S. adults who have read Howard Zinn’s *People’s History of the United States*.

You sample 100 people at random; 82 have not. (Do you need to worry about the FPCF?)

Your estimate of the proportion of people who have read the book is \(\hat{p} = \frac{18}{100} = 0.18 \). So

\[
L = \hat{p} + \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} z_{1-C} = 0.18 + 0.0384 \times (-1.65) = 0.117.
\]

So you are 95% confident that at least 11.7% of people have read the book.
Example 2: Two factories manufacture aluminium cans. You want to know whether the average weight of a can is different between them. So you want a 95% two-sided confidence interval on $\mu_1 - \mu_2$.

A sample of 100 cans from Factory 1 has mean 16g and sample standard deviation 1g. A sample of 64 cans from Factory 2 has mean 16.5g and sample standard deviation 2g.

By the CLT, we know that

$$\bar{X}_1 \sim N(\mu_1, \frac{\sigma_1}{10}) \quad \text{and} \quad \bar{X}_2 \sim N(\mu_2, \frac{\sigma_2}{8}).$$

From the properties of linear combinations of normal random variables,

$$Y = \bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{100} + \frac{\sigma_2^2}{64}}).$$
So a 95% confidence interval on the difference is equivalent to a 95% confidence interval on Y which is

$$L, U = (\bar{X}_1 - \bar{X}_2) \pm \sqrt{\left(\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}\right)} z_C$$

$$= (16 - 16.5) \pm \sqrt{\left(\frac{1}{100} + \frac{4}{64}\right) \times 1.96}$$

$$= -0.5 \pm 0.5277.$$

The 95% confidence interval is [-1.028, 0.028]. From this, we cannot be certain that the difference in means is not zero. The two factories may have the same average weight.
Example 3: A professor wants a 90% upper confidence interval on the average amount of time that a student spends on statistics homework. (This is a one-sided bound because he is only concerned that the hw might be too hard; he is not worried that it might be too easy.)

He draws a sample of 15 students from a class of 30. He finds that the average time they spend is 5 hours, with a sample sd of 30 minutes.

The general formula for the upper interval is:

$$U = pe + (se)(cv_C)$$

In this case, the pe is 5. What is the standard error? And what is the critical value?
If we had sampled with replacement, or if the class size were very large, then the standard error would be \(\frac{.5}{\sqrt{15}} \). But in this case, we need to use the FPCF. Since

\[
FPCF = \sqrt{\frac{30 - 15}{30 - 1}} = 0.7912
\]

then the standard error for this problem is \((0.7912) \times \frac{.5}{\sqrt{15}} = 0.0928\).

Because we are asking about the mean, because the sample size is small, and because we must estimate the population sd from the sample sd, then we are in Case 2. Our critical value comes from a Student’s \(t \)-table with \(15 - 1 = 14 \) df, and area under the curve 0.10 (since the confidence is 90%, the error rate is 10%). This value is 1.35.

Since \(U = 5 + (0.0928) \times (1.35) = 5.125 \), the professor is 90% confident that the average time is less than 5.125 hours.