
15.0 More Hypothesis Testing

• Answer Questions

• Type I and Type II Error

• Power Calculation

• Bayesian Hypothesis Testing
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15.1 Type I and Type II Error

In the philosophy of hypothesis testing, the null hypothesis is innocent until

proven guilty. You require evidence, from your data, in order to decide against

the null hypothesis.

Before you collect your data, you decide on some small probability α (usually

0.05 or 0.01) that will be your threshold for rejecting the null. If your

significance probability turns out to be less than that value, then you reject

the null hypothesis.

Otherwise, you fail to reject the null hypothesis. Speaking formally, one never

“accepts” or “proves” the null hypothesis; one simply fails to reject the null

hypothesis.
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There are four possible situations:

In two of the situations, your test reaches the correct conclusion. But

you make a Type I error if you reject the null hypothesis when the null

hypothesis is true, and you make a Type II error if you fail to reject the null

when the null hypothesis is false.
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Any two of the following three quantities determines the third:

• n, the sample size in the test;

• α, the probability of Type I error; and

• β, which is the probability of Type II error.

Typically, circumstances force you to pick α and n.

The power of a test is the 1 − β, which is the probability that your test

correctly rejects the null hypothesis when the null hypothesis is false.

In practice, one picks α at the outset, and then obtains the largest sample size

n that one can afford, in order to maximize the power of the test.
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This figure illustrates the definitions. It assumes a one-sided test of H0 : µ ≥ 6

versus HA : µ < 6 with σ known and some level α (say 0.05).
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15.2 The Power of a Test

In many cases one can calculate the power of a test. This is important when

deciding how large a sample you need—if your test is underpowered, you can

improve it by investing in a larger sample size.

Example 1: You have a sample of size 100 from a normal population with

known standard deviation 4. You want to test Ho : µ ≥ 6 versus HA : µ < 6

with a Type I error rate of 0.05.

Suppose the population actually has a true mean of 5. What will be the power

of your test?
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power = 1 − β = 1 − IP[ts > −1.645]

= IP[
X̄ − 6

4/
√

100
< −1.645]

= IP[
X̄ − 6

0.4
< −1.645]

= IP[
X̄ − 5 + 5 − 6

0.4
< −1.645]

= IP[
X̄ − 5

0.4
+

5 − 6

0.4
< −1.645]

= IP[
X̄ − µ

σ/
√

n
< −1.645 − 5 − 6

0.4
]

= IP[Z < 0.855] (CLT)

= 0.8023

So the test has about an 80% chance of correctly rejecting the null hypothesis.
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Often one picks α and β, and then those determine n. For example, to obtain

NIH funding to run a clinical trial, you might decide to use α = 0.01 and you

want power 1 − β = 0.9 for detecting an increase in average lifespan of 1 year.

You know that the average U.S. life expectancy is 77.6 years, with a standard

deviation of about 14.5 years. (Is this well-posed?)

You want to show that your drug extends lives. The hypotheses are:

Ho : µD ≤ 77.6 vs. HA : µD > 77.6.

The test statistic is

ts =
X̄ − 77.6

14.5/
√

n
.

and the critical value is z0.99 = 2.33.
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power = 0.9 = 1 − IP[ts < 2.33]

= IP[
X̄ − 77.6

14.5/
√

n
> 2.33]

= IP[
X̄ − 78.6 + 78.6 − 77.6

14.5/
√

n
> 2.33]

= IP[
X̄ − 78.6

14.5/
√

n
+

1

14.5/
√

n
> 2.33]

= IP[Z > 2.33 − 1

14.5/
√

n
].

From the z-table, 0.9 = IP[Z > −1.28], so

−1.28 = 2.33 − 1

14.5/
√

n
.

Solving shows that the least integer that achieves this power is n = 2740.
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Some meta-points:

• Hypothesis testing is much like setting a confidence interval. A two-sided

test of H0 : θ = θ0 vs. HA : θ 6= θ0 for a given α is often equivalent to

whether or not a two-sided (1 − α)100% confidence interval contains θ0

(and similarly for one-sided tests and one-sided intervals).

• With large samples, one can get a statistically significant result that is of

no practical importance.

• You must pick your null and alternative hypotheses before seeing the data.

Also, you must pick two of α, β and n before looking at the data. Doing

otherwise is cheating.

• If you make 100 tests of two identical groups, all with level α = 0.05, you

expect about 5 falsely significant results. See http://xkcd.com/882/.
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15.3 Bayesian Hypothesis Testing

The frequentist paradigm treats unknown parameters as constants. To test

hypotheses about parameters, a frequentist specifies a null and alternative

hypothesis, draws a sample, and finds the probability of obtaining so extreme

a sample when the null is true.

The Bayesian paradigm treats unknown parameters as random variables.

To test hypotheses about parameters, a Bayesian has a prior belief about the

unknown parameter, and specifies the null and alternative hypothesis. Then

the Bayesian draws a sample and calculates the posterior probability of the

null given the sample.

1
1



Recall Bayes’ Theorem:

P (A1|B) =
P (B|A1) ∗ P (A1)

∑
k

i=1
P (B|Ai) ∗ P (Ai)

where the A1, . . . , Ak are mutually exclusive and

P (A1 or A2 or · · · or Ak) = 1.

This is a formalism for how we learn. P (A1) the prior probability of A1,

before observing B. Then we combine our prior probability with the new

information on B, through P (B|A1), to get our new opinion, or the posterior

probability of A1, written as P (A1|B).

In the following example, we let Ai be the event that a certain probability is

i/10, for i = 1, . . . , 9.
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15.4 RU486 Example

The “morning after” contraceptive RU486 was tested in a clinical trial in

Scotland. This discussion slightly simplifies the design.

Assume 800 women report to a clinic; they have each had sex within the last

72 hours. Half are randomly assigned to take RU486; half are randomly given

the conventional theory (high doses of estrogen and synthetic progesterone).

Among the RU486 group, none became pregnant. Among the conventional

therapy group, there were 4 pregnancies. Does this show that RU486 is more

effective than conventional treatment?

We shall compare the frequentist and Bayesian approaches.

1
3



Frequentist: Let p be the probability that an observed pregnancy came from

an RU486 mother. If the two therapies are equally effective, then this is 0.5.

A frequentist would test

H0 : p ≥ 0.5 vs. HA : p < 0.5

If the P-value is small, then RU486 is deemed more effective than conventional

treatment.

One has n = 4 observations from a binomial with probability p. One could

use the Chinese menu, part II.c, but the sample size is small and so we can

calculate the binomial probabilities exactly:

P − value = P [ 0 successes in 4 tries |H0 true ] = (1 − .5)4 = 0.0625.

Most frequentists would fail to reject, since .0625 > .05.
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Bayesian: A Bayesian begins with a prior over all the possible values for p.

For example, suppose we thought we had no information a priori about the

probability that a child came from the RU486 group. In that case all values of

p between 0 and 1 would be equally likely and our prior on p is the uniform

distribution on [0,1], or Beta(1,1).

But the idea may be more clear without using the Bayes-binomial trick. So we

approximate Beta(1,1) by assuming that each of the following values for p is

equally likely: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. So each value has prior

probability 1/9.

If we picked one of the values, say p = .1, then that means the probability of a

pregnancy coming from the RU486 group is 0.1, so 0.9 is the chance it comes

from the conventional group. But we do not know which value is correct.

Therefore we use Bayes theorem to find the posterior probability of each of

the 9 possible values.
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Value Prior P(data |value) Product Posterior

p P[value] P[k = 0 | p] P[value | data]

.1 1/9 .656 .0729 .427

.2 1/9 .410 .0455 .267

.3 1/9 .240 .0266 .156

.4 1/9 .130 .0144 .084

.5 1/9 .063 .0070 .041

.6 1/9 .026 .0029 .017

.7 1/9 .008 .0009 .005

.8 1/9 .002 .0002 .001

.9 1/9 .000 .0000 .000

1 0.1704 1
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The most likely value is p = 0.1, with posterior probablity 0.427.

And the posterior probability of the alternative hypothesis, HA : p < 0.5, is

0.427 + 0.267 + 0.156 + 0.084 = 0.934.

Note that in performing the Bayes calculation,

• We were able to find the probability that p < 0.5, which we could not do

in the frequentist framework.

• In calculating this, we used only the data that were observed. Data that

were more extreme than what we observed plays no role in the calculation

or the logic.

Suppose a different Bayesian analyzes the same data. But their prior does not

put equal weight on the 9 models; they put prior weight 0.52 on the model

p = .5 and equal weight on the others.
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Value Prior P(data |value) Product Posterior

p P[value] P[k = 0 | p] P[value | data]

.1 .06 .656 .0394 .326

.2 .06 .410 .0246 .204

.3 .06 .240 .0144 .119

.4 .06 .130 .0078 .064

.5 .52 .063 .0325 .269

.6 .06 .026 .0015 .013

.7 .06 .008 .0005 .004

.8 .06 .002 .0001 .001

.9 .06 .000 .0000 .000

1 0.1208 1

So this Bayesian has posterior probability of the alternative as 0.713.
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