
4. Comparing Methods

We have described eight methods so far: Loess, Additive Models (AM), PPR, Neural

Nets (NN), ACE, AVAS, Recursive Partitioning Regression (RPR), and MARS. In

addition, a practitioner might consider traditional stepwise linear regression (SLR)

and multiple linear regression (MLR).

One would like to make comparisons among these. In general, one would like to have

a practicum for making comparisons among complex statistical procedures that are

too difficult to analyze using theory.

This section describes a model simulation experiment, and it lays out the general

strategies for such comparisons.

1



Banks, Olszewski, and Maxion (2003; Communications in Statistics: Simulation and

Computation, 32, 541-571) describe a 10× 5× 34 designed experiment to compare the

methods.

The six factors in the experiment were:

1. The ten regression methods.

2. Five target functions.

3. The dimension: p = 2, 6, 12.

4. The sample size: n = 2pk for k = 4, 10, 25.

5. The proportion of spurious variables: this took the values all, half, and none.

6. The noise: this is the variance in ε, the additive Gaussian noise, and took the

values σ = .02, .1, .5.

2



The target functions consist multivariate functions that approximate features likely to

be of scientific interest. The five functions are

• the constant function,

• the hyperflat,

• the standard normal recentered to (.5, .5)′,

• a normal centered (.5, .5)′ with covariance matrix .8I

• a mixture of two standard normals, one centered at (0, 0)′ and the other at (1, 1)′

• the product function x1x2 · · ·xp.

The constant function is especially important because in that case the explanatory

values are irrelevant, but some methods tend to discover spurious signal in the noise.

3



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4



The simulation experiment had the following steps:

1. Generate a random sample x1, . . . , xn uniformly in the unit cube in IRp.

2. Generate random N(0, σ2) errors.

3. Calculate Yi = f(xi) + εi, where f is one of the target functions.

4. Apply each of the regression methods to obtain estimate f̂ of f .

5. Estimate the integrated squared error of each f̂ over the unit cube (Monte Carlo,

using 10,000 random points).

6. Repeat steps 1-5 twenty times and average to obtain an estimate of MISE.

Note that this procedure reuses the same data points across the estimators, which

reduces the variance in contrasts.

5



σ n Sp. Meth. MISE SE MISE SE MISE SE

p = 2 p = 6 p = 12

M S A MLR (27.95) 7.02 (3.00) .26 (.09) .01

M S A SLR (32.14) 10.65 (3.00) .26 (.09) .01

M S A ACE 53.12 7.36 15.06 1.14 .41 .02

M S A AM (27.91) 7.01 (3.00) .26 (.09) .01

M S A MARS 158.23 35.32 18.36 1.88 .30 .02

M S A RPR 1248.37 307.78 176.32 10.89 61.53 .78

M S A PPR 55.08 13.14 19.24 8.68 .11 .01

M S A LOESS 59.50 9.12 9.14 .52 * *

M S A AVAS 79.40 18.14 14.73 .95 .38 .02

M S A NN 124.03 13.05 100.42 2.43 * *

6



σ n Sp. Meth. MISE SE MISE SE MISE SE

p = 2 p = 6 p = 12

M S H MLR 27.95 7.02 3.00 .26 (.09) .01

M S H SLR (23.23) 6.75 (2.39) .30 (.08) .01

M S H ACE 42.42 5.92 14.58 1.12 .40 .02

M S H AM 27.68 7.00 3.00 .26 (.09) .01

M S H MARS (17.99) 3.24 11.00 1.68 .40 .02

M S H RPR 1821.76 64.32 239.41 4.50 100.04 2.47

M S H PPR 35.31 5.61 13.95 8.09 .11 .01

M S H LOESS 59.50 9.12 9.14 .52 * *

M S H AVAS 74.93 14.13 15.02 1.08 .36 .01

M S H NN 103.08 8.41 94.92 2.65 * *

7



MLR, SLR, and AM perform similarly over all situations considered, and represent

broadly safe choices. They are never disastrous, though rarely the best (except for

MLR when the target function is linear and all variables are used). For the constant

function, SLR shows less overfit than MLR, which is better than AM; however, it is

easy to find functions for which AM would outperform both MLR and SLR. SLR

is usually slightly better with spurious variables, but its strategy becomes notably

less effective as the number of spurious variables increases, especially for non-linear

functions. All three methods have greatest relative difficulty with the product

function, which has substantial curvature.

On theoretical grounds ACE and AVAS should be similar, but this is not always

borne out. ACE is decisively better for the product function, and AVAS for the

constant function. ACE and AVAS are the best methods for the product function

(as expected—the log transformation produces a linear relationship), but among the

worst for the constant function and the mixture of Gaussians; in other cases, their

performance is not remarkable. Both methods are fairly robust to spurious variables.

8



Contrary to expectation, MARS does not show well in higher dimensions, especially

when all variables are used, and especially for the linear function. However, for lower

dimensions, MARS shows adequate performance across the different functions. MARS

is well-calibrated for the constant function when p = 2, but finds spurious structure

for larger values, which may account for some of its failures.

RPR was consistently bad in low dimensions, but sometimes stunningly successful in

high dimensions, especially when all variables were used. Surprisingly, its variable

selection capability was not very successful (MARS’s implementation clearly

outperforms it). Perhaps the CART program, with its flexible pruning, would surpass

RPR, but previous experience with CART makes us dubious. Unsurprisingly, RPR’s

design made it uncompetitive on the linear function.

9



PPR and NN are theoretically similar methods, but PPR was clearly superior in all

cases except the correlated Gaussian. This may reflect peculiarities of the Cascor

implementation of neural nets. PPR was often among the best when the target

function was the Gaussian, correlated Gaussian, or mixture of Gaussians, but

among the worst with the product and constant functions. PPR’s variable selection

was generally good. In contrast, NN was generally poor, except for the correlated

Gaussian when p = 2, 6 and all variables are used and when p = 6 and half the

variables are used. The correlated Gaussian lends itself to approximation by a small

number of sigmoidal functions whose orientations are determined by the data.

LOESS does well in low dimensions with the Gaussian, correlated Gaussian, and

mixture of Gaussians. It is not as successful with the other target functions, especially

the constant function. Often, it is not bad in higher dimensions, though its relative

performance tends to deteriorate.

10



For the constant function, MARS is good when p = 2, SLR is good when p = 6, and

RPR is good when p = 12. For the linear function, MLR and SLR are consistently

strong. For the Gaussian function, with all variables used, LOESS and MARS are

good when p = 2, SLR is good when p = 6, and RPR is good when p = 12; when half

of the variables are used, MARS and PPR perform well. For the correlated Gaussian,

with all variables used, LOESS works well for p = 2, LOESS and NN for p = 6, and

ACE or AVAS for p = 12; with half the variables used, MARS is reliably good. For

the mixture of Gaussians, with all variables used, LOESS works well for p ≤ 6, and

RPR for p = 12; with half of the variables, MARS is consistently good. There is

considerable variability for the product function, but ACE is broadly superior.

Two kinds of variable selection strategies were used by the methods: global variable

selection, as practiced by SLR, ACE, AVAS, and PPR, and local variable reduction,

as practiced by MARS and RPR. Generally, the latter does best in high dimensions,

but performance depends on the target function.

11



LOESS, NN, and sometimes AVAS proved infeasible in high dimensions. The number

of local minimizations in LOESS grew exponentially with p. Cascor’s demands

were high because of the cross-validated selection of the hidden nodes; alternative

NN methods fix these a priori, making fewer computational demands, but this is

equivalent to imposing strong, though complex, modeling assumptions. Typically,

fitting a single high-dimensional dataset with either LOESS or NN took more than

two hours. AVAS was faster, but the combination of high dimension and large sample

size also required substantial time.

12



5. Local Dimension

Nearly all methods for multivariate nonparametric regression do local model fitting

(otherwise, they must make strong model assumptions, such as multiple linear

regression). Local fitting is most likely to succeed if the response function f(x) has

locally-low dimension.

A function f : IRp → IR has locally-low dimension if there exists a set of regions

R1, R2, . . . and a set of functions g1, g2, . . . such that
⋃

Ri ≈ IRp and for x ∈ Ri,

f(x)
.
= gi(x) where gi depends upon only q components of x for q � p.

This uses a vague sense of approximation, but it can be made precise.

13



The following functions have high local dimension:

f(x) = β0 +

p
∑

j=1

βjxj for βj 6= 0

f(x) =

p
∏

j=1

xj .

In contrast, the following functions have locally-low dimension:

f(x) =















3x1 if x1 + x2 < 7

x2
2

if x1 + x2 > 7

x1+ if x1 = x2

f(x) =

m
∑

k=1

αkIRk
(x).

Regression analysis in high dimensions seems impossible without strong model

assumptions or locally-low dimension.

14



Before attempting a statistical analysis, it would be good to know whether the local

dimension is low. (If not, one should anticipate disappointment.) So how can one

estimate the local dimension?

Let {(yi, xi)} denote the sample. Then iterate the following steps M times.

1. Select a random point X
∗

m in the convex hull of x1, . . . , xn, for m = 1, . . . , M

2. Find a ball centered at X
∗ that contains exactly k points (say k = 4p).

3. Perform a principal components regression on the k points within the ball.

4. Let cm be the number of principal components needed to explain a fixed

percentage (say 80%) of the variance in the Yi values.

This suggests that the average of c1, . . . , cM may be a useful estimate of the average

local dimension of f .

15



This heuristic approach assumes a locally linear functional relationship for points

within the ball. The Taylor series motivates this, but the method will break down for

some pathological functions or if the data are too sparse.

To test the approach, Banks and Olszewski (2003; Statistical Data Mining and

Knowledge Discovery, 529-548, Chapman & Hall) performed a simulation experiment

in which random samples were generated from q-cube submanifolds in IRp, and the

approach described above was used to estimate q.

A q-cube in IRp is the q-dimensional boundary of a p-dimensional cube. Thus:

• a 1-cube in IR2 is the perimeter of a square,

• a 2-cube in IR3 are the faces of a cube,

• a 3-cube in IR3 is the entire cube.

16



The following figure shows a 1-cube in IR3, tilted x degrees from the natural axes in

each coordinate.

17



The following figure shows a 1-cube in IR10, tilted x degrees from the natural axes in

each coordinate.

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Diaconis and Freedman (1984; Annals of Statistics, 12, 793-815) show that in

high-dimensions, nearly all projections look normal.

18



The simulation study generated 10 ∗ 2q points at random on each of the 2p−q

(

p

q

)

sides of a q-cube in IRp. Then iid N(0, .25I) noise was added to each observation and

the principal components approach was used to estimate q for all values of q between

1 and p for p = 1, . . . , 7.

The first following table shows that the method was reasonably successful in

estimating the local dimension. The estimates are biased, since the principal

components analysis identified the number of linear combinations needed to explain

only 80% of the variance. One should probably do some kind of bias correction to

account for the underestimate.

The second following table estimates the proportion of the data region that is sparse;

the method puts random balls of fixed size into the dataset and counts the number of

times the ball contains fewer than 2p observations.

19



q

7 5.03

6 4.25 4.23

5 3.49 3.55 3.69

4 2.75 2.90 3.05 3.18

3 2.04 2.24 2.37 2.50 2.58

2 1.43 1.58 1.71 1.80 1.83 1.87

1 .80 .88 .92 .96 .95 .95 .98

p=1 2 3 4 5 6 7

The value of p indicates the apparent dimension, while q is the true dimension of the

data. Each entry is an estimate of q, and the largest standard error in the table is .03.

20



q

7 41.0

6 39.1 52.2

5 34.4 45.3 53.2

4 32.3 36.2 46.1 55.9

3 29.1 27.0 34.7 48.6 57.9

2 28.4 26.5 32.0 41.6 46.6 55.2

1 28.5 40.1 45.8 51.0 51.3 51.0 52.5

p=1 2 3 4 5 6 7

The value of p indicates the apparent dimension, while q is the true dimension of the

data. The number in a row indicates the proportion of spheres that did not contain at

least 2p observations.

21


