
7. Search and Variable Selection

Data mining entails many kinds of search. Some searches are easier than others.

A relatively easy kind of search is univariate. For example, one might want to find

an appropriate bandwidth h for a smoother or the appropriate degree for fitting a

polynomial regression.

Search becomes harder in multivariate cases, such as finding an appropriate set of

knots for spline smoothing or a set of weights in a neural network.

Even more difficult is combinatorial search, where there is no natural Euclidean space.

This occurs in variable selection (a/k/a feature selection).

The hardest search is list search, where there is no structure in the problem at all.

This occurs, for example, when there is a list of possible models, each of which is

largely unrelated to the others, and one wants to find the best model for the data.

1

7.1 Univariate Search

In univariate search, one good strategy is to plot some criterion (e.g., goodness-of-fit,

predictive mean squared error) against the index (e.g., degree in polynomial

regression) and look for a knee in the curve.

If the criterion is monotonic in the index but graphical solution is difficult, try

Fibonnacci search. If the criterion is not monotonic in the index, then other kinds of

search (e.g., random restart hill-climbing, simulated annealing) should be considered.

2

7.2 Multivariate Search

For multivariate search, there are dozens of smart algorithms, and the best choice

depends upon the nature of the response surface.

If the surface has a single bump, then steepest ascent works very well. If the surface

has many bumps, then random restart combined with steepest ascent is a strategy

that enables one to make probability statements about the chance that one has found

a global maximum.

The Nelder-Mead algorithm is simple to program and very robust. It sets a simplex

in the space IRk and passes the worst vertex through the center to the opposite side.

(Nelder and Mead; 1965, it Computer Journal, 7, 308-313.)

Hybrid methods combine features from standard operations research algorithms and

allow one to learn about the surface as one seeks the maximum.

3

7.3 Variable Selection

For combinatorial search, one wants to take advantage of whatever structure the

problem enjoys.

For example, variable selection is a key problem in data mining. Often one has very

large p and one wants (needs) to discard those that have no or little predictive value.

If one looked at all possible subsets of variables, there are 2p cases to consider.

Something smarter is needed.

The 2p possible models can be identified with the 2p vertices of the unit hypercube in

IRp. The (0, 0, . . . , 0) vertex corresponds to the model with all variables excluded,

whereas the (1, 1, . . . , 1) model is the regression on all variables. From this

perspective, a clever search of the hypercube would be an attractive way to find a

good regression model.

4

7.3.1 Gray Codes

A Hamiltonian circuit of the unit hypercube is a traversal that reaches each vertex

exactly once. There are many possible Hamiltonian circuits—the exact number is not

known.

¿From the standpoint of model search, one wants a Hamiltonian circuit that has

desirable properties of symmetry, treating all vertices in the same way.

The Gray code is a procedure for listing the vertices of the hypercube in such a way

that there is no repetition, each vertex is one edge from the previous vertex, and all

vertices in a neighborhood are explored before moving on to a new neighborhood.

Wilf (1989; Combinatorial Algorithms: An Update, SIAM) describes the mathematical

theory and properties of the Gray code system.

5

To explain the Gray code algorithm, consider the case of four explanatory variables,

or the unit hypercube in IR4. The table shows the rank of the vertex in the Gray code

traversal, the binary digit representation of the rank, and the bit string of the visited

vertex on the hypercube.

Gray code vertex rank, binary rank, and vertex string.

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

6

The Gray code has subtle balance. For example, it can be generated by reflection and

recursion. Let Lp be the list of all possible binary bit strings of length p, arranged in

Gray code order. Then generate the first half of Lp+1 by writing a zero in front of

each element in the list Lp. For the second half of Lp+1, write Lp in reverse order, and

then prefix each element with a one. By concatenating the lists, one obtains Lp+1.

Suppose one prefixes each Gray code string with an infinite number of zeroes. This

makes it possible to consider the numbers corresponding to the Gray code strings as

an infinite series:

0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, . . .

Note that each number in the sequence is relatively close to its neighbors. Yuen

(1974; IEEE Transactions on Information Theory, 20, 688) shows that two strings

in the Gray code whose Hamming distance is at least d must have ranks that differ

by at least [2d/3] (here [·] is the nearest-integer function), and this provides the

greatest possible separation. This means that the traversal explores models locally

and exhaustively, rather than swooping back after a distant excursion.

7

¿From our perspective, the key point from Yuen’s theorem is that if starts at an

arbitrary model, then goes a large number of steps in the Gray code traversal, one

ends up at a vertex corresponding to a model that is very different from the starting

point. This property suggests that by taking every dth step, for d large, and then

testing the corresponding model, one is performing a thorough search of the set of

possible models.

To implement this search strategy one needs to be able to efficiently generate the

Gray code vertex for step m. Wilf gives a theorem that does this.

Theorem: Let m =
∑

ai2
i be the representation of integer m in binary notation. Let

. . . , b3b2b1b0 be the string for the vertex of rank m in the Gray code. Then

bi = ai + ai + 1 (mod 2)

for i = 0, 1, 2,

8

To use this ranking theorem to efficiently explore a set of models, suppose one decides

to examine only 100 models and then infer the final fit.

If there are p explanatory variables, one takes d = [2p/100], and then finds the Gray

code vertex sequences of rank d, 2d, . . . , 100d.

Each sequence defines a particular set of variables that may be included or excluded

in the regression. In practice, one would examine the 100 model fitting results,

probably in terms of the square root of the adjusted R2, and then home in on the

region of the cube that provides good explanation.

This enables one to quickly identify the vertex or bit string corresponding to a set

of variables that provides good explanation. One might make additional Gray code

searches in the region of the best results from the first search, and iterate to find the

final model.

9

7.3.3 Experimental Design Selection

Another approach to variable selection uses ideas from experimental design. The

method is due to Clyde (1999; Bayesian Statistics 6, 157-185, Oxford University

Press).

To implement this approach, one views each explanatory variable as a factor in an

experimental design. All factors have two levels, corresponding to whether or not the

explanatory variable is included in the model. This enables one to perform a 2p−k

fractional factorial experiment in which one fits a multiple regression model to the

included variables and records some measure of goodness-of-fit.

Obviously, one takes k to be sufficiently large that it is possible to perform the

computations in a reasonable amount of time and also to limit the effect of multiple

testing.

10

One uses analysis of variance to examine which factors and factor combinations

have a significant influence on the observations. Significant main effects correspond

to explanatory variables that contribute on their own. Significant interaction terms

correspond to subsets of variables whose joint inclusion in the model provides

explanation.

In multiple linear regression, then these results are implicit in significance tests on the

coefficients. But if one using one of the nonparametric regression techniques poplular

in data mining (e.g., MARS, PPR, neural nets), this helps find influential variables.

Based on the results of the designed experiment, one can ultimately find and fit

the model that includes all variables corresponding to significant main effects or

interactions. And the factorial design reduces the penalty one pays for multiple

testing, as compared to exhaustive search or other less-efficient searches.

11

Possible measures of goodness-of-fit include:

• R2, the proportion of variance in the observations that is explained by the model;

• Adjusted R2, the proportion of variance in the observations that is explained by

the model, but with an adjustment to account for the number of variables in the

model;

• Mallows’ Cp, a measure of predictive accuracy that takes account of the number

of terms in the model.

• MISE, the mean integrated squared error of the fitted model over a given region

(often the hyperrectangle defined by the minimum and maximum values taken by

each explanatory variable used in the model.

• The square root of the adjusted R2, since this transformation appears to stabilize

the variance and thereby supports use of analysis of variance and response surface

methodology in the model search.

Weisberg (1985, Applied Linear Regression, 185-190, Wiley) discusses the first three.

Scott (1992, Multivariate Density Estimation, chapter 2.4, Wiley) discusses MISE.

12

7.4 List Search

With list search, there is no exploitable structure that links the elements of the list,

and the list is usually so long that exhaustive search is infeasible.

There is not much that one can do. If one tests entries on the list at random, then

one can try some of the following:

• Estimate the proportion of list entries that give results above some threshold.

• Use some modeling to estimate the maximum value on the list from a random

sample of list entries.

• Estimate the probability that further search will discover a new maximum within

a fixed amount of time.

13

A strategy invented by computer scientists (Maron and Moore, 1997, Artificial

Intelligence Review, 11 193-225) is to race the testing.

One does pairwise comparisons of models. At first, one fits only a small random

fraction of the data (say a random 1%) to each model on the list. Usually this is

sufficent to discover which model is best and one discards the other.

If that small fraction does not distinguish the models, then one fits another small

fraction. Only very rarely is it necessary to fit all mor most of the data to select the

better model.

Racing is an easy way to extend one’s search capability by about 100-fold.

14

7.5 Bayesian Methods

Suppose there are p explanatory variables and one considers a model of the form:

Mi : Y = X∗

i β
∗

i + ǫ

where ǫ ∼ N(0, σ2I) and i = 1, . . . , 2p, indexing all possible choices of inclusion or

exclusion among the p explanatory variables.

Assume there is an intercept: each β∗

i = (β0, β
′

i), and thus let Xi be the submatrix of

X∗

i corresponding to βi, and let the length of βi be d(i) + 1. Denote the density

corresponding to model Mi by fi(y|β
∗

i , σ
2).

15

For this model, standard choices for the prior on the parameters in Mi include:

• The g-priors. Here:

πg
i (βi, σ

2) =
1

σ2
N(βi|0, cnσ2(X ′

iXi)
−1)

where c is fixed (typically to 1, or estimated through empirical Bayes).

• Zellner-Siow priors. The intercept model has prior π(β0, σ
2) = 1/σ2, while the

prior for all other Mi is:

πZS
i (βi, σ

2) = πg
i (βi, σ

2|c)

πZS
i (c) ∼ InverseGamma(c|0.5, 0.5).

The marginal density under Mi is

mi(Y) =

∫
fi(y|βi, σ

2)π(βi, σ
2)dβidσ2.

16

If all models Mi have equal prior probability, then the posterior probability of a

model is

P (Mi|Y) =
mi(y)∑
k mk(Y)

.

Recall the posterior inclusion probability for the ith variable:

qi = P (βi ∈ correct model |Y)

=
∑

k

P (Mk|Y)Iβi∈Mk
.

The median probability model is the model consisting of all and only those

variables whose posterior inclusion probability is at least 1/2.

17

Usually, the median probability model is superior to the maximum posterior

probability model for prediction. (But the Bayesian model average is better than

both, if one can use an ensemble method.)

Theorem: (Barbieri and Berger, 2004, Annals of Statistics. Consider a sequence of

nested linear models. If

• prediction is wanted at “future covariates like the past”,

• the posterior mean under Mi satisfies β̃i = bβ̂i, where β̂i is the OLS estimate,

then the best single model for prediction under squared error loss is the median

probability model.

The second condition is satisfied if one uses either noninformative priors for the model

parameters or if one uses g-type priors with the same constant c > 0 for each model

(and any prior on σ2).

18

Example: Polynomial regression. Here Mi is

y =
i∑

j=0

βjx
j + ǫ.

Model 0 1 2 3 4 5 6

P(Mi|Y) ≈ 0 .06 .22 .29 .38 .05 ≈ 0

Covariate j 0 1 2 3 4 5 6

P(xj is in model|Y) ≈ 1 ≈ 1 .94 .72 .33 .05 ≈ 0

The correct model was M3, which is the median probability model. But the MAP

model is M4.

19

For variable selection, the model space is so large that one needs to use “guided

search”. One finds some reasonably good models, and then searches more intensively

in their neighborhoods.

At any stage, and letting {M1, . . . ,Mk} denote the models previously visited:

• Define the current estimated posterior probabilities of models (assuming equal

prior probabilities) as

P̂ (Mi|Y) =
mi(Y)∑k

ℓ=1
mℓ(Y)

.

• Define the current estimated variable inclusion probabilities (estimated over all

posterior probabilities that variables are in the model) as

qj = P̂ [(βj ∈ correct model |Y)

=

k∑
ℓ=1

P̂ [Mℓ|Y)Iβi∈Mj
.

20

1. At iteration k, compute the current posterior model and inclusion probability

estimates P̂ (Mi|y) and qj .

2. Return to one of the k − 1 (distinct) previous models already visited, in

proportion to their estimated probabilities P̂ (Mi|Y).

3. Add/remove a variable with probability 1/2.

• if adding a variable, choose the jth variable with probability ∝
qj+c

1−qj+c

• if removing a variable, choose the jth with probability ∝
1−qj+c

qj+c
.

Here c is a tuning parameter that keeps qj away from zero or one; c = .01 works

well.

4. if the obtained in step 3

• has already been visited, return to step 2.

• is new, update P̂ (Mi|Y) and qj and go to step 2.

21

Example: Recall the ozone pollution data used in the ACE model by Breiman and

Friedman (1985). Berger and Barbieri (200?) refit it.

The ozone data has 178 observations and 10 covariates. Berger and Barbieri

considered linear models with an intercept and all possible main effects, quadratic

terms, and two-way product interactions, for a total of 65 covariates and 265 ≈ 1019

models.

They used the g-priors and Zellner-Siow priors, for computational reasons.

They implemented the algorithm at different starting points (random restart) and

found essentially no difference in the results. They made 5,000,000 iterations and

saved only the best 65,536 models.

No model had appreciable posterior probability; the largest was 0.0025.

22

The following (partial) table shows the estimated posterior probabilities for variable

inclusion in the ozone problem:

variable g-prior ZSN prior

x1 .86 .94

x2 .05 .06

x3 .03 .03

x4 .99 .99

x5 .20 .31

x6 .19 .35

x7 .20 .21

x8 .96 .97

x1*x1 .99 .99

x1*x2 .57 .73

x1*x7 .08 .14

x6*x8 .78 .86

23

Note that the same principle can be used for any search criterion and for any model

structure—it doesn’t have to be Bayesian.

• Choose the model features (variables, graphical nodes, structure) you want to use

to drive the search.

• Choose the criterion for defining a good model (e.g., the AIC).

• Convert the criterion to pseudo-probabilities for the models, e.g.,

P̂ (Mi|Y) ∝ exp(AICi/2).

• Define the feature inclusion probabilities as

qj = P̂ [featurej ∈ correct model |Y]

=

k∑
i=1

P̂ (Mj |Y)I featurej∈Mi
.

• Apply the search algorithm.

24

Observations on high-dimensional search strategies:

• Effective search in large, non-orthogonal situations requires guidance; revisiting

high probability models and changing variables in their neighborhood according

to posterior inclusion probabilities appears to be effective.

• There may be no model with significant posterior probability (e.g., the largest for

the ozone data was 0.0025). And there may be many thousands with roughly

comparable posterior probability.

• In that case it is more important to discover interpretable insight, such as the

posterior probabilities for inclusion of each of the variables.

25

