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Abstract

One of the fundamental goals of statistics is to develop methods which provide im-

proved inference in applied problems. This dissertation will introduce novel method-

ology and review state-of-the-art existing methods in three different areas of applied

statistics. Chapter 2 focuses on modelling subcommunity dynamics in gut micro-

biome data. Existing methods ignore cross-sample heterogeneity in subcommunity

composition; we propose a novel mixed-membership model which models cross-sample

heterogeneity using the phylogenetic tree and as a result is robust to mispecifying the

number of subcommunities. Chapter 3 reviews state-of-the-art methods in recom-

mender systems, including collaborative filtering, content-based filtering, hybrid rec-

ommenders, and active recommender systems. Existing literature has focused primar-

ily on bespoke applications; statisticians have an opportunity to build recommender

system theory. Chapter 4 proposes a novel method of accounting for time-based

design inconsistencies in Bayesian network meta-analysis models and discovers non-

linear time trends in the effectiveness of vancomycin as a MRSA treatment. Chapter

5 provides some concluding remarks.
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1 Introduction

This dissertation is based off of three manuscripts written during the author’s

Ph.D. program. They all involve the development and use of statistical methods in

different areas of application. Each manuscript has a corresponding chapter; the text

appearing in the chapter will be largely identical to the text in the manuscript.

In Chapter 2, we propose a novel mixed-membership (MM) for gut microbiome

data. MM models such as Latent Dirichlet Allocation (LDA) have been applied to mi-

crobiome compositional data to identify latent subcommunities of microbial species.

These subcommunities are informative for understanding the biological interplay of

microbes and for predicting health outcomes. However, microbiome compositions typ-

ically display substantial cross-sample heterogeneities in subcommunity compositions

– that is, the variability in the proportions of microbes in shared subcommunities

across samples – which is not accounted for in prior analyses. As a result, LDA can

produce inference which is highly sensitive to the specification of the number of sub-

communities and often divides a single subcommunity into multiple artificial ones.

To address this limitation, we incorporate the logistic-tree normal (LTN) model into

LDA to form a new MM model. This model allows cross-sample variation in the com-

position of each subcommunity around some ”centroid” composition that defines the

subcommunity. Incorporation of auxiliary Pólya-Gamma variables enables a compu-

tationally efficient collapsed blocked Gibbs sampler to carry out Bayesian inference

under this model. By accounting for such heterogeneity, our new model restores the

robustness of the inference in the specification of the number of subcommunities and
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allows meaningful subcommunities to be identified. Chapter 2 is based off of LeBlanc

and Ma [2022], and was done jointly with one of the author’s co-advisors, Li Ma.

In Chapter 3, we review statistical methods for recommender systems. Recom-

mender systems are the engine of online advertising. Not only do they suggest movies,

music, or romantic partners, but they also are used to select which advertisements

to show to users. We review the fundamentals of recommender system methodol-

ogy: collaborative filtering leverages rating data to recommend items to users, while

content-based filtering uses content descriptions of items to make recommendations

[Park et al., 2012]. In practice, many recommender systems do not restrict them-

selves to one strategy and instead combine multiple strategies in order to improve

performance—these types of approaches are collectively known as hybrid filtering

[Adomavicius and Tuzhilin, 2005a]. We also review the emerging field of active recom-

mender systems. Active recommender systems interact with the user and can mimic

how humans operate by, e.g., asking the user questions. If someone asks a person for

a book recommendation, that person will typically respond by asking “What kind

of books do you like?” Despite its statistical nature, most research on recommender

systems has been performed by computer scientists and researchers in industry and

there is a corresponding lack of theory. Statisticians may be able to target this gap in

the literature. The manuscript Chapter 3 was based off of was done jointly with one

of the author’s co-advisors, David Banks, as well as Linhui Fu, Mingyan Li, Zhengyu

Tang, and Qiuyi Wu.

In Chapter 4, we propose a novel method to account for time-based design in-

consistencies in Bayesian network meta-analysis (BNMA) models motivated by the
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prevalence of methicillin-resistant Staphylococus Aureus (MRSA). The presence of

MRSA in complicated skin and soft structure infections (cSSSI) is associated with

greater health risks and economic costs to patients. There is concern that MRSA is be-

coming resistant to other “gold standard” treatments such as vancomycin, and there is

disagreement about the relative efficacy of vancocymin compared to linezolid. There

are several review papers employing BNMAs to investigate which treatments are best

for MRSA related cSSSIs, but none address time-based design inconsistencies. This

paper proposes a time-varying BNMA (tBNMA), which models time-varying treat-

ment effects across studies using a Gaussian Process kernel. A dataset is compiled

from nine existing MRSA cSSSI NMA review papers containing 58 studies compar-

ing 19 treatments over 19 years. tBNMA finds evidence of a non-linear trend in the

treatment effect of vancomycin—it became less effective than linezolid between 2002

and 2007, but has since recovered statistical equivalence. Chapter 4 is based off of

LeBlanc and Banks [2023], and was done jointly with one of the author’s co-advisors,

David Banks.
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2 Microbiome subcommunity learning with logistic-

tree normal latent Dirichlet allocation

2.1 Introduction

The human gut microbiome is the genetic content of all bacteria, archaea, viruses,

and eukaryotic microbes residing in the human gut and is commonly used to pro-

file the composition of the gut microbiota. Advances in next-generation sequencing

techniques have substantially reduced the cost of this approach and made it widely

accessible. One cost-effective microbiome profiling strategy is based on targeting a

single marker gene, the 16S ribosomal RNA (rRNA) gene, through amplicon-based

sequencing [Li, 2015]. A more expensive, but more precise, approach is whole-genome

shotgun metagenomic sequencing [Weber and Myers, 1997]. Traditionally, sequenc-

ing reads have been clustered into Operational Taxonomic Units (OTUs), which serve

as the basic unit of microbial taxa. Recently, amplicon sequencing variants (ASVs)

have come into wider use as they can achieve more precise characterization of mi-

crobial species and resolve the sample-specificity issue of the OTU [Callahan et al.,

2017]. Our work is applicable to either method of characterizing microbial taxa; in

the following we shall generically refer to the basic unit as ASVs.

Gut microbiome studies often involve highly heterogeneous samples due to the

multitude of factors that can influence an individual’s gut microbiota. A useful data

analytical strategy for microbiome compositions is to sort microbiome samples into

clusters characterized by particular compositional signatures. In the context of gut

microbiome, these clusters are called “enterotypes” [Siezen and Kleerebezem, 2011]
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and are associated with health outcomes [Del Chierico et al., 2014]. One of the most

popular microbiome clustering methods is the Dirichlet-multinomial mixture (DMM)

model [Holmes et al., 2012, Nigam et al., 2000], which uses a hierarchical struc-

ture to allow within-cluster cross-sample variability in subcommunity compositions.

However, the DMM is too restrictive to realistically characterize the within-cluster

cross-sample variance in microbiome data [Tang et al., 2018, Wang and Zhao, 2017]

as it uses a single scalar parameter to characterize the entire covariance structure

across all microbial taxa. More general methods have recently been introduced to al-

leviate, though not eliminate, this limitation through the use of Dirichlet-tree models

[Dennis III, 1991, Wang and Zhao, 2017].

Such clustering analysis, however, makes the implicit assumption that each mi-

crobiome sample must belong to a single signature “community” characterized by the

cluster centroid. This assumption is often unrealistic and overly restrictive for com-

plex environments such as the gut microbiome [Holmes et al., 2012, Mao et al., 2020].

Recent developments embrace the more relaxed biological hypothesis that the ASVs

characterizing a microbiota sample hail from a combination of multiple microbial

“clusters”, or more precisely “subcommunities”.

Mixed-membership (MM) models are generalizations of clustering models that

provide a generative modeling framework for data involving subcommunity structure

as they allow each sample to be composed of multiple subcommunities. Sankaran and

Holmes [2019] applied the most well-known MM model, latent Dirichlet allocation

(LDA), to microbiome profiling. Earlier, Shafiei et al. [2015] and Deek and Li [2019]

proposed variations of LDA accounting for environmental factors and inflated zero-
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counts, respectively, in the microbiome context.

The key motivation for our paper is the observation that existing MM models

such as LDA and its variations—originally developed for other contexts such as topic

modeling [Blei et al., 2003] and population genetics [Pritchard et al., 2000] — do

not incorporate key features of microbiome compositions. Most notably, they assume

that a microbial subcommunity’s composition must remain exactly the same across all

samples. This is unrealistic in the vast majority of microbiome studies collected from

diverse environments such as the gut where samples often possess large heterogeneities

[Jeganathan and Holmes, 2021, Tang et al., 2018]. It is interesting to note that

such heterogeneity has been well-recognized in clustering models for microbiome data

[Holmes et al., 2012, Mao et al., 2020], but has been largely ignored in existing

MM models. Additionally, choosing the number of subcommunities for LDA is not

trivial in the presence of cross-sample heterogeneity, and LDA-based approaches often

lead to overestimates in the number of subcommunities in microbiome applications

[Fukuyama et al., 2022].

We introduce a generalization of LDA that aims to appropriately incorporate

cross-sample heterogeneity, or “random effects”, in microbiomal subcommunity com-

positions due to unmeasured sources, thereby leading to more accurate identification

of subcommunities in MM models. Our approach takes advantage of the availability

of a natural tree structure relating the microbial taxa—the phylogenetic tree—which

allows us to decompose the compositional vector into a collection of binomial obser-

vations on the tree nodes. This transform serves two purposes. First, it allows us to

model the heterogeneity by modeling the vector of log-odds transforms of the binomial
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probabilities at each node as Gaussian. By modeling the subcommunity compositions

as realizations from this logistic-tree normal (LTN) [Wang et al., 2021b] distribution,

we are able to impose constraints on the underlying covariance structure to ensure the

identifiability of the subcommunities. A second purpose of the tree-based transform

is computational. By utilizing the Pólya-Gamma (PG) data augmentation technique

[Polson et al., 2013], Bayesian inference under the resulting MM model can be readily

accomplished through fully conjugate collapsed blocked Gibbs sampling. We term

our new model logistic-tree normal latent Dirichlet allocation (LTN-LDA).

Several other relevant prior works are worth mentioning. Graph-Sparse LDA

[Doshi-Velez et al., 2015] also incorporates random effects from subcommunity-to-

subcommunity using a tree structure. However, in the context of microbiome com-

positions, it would assume that every node of the tree is an ASV which can occur in

a sample and is thus incompatible with the phylogenetic tree. Other tree-based MM

methods include Tam and Schultz [2007], which uses trees to model the abundance

of subcommunities in samples, and Andrzejewski et al. [2009], which uses mixtures of

trees to model subcommunity composition by explicitly modelling which ASVs must

co-occur and which cannot.

In the following, we will briefly review the LDA and LTN models before intro-

ducing the LTN-LDA model. We will augment the LTN-LDA model using a class of

auxiliary Pólya-Gamma variables [Polson et al., 2013] and present a collapsed blocked

Gibbs sampler for carrying out fully Bayesian inference. We will demonstrate in sim-

ulations that, in the presence of cross-sample heterogeneity, inference by LTN-LDA

is robust with respect to overspecifying the number of subcommunities while infer-
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ence by LDA can be highly sensitive to the choice of the number of subcommunities.

We apply LTN-LDA to the dataset of Dethlefsen and Relman [2011], which has been

used for demonstrating MMmodels in the microbiome settings [Sankaran and Holmes,

2019], and compare our results to LDA.

2.2 Methods

2.2.1 Latent Dirichlet allocation

Let there beD samples consisting of counts of V unique ASVs indexed by 1, 2, . . . , V .

For sample d, let xd = (xd,1, . . . , xd,V ) be the vector of ASV counts such that xd,v is

the total count for ASV v in sample d. Let Nd =
∑V

v=1 xd,v be the sum of counts in

sample d, which is determined by the sequencing depth. Subcommunities are defined

to be collections of ASVs that co-occur in samples at given relative proportions. An

ASV can occur in multiple subcommunities at various abundances and the key as-

sumption underlying an MM model, in contrast to a clustering model, is that different

instances (i.e., different sequencing reads) of the same ASV in a sample can arise from

the participation of that ASV in multiple microbial subcommunities. Key parame-

ters of interest in MM models are subcommunity abundance, i.e., the proportions of

the various subcommunities in each sample, and subcommunity composition, i.e., the

proportions of the ASVs in each subcommunity.

To describe LDA, it is convenient to introduce categorical indicators for each read

and its associated subcommunity identity. For d = 1, 2, . . . , D, let wd be a vector

wd = (wd,1, . . . , wd,Nd
) where wd,n ∈ {1, 2, . . . , V } is the categorical indicator of the

ASV associated with the nth read in the sample. We refer to the elements wd,n in

8



this vector as “tokens” to draw analogy with topic modelling. There, each token is

a word in a document; here, each token corresponds to a read in a sample. We also

note that xd,v =
∑Nd

n=1 1{wd,n=v}.

Let ϕd = (ϕ1
d, ϕ

2
d, . . . , ϕ

K
d )

′ ∈ ∆K−1, where ∆S is the S-dimensional simplex, be

the subcommunity abundance vector. That is, ϕkd represents the relative abundance

of subcommunity k in sample d, and so ϕd specifies the categorical distribution of

each token over the K underlying subcommunities in sample d. Let zd,n represent

the subcommunity from which the nth token in sample d arises from and let zd be

the vector all such assignments for sample d. Also, let βk = (β1
k , β

2
k , . . . , β

V
k )

′ ∈ ∆V−1

be the subcommunity composition for subcommunity k. That is, βk gives the rela-

tive proportions of the V unique ASVs in subcommunity k. For d = 1, . . . , D and

n = 1, . . . , Nd and while α and γ are hyperparameters, the LDA model (Figure 1a)

[Blei et al., 2003] is then

wd,n | zd,n,βzd,n
ind∼ Cat(βzd,n) zd,n |ϕd

ind∼ Cat(ϕd)

ϕd |α
iid∼ Dir(α) βk |γ

iid∼ Dir(γ).

Though LDA can be applied in the microbiome context [Sankaran and Holmes,

2019], it does not account for cross-sample heterogeneity in subcommunity composi-

tion. In particular, it assumes that the βk are the exact same across all samples. This

is inconsistent with the empirical behavior of the microbiome where large cross-sample

heterogeneities exist [Holmes et al., 2012]. LDA thus tends to interpret cross-sample

heterogeneity as the presence of additional subcommunities.
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2.2.2 Incorporating cross-sample heterogeneity

We shall enrich the LDA framework to allow the subcommunity compositions to

vary across samples. There are several hierarchical models for microbiome composi-

tions such as the Dirichlet-Multinomial (DM) model [Holmes et al., 2012, Nigam et al.,

2000] and Aitchinson’s log-ratio based normal (LN) models [Aitchison, 1982], which

could be embedded into LDA for this purpose. However, the DM is highly restrictive

in its ability to characterize the underlying cross-sample variability as the Dirichlet

distribution has only one scalar variance parameter, while the LN models are compu-

tationally challenging due to lack of conjugacy to the multinomial sampling model.

To resolve these difficulties, we adopt the recently introduced logistic-tree normal

(LTN) model [Wang et al., 2021b]. In particular, we will show that the LTN model

can be embedded into the LDA model to accommodate cross-sample heterogeneity

and that posterior inference can be accomplished through simple collapsed blocked

Gibbs sampling using a data-augmentation technique called Pólya-Gamma augmen-

tation. Moreover, since the adoption of the LTN model requires specifying a dyadic

partition tree on the ASVs, the phylogenetic tree relating the taxa is a natural choice.

2.2.3 The phylogenetic tree

Let T denote a phylogenetic tree capturing genetic similarities between the ob-

served ASVs. The leaf nodes in the tree correspond to the observed ASVs in the

data set. Each interior node is the inferred common ancestral taxon for the ASVs

lying in the corresponding descendant subtree at the node. Each node (or taxon)

A in the phylogenetic tree T can be represented by the collection of its descendant
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ASVs. In particular, each leaf node A contains a single ASV, whereas each internal

node A contains multiple ASVs. In the following, we let I be the set of internal

nodes. Throughout this work, we shall assume that the phylogenetic tree is rooted

and binary in the sense that each A ∈ I has exactly two child nodes (i.e., direct

descendants): let Al and Ar be the left and right children of A, respectively.

2.2.4 The logistic-tree normal model

We shall adopt the logistic-tree normal (LTN) model [Wang et al., 2021b] as the

sampling model for the ASV count distribution within each subcommunity. LTN

is a distribution on a tree-based log-odds transform of the categorical probabilities

β = (β1, β2, . . . , βV )′ ∈ ∆V−1. Specifically, given the phylogenetic tree T , for each

interior node we define θ(A) =
∑

v∈Al
βv∑

v∈A β
v : the probability that a token belongs to

an ASV in Al given that it belongs to an ASV in A. The collection of θ(A) on all

A ∈ I gives an equivalent reparametrization of β. In Figure 2 we plot an example

phylogenetic tree over 6 ASVs with labelled nodes (Figure 2a) and with labelled βv

and θ(A) (Figure 2b) to demonstrate the link between the βv and the θ(A).

After taking the logit transform of these binomial probabilities on the tree nodes,

ψ(A) = log θ(A)
1−θ(A) , let ψ be the vector of ψ(A) with respect to an ordering on the p

internal nodes of T . LTN is simply a Gaussian model on these tree-based log-odds:

ψ |µ,Σ iid∼ MVN(µ,Σ) for some mean µ and covariance Σ parameters that specify

the overall average profile of the count distribution and the cross-sample variability.

Posterior computation under LTN, which we will describe later, relies on an equiva-

lent representation of the categorical sampling on the leaves of the tree as a collection

of sequential binomial experiments on the internal nodes of the tree. Specifically,
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generating a categorical draw from the probability vector β can be achieved by se-

quentially “dropping” the token from top-to-bottom along the phylogenetic tree: at

each node determine whether the token belongs to the left or right child node with

probabilities θ(A) and 1−θ(A), respectively. More formally, for each node A ∈ T , we

use y(A) to denote the total counts associated with the ASVs descended from node

A. That is, y(A) =
∑N

n=1 1wn∈A where wn represents the nth count. Generating a

multinomial count vector with probabability β can be achieved by sequentially draw-

ing y(Al) given y(A) from Bin(y(Al) | y(A), θ(A)). Putting the pieces together, and

letting expit(ψ) = 1/(1+e−ψ), LTN is the following generative model: for all internal

nodes A ∈ T ,

y(Al) | y(A), ψ(A)
ind∼ Bin(y(A), θ(A) = expit(ψ(A))) and ψ |µ,Σ ind∼ MVN(µ,Σ).

2.2.5 LTN-LDA

We incorporate the LTN model into LDA to allow cross-sample heterogeneity in

subcommunity compositions. The resulting model is termed logistic-tree normal la-

tent Dirichlet allocation (LTN-LDA). Specifically, for d = 1, . . . , D, k = 1, . . . , K,

n = 1, . . . , Nd, and A ∈ I, where the subscripts d, k, and n indicate the correspond-

ing quantities associated with the dth sample, kth subcommunity, and nth read, the

model is as follows
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yd,k(Al) | yd,k(A), ψd,k(A)
ind∼ Bin(yd,k(A), expit(ψd,k(A)))

yd,k(A) =

Nd∑
n=1

1zd,n=k1wd,n∈A zd,n |ϕd
ind∼ Cat(ϕd)

ϕd |α
iid∼ Dir(α) ψd,k |µk,Σk

ind∼ MVN(µk,Σk),

µk |µ0,Λ0
iid∼ MVN(µ0,Λ0) Σk |G

iid∼ G

Note that we also endowed the subcommunity mean µk and covariance Σk, with

corresponding priors MVN(µ0,Λ0) and G, which will be specified later. Figure 1b

provides the graphical model representation for this full hierarchical model. The key

distinction between LTN-LDA and LDA is that LTN-LDA uses a hierarchical kernel,

namely LTN, to model cross-sample heterogeneity. In particular, the composition in

sample d of subcommunity k is determined by ψd,k and is explicitly allowed to vary

across samples.

Without additional constraints on the high-dimensional covariance matrices for

each subcommunity, Σk, the model is too flexible [Haffari and Teh, 2009], and can

become unidentifiable. Additional structural constraints serving the purpose of reg-

ularization on the covariance structure are thus necessary and so we assume that Σk

is a diagonal covariance matrix. An LTN distribution with diagonal covariance is

similar in distributional properties to a Dirichlet-tree multinomial (DTM) distribu-

tion [Dennis III, 1991, Wang and Zhao, 2017] but is computationally more efficient

because there are no known conjugate priors for the mean and variance parameters

under the DTM model. While this limitation is manageable when the DTM is used

as a standalone model or the top layer in a hierarchical model, when embedded as a
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kernel within an MM model such as LDA the incurred numerical computational cost

becomes prohibitive. For more details, see Supporting Information A.1.

While the covariance constraint may appear strong, we note that the dependence

among the tree-based log-odds ratios is generally much weaker than the complex de-

pendence structure among the ASV counts themselves. In a sense, the tree-based

log-odd transform of the abundance vectors “decorrelates” the data. For the inter-

ested reader, this decorrelation phenomenon is analogous to the so-called “whitening”

effects in wavelet analysis [Nason, 2008], as the dyadic tree transform we incorporate

here is the counterpart of Haar-wavelet transform on functions. In Supporting Infor-

mation Section A.2 we investigate the effects of relaxing the diagonal covariance to a

blocked diagonal covariance, and the results show that the additional sophistication

does not lead to noticeable improvement in the inference.

Aside from the diagonal covariance, we also assume that the amount of variability

for each node depends on that node’s distance to the bottom (i.e., leaf) level of the

tree. In particular, we assume that taxa close to the bottom of the phylogenetic tree

have larger cross-sample variability in the corresponding log-odds ratio than those

which are distant. This is motivated by the biological intuition that taxa close to each

other on deep levels of the phylogenetic tree tend to have comparable functionality;

the relative proportions of such taxa thus often display elevated levels of variance

[Jeganathan and Holmes, 2021].

Specifically, let |A| measure the distance of A from the leaf level by denoting the

number of leaves descended from node A. For i = 1, . . . , p, k = 1, . . . , K, C ∈ N (a

tuning parameter), and τk = (τ 1k , . . . , τ
p
k ), the prior we adopt has the form Σk | τk =
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diag(τk) where

τ ik | a1, a2, b
iid∼


IG(a1, b) |Ai|≥ C

IG(a2, b) |Ai|< C

We default to (a1, a2, b) = (104, 10, 10) and note that while we still refer to the ψd,k as

being drawn from a multivariate normal distribution, we have ψid,k |µik, τ ik
iid∼ N(µik, τ

i
k).

This choice of priors ensures conjugate updating and avoids identifiability issues.

Further, it partitions the internal nodes of the tree in two: we shall refer to these sets

as the upper tree U = {A ∈ I : |A|≥ C} and the lower tree L = {A ∈ I : |A|< C}.

In U , the hyperparameters a1 and b are such that the τ ik will be small and the ψid,k

will vary little around µik; in L, the hyperparameters a2 and b are such that the τ ik are

allowed to be large and the ψid,k can vary significantly across samples. This implies

that if Ac is the child of A, and Ac ∈ L but A ∈ U , then all ASVs descended from Ac

can substitute for each other across samples in a given subcommunity. We call sets

of ASVs which are allowed to substitute for each other substitution sets. All ASVs

are either part of a substitution set or singletons. The tree structure is critical to

how LTN-LDA models cross-sample heterogeneity, and we include an analysis on the

robustness to misspecified trees in Supporting Information A.3.

2.2.6 Bayesian inference by collapsed blocked Gibbs sampling

While the LTN-LDA model is not conditionally conjugate by itself, one can restore

conjugacy by introducing a class of Pólya-Gamma latent variables [Polson et al., 2013]

vd,k(A) — one for each interior node A — which are independent of yd,k(Al) condi-

tioned on yd,k(A) and ψd,k(A): vd,k(A) | yd,k(A), ψd,k(A) ∼ PG(yd,k(A), ψd,k(A)). The
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full conditional for ψd,k(A) is then proportional to exp
(
(yd,k(Al)− yd,k(A)

2
)ψd,k(A)− vd,k(A)ψd,k(A)

2

2

)
,

which takes a quadratic form in the exponent and thus is conjugate to the Gaussian

model on ψd,k(A). The graphical model for LTN-LDA with the Pólya-Gamma vari-

ables is presented in Figure 1c. To speed up the sampling of Pólya-Gamma variables

we adopt an approximate sampler proposed by Glynn et al. [2019] for yd,k(A) ≥ 30.

Further, we integrate ϕd out of the sampling model to improve convergence as in

Griffiths and Steyvers [2004]. The algorithm scales linearly with D, K, V , and Nd;

for details, see Supporting Information A.4.

2.3 Numerical experiments

2.3.1 Robustness in choosing the number of subcommunities

The true number of subcommunities K in a given dataset is typically unknown

and it is common to treat K as a tuning parameter. However, for data with large

cross-sample heterogeneity such as microbiome data, intuition suggests that a model

assuming zero heterogeneity will confuse sample-specific variation around a subcom-

munity mean with the presence of additional subcommunities. This results in dif-

ficulty estimating K and inference sensitive to K; indeed, LDA encounters both of

these difficulties [Fukuyama et al., 2022].

To verify this intuition, we generated data from a known LTN-LDA model which

induces cross-sample heterogeneity. In particular, we simulated D = 50 samples, and

Nd = 10, 000 reads per sample; we set α = 1, µ = 0, Λ = I, a1 = 104, a2 = b = 10,

and (K,C) = (4, 5). The underlying phylogenetic tree is presented in Supporting

Information A.5: there are V = 49 ASVs. We then contrasted LDA and LTN-LDA
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by running Gibbs samplers on the data generated above with K ∈ {4, 5, 7, 10} and

C = 5. In the left part of Figure 3, we plot the posterior means of the subcommunity

abundances ϕd for both LDA and LTN-LDA. We corrected for label switching and

estimated the ϕd as in Griffiths and Steyvers [2004].

With K set to truth, LDA performs comparably to LTN-LDA in estimating the

true values of ϕd; however, as we increase K, the inference provided by LDA worsens.

While it still recovers the abundances for subcommunities 1 and 2, it does a worse

job at recovering subcomunities 3 and 4. Moreover, LDA detects the presence of ad-

ditional subcommunities which do not exist in the true generative model. LTN-LDA,

in contrast, is remarkably stable when K is overspecified. No matter the modelled

value of K, it detects the four true subcommunities with approximately the same

abundances while estimating that additional subcommunities have little abundance.

For K = 10, we plotted the subcommunity compositions on the right part of Fig-

ure 3. (This figure appears in color in the electronic version of this article, and any

mention of color refers to that version.) For LTN-LDA, distributions for the βd,k are

in blue and the βk are in red; the LDA βk distributions are in black. LTN-LDA finds

moderate levels of cross-sample heterogeneity in subcommunity 2, and a high levels

in samples 3 and 4.

These figures imply that LDA is able to recover the subcommunity abundances

only for those subcommunities with low cross-sample heterogeneity. LDA fails to re-

cover the subcommunity abundances for those subcommunities with high cross-sample

heterogeneity, mistaking heterogeneity for additional subcommunities. In effect, LDA

splits true heterogeneous subcommunities into many smaller subcommunities with no

17



heterogeneity and ASVs which ought to belong in the same subcommunity are sep-

arated. LTN-LDA, on the other hand, provides stable and accurate inference as the

modelled K increases. This thus confirms our intuition about the behavior of LDA

in the presence of cross-sample heterogeneity.

2.3.2 Predictive scoring as a device for choosing tuning parameters

While incorporating cross-sample heterogeneity enhances the robustness of LTN-

LDA to overspecifying the number of subcommunities, it is still useful to have a

generally applicable strategy for setting the tuning parameters for LTN-LDA: K and

C. One option is to use out-of-sample predictive performance to identify suitable

choices of the tuning parameters. A popular performance measure for MM models is

perplexity [Wallach et al., 2009]: a transform of out-of-sample predictive likelihood

such that lower perplexity is preferred.

We thus implement the simple strategy of computing the average out-of-sample

perplexity score for different choices of (K,C) and examine whether that can lead

to a practical way of choosing these parameters. We will also examine whether this

strategy could be adopted for models without cross-sample heterogeneity, namely

LDA, to alleviate their limitations. We follow the procedure in Section 5.1 of Wallach

et al. [2009] for computing the perplexity for LDA, and generalize that strategy to

LTN-LDA. For details, see Supporting Information A.6. We generated 200 simulated

datasets. In each, there are D = 50 samples and Nd = 10, 000 counts per sample; we

set α = 1, µ = 0, Λ = I, a1 = 104, a2 = b = 10, and (K,C) = (4, 5). For each dataset,

we also generate a test set of the same size where the sample specific parameters are

generated using α = 1 and the training set’s µk and Σk.
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Fixing C to truth, we varied K and computed average perplexity for LDA and

LTN-LDA in Figure 4(a). There are three main observations: (i) LTN-LDA signif-

icantly outperforms LDA for K near truth, (ii) the perplexity curve for LTN-LDA

decreases until it stabilizes at the true value of K, (iii) the perplexity curve for LDA

continues to decrease as the modelledK is increased past its true value. The main rea-

son for the difference is that LDA interprets the presence of cross-sample heterogene-

ity as extra subcommunities and so finds as many subcommunities as are modelled.

While this improves out-of-sample predictive performance, it does not improve infer-

ence on the underlying truth. Thus, using perplexity to select the modelled number of

subcommunities for LDA is a poor method if there is significant cross-sample hetero-

geneity. LTN-LDA is more robust and parsimonious in its representation of the data

because it incorporates cross-sample heterogeneity in subcommunity compositions.

Fixing K to truth, we computed average perplexity for LTN-LDA as we varied

C in Figure 4(b). The perplexity curve decreases until it stabilizes at the true value

of C. In addition to perplexity, we also computed the L2 distances between the

posterior mean estimates and the true values for the ϕd, βd,k, and βk distributions

(Figure 4(c)). Unlike the perplexity curves, the L2 distances are lowest around C = 5

and increase as C increases. Thus, if the modelled value of C is increased too far

above truth, inference becomes unreliable.

The above results suggest a simple two-stage strategy for choosing (K,C) using

perplexity. First, let (K,C) vary jointly on a grid and use cross-validation to compute

the average perplexity, giving K perplexity curves over C. Set C to be the inflection

point in these curves. Second, vary K and set the value of K to be the inflection
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point of the resulting perplexity curve. Note that this strategy may fail for LDA: as

our numerical examples show below, due to the lack of cross-sample heterogeneity

in LDA, the perplexity score generally continues to improve as one increases the

number of subcommunities beyond truth. This in turn leads to misleading inference

on subcommunity abundance and composition.

2.4 Evaluation on a microbiome study

We apply LTN-LDA to identify subcommunity dynamics in the dataset of Deth-

lefsen and Relman [2011], which has been previously investigated by Sankaran and

Holmes [2019] using LDA. The data includes gut microbiome samples of three pa-

tients who were administered two five-day courses of ciprofloxacin over a ten-month

span. We focus on the 54 samples from patient F, each consisting of approximately

10, 000 reads. Ciproflaxin was administered during samples 12-23 and 41-51. There

are 2, 852 unique ASVs in the dataset; we merged ASVs into taxa at the finest known

level and pruned all taxa which did not total at least 100 sequencing reads. This left

44 taxa comprising 99.86 percent of the original counts. The resulting phylogenetic

tree is included in Supporting Information A.7.

We implemented the strategy outlined above to choose tuning parameters. In

particular, we implement a 4-fold cross-validation letting K vary in {2, 3, . . . , 8} and

C in {1, 2, . . . , 21}. The resulting K perplexity curves over C are presented in Figure

4(d). The inflection point in the curve appears at C = 8. Setting C = 8 and varying

K gives the results in Figure 4(e); for comparison, we also applied LDA to the data

over varying K. LTN-LDA has strictly lower perplexity than LDA, indicating that
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there are significant levels of cross-sample heterogeneity in the dataset. Moreover,

LTN-LDA experiences a noticeable inflection point (near K = 5) in contrast to LDA

whose perplexity decays slowly.

We now present more detailed analysis for LTN-LDA and LDA with C = 8. For

K ∈ {3, 4, 7} we plotted the subcommunity abundance on the left side of Figure 5,

after manually correcting for label switching. The grey regions indicate periods of

ciproflaxin treament. The subcommunities found by LTN-LDA are remarkably stable

as K changes. Subcommunities 1, 2, and 3 have almost the exact same abundance,

and additional subcommunities have minimal abundance. LDA, however, finds as

many subcommunities as are modelled: it will split a heterogenous subcommunitiy

into multiple subcommunities with no heterogeneity. For K = 7, we plotted the ASV-

subcommunity distributions on the right side of Figure 5. Distributions for the βd,k

are in blue, the βk in red, and the LDA distributions in black. The 3 most prevalent

ASVs in each subcommunity are presented in Figure 6 for LDA and LTN-LDA. These

demonstrate that LTN-LDA finds significant levels of cross-sample heterogeneity and

subcommunities with meaningfully different compositions than LDA.

LTN-LDA thus provides two major advantages. First, LTN-LDA is more robust

with respect to modelling differing numbers of subcommunities than LDA. This is

similar to our simulations and indicates that LTN-LDA better accounts for the cross-

sample heterogeneity in the data than does LDA. Moreover, the three subcommunities

found by LTN-LDA are biologically interpretable. The first subcommunity is com-

posed mostly of Lachnospiraceae and Ruminococcaceae and displays significant levels

of cross-sample heterogeneity, indicating that LTN-LDA has found these two ASVs
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can substitute for each other. Haak et al. [2018] found this phenomena in humans un-

dergoing ciproflaxin treatment. LTN-LDA can thus learn when two ASVs substitute

for each other across samples from the data, with no prior knowledge. The second

subcommunity, composed mainly of Bacteroides, increases in abundance during the

antibiotic treatments. Studies in mice [Zhu et al., 2020] and humans [Stewardson

et al., 2015] indicate that the abundance of Bacteroides increases during ciproflaxcin

treatment. The third subcommunity has a small spike in abundance only on the first

day of the second antibiotic course, and is composed mostly of Dialister and Veil-

lonella. Ciproflaxin has been shown to be effective against Dialister [Morio et al.,

2007] which may explain the decrease in this subcommunity after treatment began.

2.5 Discussion

We have proposed a novel mixed-membership model which seeks to appropriately

incorporate cross-sample heterogeneity in subcommunity compositions: a character-

istic of the data prevalent in most microbiome studies. By incorporating the logistic-

tree normal model for the sample-specific compositions of each subcommunity, we

explicitly allow the composition of subcommunities to vary across samples. We have

shown that incorporating cross-sample heterogeneity into MMmodels can lead to sub-

stantially improved inference over models which assume zero cross-sample heterogene-

ity. LTN-LDA is substantially more robust than LDA with respect to overspecifying

K and significantly outperforms LDA in terms of predictive performance. Moreover,

perplexity can be a useful device to set the tuning parameters for LTN-LDA but not

for LDA. Posterior computation on LTN-LDA can proceed through collapsed blocked
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Gibbs-sampling with the assistance of Pólya-Gamma augmentation, and as such im-

plementation for LTN-LDA is convenient. Moreover, LTN-LDA is a fully Bayesian

model and the Gibbs sampler allows for posterior uncertainty quantification.

In comparison to LDA, LTN-LDA incorporates two new features: the tree struc-

ture and the random effects allowing cross-sample heterogeneity. The tree structures

provides guidance on how to parsimoniously model the random effects without caus-

ing non-identifiability. We carried out an additional numerical experiment that shows

that using the tree structure as a way to parametrize the model without adding ran-

dom effects does not lead to improved inference. For a more detailed discussion see

Supporting Information A.8. While LTN-LDA relies on the tree structure to incorpo-

rate random effects, we note there are several alternative approaches to incorporating

random effects in microbiome compositions [Grantham et al., 2017, Ren et al., 2020a,

Zhang and Lin, 2019]. In principle it is possible to incorporate random effects without

a tree structure in the MM model.

Like other unsupervised learning methods, LTN-LDA is unable to differentiate

between different scenarios giving rise to the same sampling distributions. That is,

LTN-LDA, or any other models for that matter, cannot distinguish between multi-

ple subcommunities and a single over-dispersed one if the two give rise to the same

sampling distributions. Domain knowledge is necessary to identify such possibili-

ties; traditionally, there are two strategies to incorporate such domain knowledge.

The first is through modeling assumptions, such as modelling how large the single-

subcommunity dispersion is through the hyperpriors on the τ ik. The other strategy is

using a decision theoretic formulation that introduces certain loss functions to carry
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out post-hoc merging of the identified topics.

Moreover, we believe that the idea of incorporating cross-sample heterogeneity in

MM models could be valuable beyond the context of microbiome compositions. In

topic models, for example, one might expect different authors to write on the same

topic using different vocabulary. LTN-LDA has the potential to be applicable to these

other contexts as well, though the immediate challenge is finding an appropriate tree

structure.
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(a) LDA (b) LTN-LDA
(c) LTN-LDA with Pólya-Gamma
Variables

Figure 1: Graphical model representations for LDA and LTN-LDA.
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(a) Notation for nodes

(b) Present θk and βk

Figure 2: An example phylogenetic tree for 6 ASVs and the graphical relationship
between µk and ψd,k.
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Figure 3: (Left) Subcommunity abundance for ϕd for all samples over four different
numbers of subcommunities K ∈ {4, 5, 7, 10} for LDA (left) and LTN-LDA (right).
The estimated abundances are noticeably more stable over different values of K for
the LTN-LDA. (Right) Estimated subcommunity compositions for all samples. Blue
indicates the sample-specific composition under LTN-LDA (βd,k, red indicates the
average subcommunity composition under LTN-LDA (βk) and black indicates the
average subcommunity composition (βk) under LDA. The 49 ASVs are on the x-axis.
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(a) (b)

(c) (d)

(e)

Figure 4: (a) Perplexity for LDA (red) and LTN-LDA (blue) as the modelled number
of subcommunities K varies. (b) Perplexity for LTN-LDA as the modelled threshold
C varies. (c) L2 distances for ϕd (red), βk,d (blue), and βk (black) for LTN-LDA
as the modelled threshold C varies. (d) Perplexity for varying levels on K on the
Dethlefsen and Relman data as we vary C. (e) Perplexity for LTN-LDA and LDA as
K varies while C = 8.
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Figure 5: (Left) Subcommunity abundance for ϕd for all samples over three differ-
ent numbers of subcommunities K ∈ {3, 4, 7} for LDA (left) and LTN-LDA (right).
The estimated abundances are noticeably more stable over different values of K for
the LTN-LDA. (Right) Estimated subcommunity compositions for all samples. Blue
indicates the sample-specific composition under LTN-LDA (βk,d, red indicates the
average subcommunity composition under LTN-LDA (βk) and black indicates the
average subcommunity composition (βk) under LDA. The 44 ASVs are on the x-axis.
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Figure 6: The 5 most prevalent ASVs in each subcommunity for LDA and LTN-LDA,
K = 7, C = 8.
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3 The Statistics of Recommender Systems

3.1 Introduction

Recommender systems save users time and help them find products that better

meet their needs. They are continually improving, because algorithms are improving

and because existing algorithms are learning more about users and products. Research

is extending the reach of recommender systems to new kinds of applications. Statistics

is integral to their success.

There are many different strategies employed by recommender systems. Two of

the most common are collaborative filtering and content-based filtering. Collabora-

tive filtering leverages rating data to recommend items to users, while content-based

filtering uses content descriptions of items to make recommendations [Park et al.,

2012]. In practice, many recommender systems do not restrict themselves to one

strategy and instead combine multiple strategies in order to improve performance—

such approaches are called hybrid filtering [Adomavicius and Tuzhilin, 2005a]. Many

approaches have been developed, and, for commercial applications, they are generally

tailored to a specific recommendation task since suggesting books is different from

suggesting music or health insurance plans. Even within a specific task, there can

be differences; e.g., suggesting a murder mystery probably employs different criteria

than recommending a romance novel.

We describe collaborative filtering, content-based filtering, and hybrid methods

before discussing the emerging field of active recommender systems. Active recom-

mender systems interact with the user and can mimic how humans operate by, e.g.,
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asking the user questions. If someone asks a person for a book recommendation,

that person may by asking “What kind of books do you like?” One can imagine that

one day when a user logs onto Amazon’s kindle website, Amazon will ask a set of

individually tailored questions to determine which book the user will be most likely

to purchase.

Throughout this paper, we shall use the MovieLens 25M data set [Harper and

Konstan, 2015] to illustrate the ideas and to benchmark performance. But there are

ideas that do not generalize beyond the movie context. A recommender system that

uses movie-specific features, such as actors, does not extend to such applications as

suggesting books.

Section 2 reviews general ideas in the recommender system field, including com-

mon challenges and performance metrics. Section 3 describes collaborative filtering,

Section 4 reviews content-based filtering, and Section 5 discusses hybrid procedures.

Section 6 lays out some of the statistical issues in active recommender systems. Sec-

tion 7 concludes.

3.2 Background

We formalize a mathematical framework for recommender systems following Ado-

mavicius and Tuzhilin [2005a]. Let U = {u1, . . . , uN} be a set of N users, M =

{i1, . . . , iM} be a set of M items, and f : U × M → R be a utility function which

maps a user-item pair (un, im) to a utility rnm in a totally ordered set R. In prac-

tice, the utility must be estimated from either explicit or implicit user feedback [Zhao

et al., 2018]. Feedback is explicit if the user directly gives information stating their
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opinion of items, e.g. rating a movie between 1 and 5 stars. Feedback is implicit

if the system passively observes user behavior instead. There are three main types

of implicit feedback: “examination”, which measures how a user examines an item;

“retention”, which measures to what degree a user stores information on an item for

later use; and “reference”, which measures how users connect different items [Oard

and Kim, 1998]. There is a trade-off between explicit and implicit feedback—explicit

feedback may be more informative but implicit feedback is easier to collect [Nichols,

1998]. Despite this, there is relatively little research comparing the use of explicit or

implicit feedback in recommender systems[Zhao et al., 2018] and most recommender

systems exclusively use just one kind of feedback [Jawaheer et al., 2010]. Zhao et al.

[2018] finds that using both kinds of feedback can improve recommender systems by,

e.g., increasing user engagement.

Most of this paper uses the MovieLens 25M data set as a motivating example and

so will assume explicit feedback in the form of ratings data stored in a ratings matrix

R: row n corresponds to user un, column m corresponds to movie im, and the value

in the nth row and mth column, Rnm, is the rating given to movie im by user un. If

user un did not give a rating to im, then Rnm is set to 0. Of course, this zero indicates

missing data rather than an actual rating of zero.

Implicit feedback can be turned into explicit feedback of this matrix form by

following Lee et al. [2008], which implements a collaborative filtering-based recom-

mender system using a pseudo-ratings matrix constructed from implicit feedback. An

example of a pure implicit feedback recommender can be found in Morita and Shin-

oda [1994], which predicts what rating a user will give an item based on the time the
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user spends on a website. Koren [2008] proposes a hybrid method with both explicit

and implicit feedback.

For each user un, a recommender system attempts to recommend the item iun

that maximizes the user’s utility:

iun = argmaxim∈Mf(un, im).

This, however, is only one of several possible criteria a recommender system could

maximize. Gunawardana and Shani [2009] classifies recommender systems into three

groups according to their specific goal: (1) to recommend a subset of a set of good but

interchangeable items, (2) to optimize utility, e.g. to maximize value to a company

by increasing revenue, and (3) to predict ratings over a possibly large set of user-item

pairs. Each of these goals requires knowledge of the utility function f and so inference

on f is critical.

A fundamental challenge is extreme sparsity. Consider the MovieLens 25M dataset

[Harper and Konstan, 2015]. Released in December 2019, it contains data collected by

the MovieLens movie recommendation service from January 9, 1995, to November 21,

2019. There are about 25 million ratings from 162, 000 users on 62, 000 movies. Thus

only 0.25% of user-item pairs are rated: 99.75% of the data are missing. Furthermore,

the data are not Missing Completely at Random (MCAR) or Missing at Random

(MAR) [cf. Little, 1988], since the probability that a user watches a movie depends

in part on how much they expect to enjoy it, and the probability they rate a movie

is surely related to their enjoyment.
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A subset of these movies is characterized by the tag genome [Vig et al., 2012]. The

tag genome is a set G of 1,128 tags corresponding to some feature of a movie, such as

“action”, “sci-fi”, or “spielberg”. For each movie im with tag genome data, there is

a vector gm ∈ [0, 1]1128 such that the jth entry in this vector, gjm, is a relevance score

describing the pertinence of the jth tag to movie im. We restrict our analysis to the

subset of tagged movies.

Many recommender system strategies make inferences on the utility function.

Collaborative filtering and content-based filtering are the two oldest and most com-

mon [Park et al., 2012]. Collaborative filtering uses only the information contained

in the ratings matrix to make recommendations; content-based approaches also use

descriptions of the items. There are other approaches and contexts which are less

common but nonetheless interesting: demographic filtering, which uses the demo-

graphic information of users [Prasad, 2012]; reciprocal recommenders, in which users

are recommended to other users; context-aware recommenders, which take variables

such as location and time into account; as well as a suite of deep-learning based ap-

proaches [Batmaz et al., 2019]. Related, but distinct, is the field of computational

advertising which seeks to find the “best match” between users and advertisements

subject to a number of constraints [Yang et al., 2017]. In practice, most recommender

systems are hybrids that combine ideas from multiple methods and which are tuned

to a specific application.

There are several metrics to evaluate recommender system performance [Herlocker

et al., 2004], and the appropriate metric depends upon the domain and the goal

[Gunawardana and Shani, 2009]. Predictive accuracy metrics, such as mean absolute
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error (MAE) and root mean squared error (RMSE), have been used for as long as

recommender systems have been studied [Herlocker et al., 2004] to assess how well

recommender systems can predict ratings for any user-item pair. These metrics are

convenient to compare the predictive performance of recommender systems and have

been used in, e.g., the Netflix Prize competition. However, the rating prediction task

does not by itself constitute a recommender system, as it must be combined with a

decision rule governing which items to recommend [Gunawardana and Shani, 2009].

One such decision rule may be to recommend the “best” predicted items for a user.

Rank accuracy metrics measure how well a recommender system produces an or-

dered top k recommendation list that matches a user’s top k list [Herlocker et al.,

2004]. Utility maximization metrics measure how well a recommender system maxi-

mizes a company’s utility and depend heavily on what that utility is. If a company

maximizes its utility by providing an infinitely long ranked recommendation list to

its users, then the half-life utility score is a useful performance metric [Breese et al.,

1998, Gunawardana and Shani, 2009].

Classification accuracy metrics measure the observed frequency with which rec-

ommender systems correctly label items as good [Herlocker et al., 2004]. They include

measures such as precision, which is the ratio of good items recommended to the num-

ber of items recommended, and recall, which is the ratio of good items recommended

to the number of good items [Cleverdon and Kean, 1968]. The F-measure is a function

of precision and recall which combines them into one statistic [Cremonesi et al., 2008].

Additionally, one may construct a receiver operating characteristic (ROC) curve on

the entire dataset by plotting the true positive rate against the false positive rate or
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take the area under the curve (AUC) as a summary statistic [Schein et al., 2005].

Variants of the ROC curve for the recommendation context, such as the Customer

ROC (CROC), which imposes the constraint that each user is recommended the same

number of items, have also been studied [Schein et al., 2005].

In our MovieLens example, we compare results in terms of RMSE as it is tradi-

tional and reflects overall accuracy. Learning user taste can be equally informed by

what the user is indifferent to and dislikes as it is by what the user likes. Obviously,

depending on the goal, other measures would be more appropriate.

To evaluate the performance of recommender systems, one may use online or offline

experiments. Online experiments offer recommendations to real users and measure the

user’s response in terms of implicit and/or explicit feedback. Offline experiments use

existing datasets, such as the MovieLens 25M dataset, and split the data into training

and test sets to assess performance. Online experiments are better tailored to provide

inputs and give feedback to a specific recommender system and better simulate how

it would perform in the wild; however, they are significantly more expensive than

offline experiments. The majority of academic research in recommender systems

uses offline experiments. Beel et al. [2013] compares how recommender systems in

research papers perform in offline and online experiments and find that a recommender

system’s performance in offline experiments can be a poor predictor of performance

in online experiments.

Beyond concerns introduced by experiment type, there is a reproducibility crisis.

Ekstrand et al. [2011] noted that research often did not follow best practices. Many

papers presented their algorithms only as mathematical formulations without pro-
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viding publicly available code implementations, leading other researchers to try to

imperfectly duplicate their work. Moreover, there was no consistent basis for evalu-

ating recommender systems, and many proposed methods were not compared to the

best existing methods. These issues, to some extent, persist. Dacrema et al. [2019]

analyzed 18 recently proposed neural recommendation approaches: only 7 could be

reproduced and of those 6 were outperformed by basic nearest-neighbor methods.

Dacrema et al. [2021] analyzed 12 neural recommendation approaches proposed at

“prestigious conferences” and found that 11 of them were surpassed by simple meth-

ods such as nearest neighbors and linear models.

Much of the recommender system research is being done outside of academia and

remains unpublished. Companies such as Amazon and Netflix pour resources into

designing and tuning their recommender systems, but they are incentivized to keep

progress secret. Academics lack their resources but can focus on developing theory.

3.3 Collaborative Filtering

Collaborative filtering uses only rating data to make recommendations—it uses no

information about the users or items. There are two main approaches: memory-based

methods and model-based methods.

Most memory-based methods follow the same procedure [Bobadilla et al., 2013].

First, use a similarity score to measure how alike the active user, un, is to each

of the other users. The set {Rnm}Mm=1 contains all of the ratings assigned by un;

one calculates how similar un is to, say, ua by calculating a score between the two

sets {Rnm}Mm=1 and {Ram}Mm=1. Cosine similarity is widely used [Adomavicius and

38



Tuzhilin, 2005a]:

sim(un, ua) =

∑M
m=1RnmRam√∑M

m=1R
2
nm

√∑M
m=1R

2
am

.

Other common measures are Pearson’s correlation coefficient and Euclidean distance

[Jeong et al., 2010].

Similarity scores determine k-nearest groups for each user un: simply find the k

other users with the highest similarity score to un. To predict the rating un would

give to an item im, use an aggregation strategy, e.g. an average or a weighted sum,

to combine the ratings given to im by other users in the group who have rated im

[Bobadilla et al., 2013]. Perhaps the most successful memory-based collaborative

filtering implementation is Amazon’s recommender system (“Customers who bought

this item also bought . . . ”) [Hardesty, 2019]. Breese et al. [2013] compares aggregation

methods that use Bayesian networks and cluster analysis.

While these can be effective and are simple to implement, memory-based methods

face challenges from data sparsity [Su and Khoshgoftaar, 2009]. They rely on different

users having rated a common set of items, and the sparser the data, the smaller this

set. Also, memory-based methods are computationally expensive: they compute

similarity measures between all pairs of users and, as they use all ratings generated

before a specific recommendation is made [Bobadilla et al., 2013], they must be rerun

whenever a new rating is added.

In contrast, model-based collaborative filtering methods use the ratings matrix to

learn an underlying model which is then used to predict ratings and make recommen-

dations [Adomavicius and Tuzhilin, 2005a]. One such class of models is neighborhood
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formation models, which cluster users (through k-means clustering, mixture model-

ing, Manhattan or normalized Euclidean distances) in order to predict ratings based

upon that user’s cluster [Candillier et al., 2005, 2007, Su and Khoshgoftaar, 2009]

A second class of models is Bayesian belief nets [Su and Khoshgoftaar, 2009],

which use directed acyclic graphs (DAGs) to model conditional dependencies among

variables [Cheng and Greiner, 2001]. Miyahara and Pazzani [2000] applied a collab-

orative filtering algorithm using Naive Bayes to binary rating data and found that it

outperformed memory-based methods. More advanced models, such as Naive Bayes

optimized by extended logistic regression [Greiner and Zhou, 2002, Shen et al., 2003]

can be applied to recommender systems and can outperform memory-based methods

[Su and Khoshgoftaar, 2006]. Wang and Tan [2011] relaxes the conditional indepen-

dence assumption in Naive Bayes and finds improved performance.

A third class is latent semantic models [Su and Khoshgoftaar, 2009]. These aim

to discover user communities and prototypical interest profiles and are more accu-

rate than memory-based methods [Hofmann, 2004]. The aspect model [Hofmann

and Puzicha, 1999] is an example of a latent semantic model; it models individual

preferences as a convex combination of preference factors. Each user-item pair is

associated with a latent class variable. Conditional on this variable, users and items

are independent.

Latent factor models are another class of model-based collaborative filtering ap-

proaches which mitigate the high-dimensionality and sparsity of the problem by seek-

ing to predict the ratings characterizing users and items in some lower dimensional

latent factor space [Koren et al., 2009]. For movies, latent factors may correspond to
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genres, quality of acting, or be uninterpretable [Koren, 2008]. Matrix factorization

models are a subclass of latent factor models [Mehta and Rana, 2017]. There are

four main matrix factorization techniques: Principal Component Analysis (PCA),

Non-negative Matrix Factorization (NMF) [Goldberg et al., 2001, Luo et al., 2014],

Singular Value Decomposition (SVD) [Sarwar et al., 2000], and Probabilistic Matrix

Factorization (PMF) [Salakhutdinov and Mnih, 2007]. (Latent Semantic Indexing

(LSI) [Deerwester et al., 1990, Littman et al., 1998] was first proposed in an infor-

mation retrieval context and uses SVD; it has been used to develop recommender

systems [Su and Khoshgoftaar, 2009] but is distinct from the latent semantic models

cited above.) We now cover the SVD and PMF techniques in more detail.

SVD factors the N × M ratings matrix R by using a D dimensional low-rank

approximation:

R = USV ⊤,

where S is a D-dimensional diagonal matrix, U ∈ IRN×D is a latent user feature

matrix, and V ∈ IRM×D is a latent item feature matrix. The S can be factored into

U and V , resulting in R becoming the product of two matrices. The SVD captures

latent relationships between users and items and computes a low-dimensional repre-

sentation of the original user-item space, which is used for neighborhood formation

[Sarwar et al., 2000].

When applied to problems such as the Netflix prize competition, SVD encounters

the problem of sparsity since most entries of R are empty and set equal to zero.

Standard SVD struggles with pairs having zero entries when they are more accurately
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seen as missing. Regularized SVD (RSVD), proposed in a seminal blog post [Funk,

2006], is constrained to consider only the observed user-item ratings.

Probabilistic Matrix Factorization (PMF) is similar to RSVD. PMF scales linearly

with the number of observations and performs well in sparse and unbalanced datasets

[Salakhutdinov and Mnih, 2007]. Let U ∈ IRN×D and V ∈ IRM×D be latent user and

item feature matrices, respectively. In particular, Un is the feature vector for the nth

user, and V m is the feature vector for the mth item. PMF assumes that the likelihood

of the observed ratings is

p(R|U ,V , σ2) =
N∏
n=1

M∏
m=1

[N(Rnm|U⊤
nV m, σ

2)]Inm ,

where σ2 is the variance parameter and Inm is the indicator function for the event

that user un rated item im. The priors on the user feature matrix U and the item

feature matrix V are mean zero spherical Gaussian distributions,

p(U |αU) =
N∏
n=1

N(Un|0, α−1
U I), p(V |αV ) =

M∏
m=1

N(V m|0, α−1
V I).

One learns the model by maximizing the log-posterior over the user and item features

given the fixed hyperparameters α = (σ2, αU , αV ):

ln p(U ,V |R,α) = ln p(R|U ,V , σ2) + ln p(U |αU) + ln p(V |αV ) + C,

where C is a constant that does not depend onU and V . Maximizing the log-posterior

is equivalent to minimizing the sum of squared errors in the objective function with
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quadratic regularization, i.e.,

1

2

N∑
n=1

M∑
m=1

Inm(Rnm −U⊤
nV m)

2 +
λU
2

N∑
n=1

∥Un∥2F+
λV
2

M∑
m=1

∥V m∥2F ,

where λU = αU/σ
2, λV = αv/σ

2, and ∥·∥F is the Frobenius norm. One can use

gradient descent in U and V to find a local minimum.

Jannach et al. [2013] shows that using a single latent factor does not personalize

the system—it just recommends the movie that has the greatest overall popularity.

But more factors provide person-specific rating estimates, and this generally improves

as one adds latent factors until one begins to overfit. PMF and RSVD run quickly

and efficiently, outperform previous methods in terms of predictive accuracy, and are

the basis for many recommender systems [Mehta and Rana, 2017].

There is also a fully Bayesian version of the PMF model, Bayesian PMF (BPMF)

[Salakhutdinov and Mnih, 2008]. The likelihood is

p(R|U ,V , σ2) =
N∏
n=1

M∏
m=1

[N(Rnm|U⊤
nV m, α

−1)]Inm ,

which is the same as the standard PMF likelihood, except that we parameterize in

terms of precision. The user and item latent feature vectors are given Gaussian priors:

p(U |µU ,ΛU) =
N∏
n=1

N(Un|µU ,Λ−1
U ), p(V |µV ,ΛV ) =

M∏
m=1

N(V m|µV ,Λ−1
V ).

Gaussian-Wishart hyperpriors are placed on the user and item hyperparameters ΘU =
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{µU ,ΛU} and ΘV = {µV ,ΛV }:

p(ΘU |Θ0) = p(µU |ΛU)p(ΛU) = N(µU |µ0, (β0ΛU)
−1)W (ΛU |W0, ν0)

p(ΘV |Θ0) = p(µV |ΛV )p(ΛV ) = N(µV |µ0, (β0ΛV )
−1)W (ΛV |W0, ν0),

where Θ0 = {µ0, β0, ν0,W0}. Inference is done via variational methods or Gibbs

sampler. BPMF tends to outperform PMF and RSVD in terms of predictive accuracy

for a fixed D, and its performance improves as D increases instead of overfitting

[Salakhutdinov and Mnih, 2008].

Another popular subset of model-based collaborative filtering methods that are

ones that adopt deep learning techniques [Zhang et al., 2019a]. The Neural Collabo-

rative Filtering model replaces the inner product in matrix factorization approaches

with neural architecture that can learn arbitrary functions from the data [He et al.,

2017]; Collaborative Metric Learning replaces the inner product with a Euclidean

distance metric [Hsieh et al., 2017]. There are several approaches that use autoen-

coders to make recommendations, especially AutoRec [Sedhain et al., 2015] and its

extensions, such as CFN [Strub et al., 2016], which generate the Collaborative De-

noising Auto-Encoder [Wu et al., 2016], and Multi-VAE and Multi-DAE [Liang et al.,

2018]. Tang and Wang [2018] proposed sequential recommendations using convolu-

tional neural networks. Such models are not necessarily distinct from those outlined

above—PMF, for instance, can be regarded as a machine learning model—but they

represent a growing body of research [Batmaz et al., 2019].

Collaborative filtering faces a number of challenges: sparsity; high-dimensionality;
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scalability; synonymy, which occurs when equivalent items appear with different

names; gray sheep, which are groups of users with idiosyncratic views who do not ben-

efit from collaborative filtering; shilling attacks, which occur when an adversary gives

large amounts of either positive or negative reviews to influence recommendations;

and others [Su and Khoshgoftaar, 2009]. Pure collaborative filtering faces another

chronic issue that we will highlight: the cold start problem, which occurs when either

a new user or a new item is introduced [Schein et al., 2002].

The new-user problem is critical to recommender systems that wish to expand

their user base. The challenge is that there are no data for on users. Collaborative

filtering leverages rating data to make recommendations, so they are ill-suited for

dataless users. A proposed solution is to ask a new user to rate a sequence of items

until the system has enough information [Rashid et al., 2002]. Finding the optimal

sequence is a problem unto itself; active learning, the process by which a recommender

system decides which unrated item would provide the most information about user

preferences if it were rated and prompts the user to rate said item, is one approach

[Elahi et al., 2016, Rubens et al., 2016].

The new-item problem is important to recommender systems that are already

in operation and which wish to introduce new items. It is, however, more critical

for some applications than others. Many people will watch new movies without

them having been recommended, so the problem is less severe for movies, but blog

recommender systems are not so fortunate [Bobadilla et al., 2012]. One approach is

to have a subcommunity of users who volunteer to rate new items [Bobadilla et al.,

2012].
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To illustrate, we apply PMF to a subset of the MovieLens 25M dataset. The

code and data are available as supplementary files. The data were determined by

randomly selecting users and including all ratings those users gave to movies with tag

genome data. This resulted in 3, 092 users with 493, 792 ratings on 12, 887 movies.

We partitioned this data into a training and a test set based on the timestamp; every

rating given on or before January 16, 2016, was assigned to the training set. About

3
4
of the ratings are used for training. This procedure mimics systems that observe

ratings up to a time point and need to estimate ratings in the future.

The RMSE for PMF on the test data was 1.026, but we emphasize that in com-

mercial use, much more work would be done to tune the system. We also found the

top five recommendations (among movies not previously rated) for user160,747, cho-

sen because he or she rated the most movies. The top recommendation was Pieces

of April (2003), followed by The Signal (2007), Hoodwinked! (2005), Jakob the Liar

(1999), and Captain Corelli’s Mandolin (2001). This implementation of PMF finds a

local minimum, which need not be unique, so rerunning the algorithm with a different

initialization produces different recommendations.

3.4 Content-Based Filtering

Content-based filtering uses item descriptions to make recommendations. Whether

a user likes an item depends on its content; users will prefer items similar to items

they have liked in the past [Balabanovic and Shoham, 1997]. Unlike collaborative

filtering, users are independent of each other [Adomavicius and Tuzhilin, 2005a, Lops

et al., 2011]. There are three main steps in content-based filtering: extracting item
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features, learning user preferences, and recommending items that fit the user’s pref-

erences [Bobadilla et al., 2012].

Item features can be unstructured and high-dimensional. A movie might contain

hours of audiovisual data, while a book could have over a hundred-thousand words.

Data on this scale is problematic, so a feature extraction algorithm is necessary to

represent item content in some structured low-dimensional fashion, commonly a vector

in IRq for some practical q [Lops et al., 2011]. This item representation is taken as

the input to the preference learning and filtering algorithms.

There are many feature extraction algorithms, and these are usually tailored to

the application. One of the earliest commonly used methods, developed for text-

based data, is a Vector Space Model (VSM) with term-frequency inverse document

frequency (TF-IDF) weighting [Adomavicius and Tuzhilin, 2005a, B. Thorat et al.,

2015, Lops et al., 2011, van Meteren, 2000]. A VSM represents a text document as

a vector of weights in IRq where the ℓth entry characterizes the relevance of the ℓth

keyword to the document. While many weighting schemes could be used, the most

common is the TF-IDF scheme which accounts for both how frequently ℓ occurs in

the document and how specific it is to the document.

Machine learning methods are also used as feature extraction algorithms. Wang

and Blei [2011] uses Latent Dirichlet Allocation to identify the topics which char-

acterize research papers, and van den Oord et al. [2013] applies deep convolutional

neural networks directly to audio data to generate item profiles for songs. Vig et al.

[2012] uses machine learning methods to generate the tag genome used in this paper,

which estimates how relevant different tags, or keywords, are to movies.
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From the item features and the ratings, a user is assigned to a subset of items.

One then learns user preferences and constructs a user profile [Aggarwal, 2016, Lops

et al., 2011]. The user profile is combined with an item description, allowing one to

predict the rating that the user would assign to that item. But there is no single

method of learning a user profile.

If the item description is a q-dimensional VSM using TF-IDF weights, the user

profile may be a q-dimensional vector of weights where each entry characterizes the

user’s value for that keyword [Adomavicius and Tuzhilin, 2005a]. An averaging ap-

proach such as the Rocchio algorithm [Rocchio, 1971] can be used to compute the

user profile Lang [1995]. Ratings are predicted for a user-item pair by evaluating a

similarity score, such as cosine similarity, on the relevant user and item vectors.

There are other ways to learn user preferences. For instance, classification algo-

rithms, such as Naive Bayes [Mooney and Roy, 2000], can be used to learn preferences

and can perform well [Domingos and Pazzani, 2004]. Likewise, a decision tree may

be used [Pazzani and Billsus, 2004]. Nearest-neighbor algorithms can cluster ratings

based on their item description; the rating of an unrated item is predicted using the

rating of the other items in its neighborhood [Billsus et al., 2000].

Once the features have been extracted and the user profile learned, one uses a

filtering algorithm to recommend items [Bobadilla et al., 2012]. The best algorithm

depends on the purpose of the recommender system. It may, for instance, entail

recommending the top-k items the user has not yet rated. Or it may favor items that

generate more profit.

Content-based filtering provides several advantages over other approaches. They
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model each user independently, which reduces computational burden. They are easily

explained to a user, and so provide a measure of transparency. And content-based

filtering methods do not suffer from the new item cold-start problem once feature

extraction has been performed [B. Thorat et al., 2015].

Despite these advantages, pure content-based filtering approaches are rare because

they face challenges not seen by other approaches. First, it can be difficult to extract

features, especially in domains with complicated and unstructured data such as blogs

or music [Bobadilla et al., 2012]; moreover, if features are extracted incorrectly, the

recommender system will be unreliable. A second problem is overspecialization [Lops

et al., 2011]. Content-based approaches tend to recommend items similar to those

already rated by users, leading to a lack of diversity in recommendations. Third,

it is harder to acquire user feedback in this setting than in other settings, making

it difficult to determine whether the recommendations are correct [Bobadilla et al.,

2012]. For these reasons, content-based approaches are often combined with other

methods.

We now build a content-based recommender system on the MovieLens data using

the tagged genome information. This system is intended for illustration and would

be outperformed by state-of-the-art methods.

First, extract user features. The tag genome provides a characterization of movie

content; we generate content profiles for each movie by transforming the relevance

scores. Let wm ∈ IR1128 be the vector of weights for movie im. Then define the jth
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entry as

wjim =
gℓm∑
j g

ℓ
m

ln
M∑
m g

ℓ
m

,

where gℓim indicates the ℓth relevance score of movie im and M is the number of

movies. This is a modified version of TF-IDF designed to work with relevance scores.

Second, we generate user profiles as weighted averages of the item profiles wm of

the movies rated by a user. Let pn be the user profile for user un. Then,

pℓn =

∑
mRnmw

ℓ
im∑

mRnm

.

We predict the rating Rnm by fitting a linear regression with pn and wm as covariates.

As before, we use standard code to train and test the recommender system. Its

RMSE is 0.96, and the top five recommendations for user160,747 among movies not

already rated are, in descending order, Planet Earth II (2016), Blue Planet II (2001),

Band of Brothers (2001), Planet Earth (2006), and Hud (1963). These results are

more cohesive than those found by collaborative filtering: there are three films about

our planet and two acclaimed character-driven historical dramas.

3.5 Hybrid Filtering

Hybrid filtering combines two or more types of recommender systems in order

to improve performance and compensate for disadvantages of other types of recom-

mender system [Burke, 2002]. In principle, any kind and number of recommender

systems could be combined, but in practice, most hybrid recommender systems com-

bine collaborative filtering with a different technique in order to address one of five
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problems: cold-start, data sparsity, accuracy, scalability, and recommendation diver-

sity [Cano and Morisio, 2017]. Moreover, and despite their importance, there has

been relatively little work that explicitly surveys hybrid systems [Cano and Morisio,

2017].

Burke [2007] analyzes seven hybridization strategies that combine some sets of

collaborative filtering, content-based filtering, demographic filtering, and knowledge-

based filtering. The seven different strategies are called weighted, switching, mixed,

feature combination, feature augmentation, cascade, and meta-level [Burke, 2007].

Of these strategies, weighted and feature combinations are most prominent in recent

literature [Cano and Morisio, 2017].

Weighted strategies combine the predictions of the component recommenders us-

ing numerical weights [Burke, 2007]. There are many ways to choose weights, such

as averaging over all recommenders, using user feedback [Claypool et al., 1999], or

using linear regression [Bell et al., 2008]. Cano and Morisio [2017] finds that twenty-

nine percent of recently proposed hybrid systems use weighting strategies, making it

the most common approach. One reason for their popularity is strength of perfor-

mance: the winning entry to the Netflix competition was a weighting method that

blended the results of over one hundred recommender systems. Another is the ease

of implementation—it is simpler to implement and average the results from a suite

of relatively basic recommender systems than to design and implement a complex

bespoke model.

Feature combination strategies use features from one type of recommender system,

such as collaborative filtering, as input to a different type of recommender system,
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such as content-based filtering [Burke, 2007]. Bedi et al. [2013] uses collaborative

filtering to generate book recommendations for each user and includes these recom-

mendations as features in a content-based filtering algorithm; the hybrid method out-

performed the individual methods. Despite being the second most popular strategy,

recent papers have employed feature combination at only half the rate of weighting

[Cano and Morisio, 2017].

Meta-level, feature augmentation, switching, and cascade strategies are each em-

ployed in about ten percent of recent papers [Cano and Morisio, 2017]. In meta-level

strategies, one recommender system creates a model which is used as input for another

recommender system [Burke, 2007]. It is common to use content-based recommenders

to build item representation profiles and then use memory-based collaborative filter-

ing methods to compare item and user profiles [Cano and Morisio, 2017]. Feature

augmentation is similar to feature combination in that one recommender technique

is used to compute a set of features which is part of the input of the next technique;

however, instead of using features drawn from the contributing recommender’s do-

main, feature augmentation generates new features for each item [Burke, 2007]. In

switching strategies, the recommender system chooses one of the constituent recom-

mender systems to make the recommendation [Burke, 2007]. For instance, one can

use a collaborative filtering method as a default recommender and switch to other

methods when there is a lack of data, as in a cold-start scenario. Cascade methods

impose a hierarchy on their constituent systems; a weaker recommender is used to

break a tie between two recommendations from the stronger recommender [Burke,

2007].
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A mixed strategy runs multiple recommender systems in isolation and combines

their recommendations into a single list [Burke, 2007]. This technique is rare, being

used in only four percent of studies [Cano and Morisio, 2017].

Popularity in the literature is likely to be a good predictor of performance-by-

type-of-strategy, but it is not a perfect one. Popularity is biased towards methods

that are easy to implement, such as weighting strategies, and against methods that

are difficult, such as meta-level strategies. Further, while the taxonomy proposed by

Burke [2007] is extensive, covering eighty-seven percent of hybrid systems studied by

Cano and Morisio [2017], it is not exhaustive and does not classify the remaining

thirteen percent.

In addition to hybrid approaches which explicitly combine multiple recommender

systems, one can create a hybrid recommender that has only one recommender sys-

tem but which is not easily categorized: e.g., it is not clearly a collaborative or

content-based method [Bobadilla et al., 2012]. These are common but can be quite

varied. We highlight one recent hybrid recommender that uses both collaborative

and content-based techniques. Bi et al. [2016] proposes a group-specific singular

value decomposition method that generalizes SVD by incorporating between-subject

dependency and using missingness in the ratings matrix.

Let xnm be a covariate vector for user un and item im. If Rnm is the rating data,

then take the demeaned R̃nm = Rnm − x⊤nmβ̂ as the new ratings data, where β̂ is a

vector of regression coefficients. If there is no covariate information, then an ANOVA

model with global mean, user effects, and item effects is used to demean the data.

53



Let θnm = IE[R̃nm] be the average rating and fit the model

θnm = (pn + svn)
⊤(qm + tjm)

where pn and qm are K-dimensional user and item latent vectors as in standard

SVD and svn and tjm are K-dimensional group effects. There are V user clusters

Vv = {un|vn = v} and J item clusters Jj = {im|jm = j}. Individuals within the same

cluster share group effects while individuals from different clusters are independent.

While multiple methods of clustering are possible, such as clustering by covariate

information, Bi et al. [2016] clusters users and items using the nonignorable miss-

ingness of the data: the number of ratings per user or item. Missingness-related

information is usually available for new users and items, so svn and tjm can be used

to solve the cold-start problem.

To carry out inference and address the scalability problem, Bi et al. [2016] pro-

poses an method that embeds a backfitting algorithm into alternating least squares.

Moreover, they avoid operating upon and storing large matrices, enabling scalable

computation.

To illustrate, we applied the code used in Bi et al. [2016] to the MovieLens 25M

data with the tagged genome data. The RMSE was 2.04, which is surprisingly large

compared to the other implementations. The top five recommendations for user160,747

were Rivers and Tides (2001), The Comedians of Comedy (2005), Facing Windows

(La Finestra di Fronte) (2003), Ghost Rider: Spirit of Vengeance (2012), and Fay

Grim (2006). Of course, we do not know how user160,747 would have rated these
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movies, but it appears that content-based filtering produced results that were more

tightly themed, and may be more robust.

3.6 Active Recommender Systems

Most traditional recommender systems are “static recommenders” [Lei et al.,

2020a]: they use a fixed dataset containing a user’s rating or use history and do not

interact with the user aside from providing recommendations. Static recommenda-

tion systems face several important limitations. If user preferences are not accurately

represented in the rating data, possibly because the user has not rated a distinctive

subset of items, then static recommenders will struggle [Jannach et al., 2021]. This

can happen if user preferences change over time [Rafailidis and Nanopoulos, 2016] or

if a new user requires the recommender to confront the cold start problem. Another

source of worry is “natural noise”, which negatively affects recommendations and

occurs when, e.g., users incorrectly rate items [Amatriain et al., 2009].

Even if the data are correct, static recommenders cannot infer why a user was

interested in an item [Gao et al., 2021]. Different users are interested in different

items for different reasons at different times, and knowledge of a user’s purpose is

important for the recommendation. For example, does the user want to watch a

comedy or a drama tonight? More broadly, static recommenders ignore confounding

variables that change user preferences. Baltrunas and Amatriain [2009] demonstrates

that the songs users want to hear depend on the time of day. Sometimes users are

not even aware of their preferences and might construct them in a context-dependent

manner [Tversky and Simonson, 1993]. In this case, an interactive decision aid tool
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is helpful in exploring item space [Wang and Benbasat, 2013].

A solution to all of these limitations is a class of recommender systems we call

active recommenders. These systems request specific user feedback. (Recommender

systems that question the user have also been referred to as knowledge-based [Burke,

2000] and session-based recommender systems [Wang et al., 2021a].) Three archetypes

that have recently emerged are interactive [Gao et al., 2021], critique-based [Jannach

et al., 2021], and conversational recommender systems [Lei et al., 2020a].

Adomavicius and Tuzhilin [2005b] details the iterative personalization process at

the core of interactive recommenders: (1) gather data on users, (2) make personalized

recommendations, and (3) collect feedback on these recommendations. Allowing users

to give feedback increases the effectiveness of a recommender system [He et al., 2016].

Hariri et al. [2014] uses Thompson sampling to learn a multi-arm bandit which takes

context changes into account—it is an example of an interactive system that uses

user feedback to improve recommendations. Interactive recommenders have been

used to solve the new-user cold start problem in collaborative filtering. Sarwar et al.

[2000] asks new users to rate items one at a time and iteratively chooses items based

off of previous ratings. Loepp et al. [2014] employs a similar procedure, but asks

users if they prefer one of two sets of items at each step. Active learning can guide

which items are presented at each step to maximize the information learned [Elahi

et al., 2016, Rubens et al., 2016]. While interactive recommenders can improve over

static recommenders, Gao et al. [2021] notes that they can suffer low-efficiency issues

because the recommenders cannot efficiently explore the item space.

Chen and Pu [2012] outlines the general algorithm of a critique-based recom-
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mender system. First, the user initializes the system by either picking a starting

product or a desired set of properties. The iterative part of the process begins here:

the recommender suggests an item based on the initialization, then user chooses to

accept or offer a critique. How the critiques work, and what form they take, varies

by system. Burke et al. [1997] proposes a critique-based recommender with a method

termed “tweaking”, where a content-based feature of an item is modified to be dif-

ferent; e.g., the system might present options for movies like Termiator II but less

violent. Reilly et al. [2004] extends this paradigm from unit critiques, a critique on

one content feature, to compound critiques, which respond to multiple features at

once. Ricci and Nguyen [2007] allows users to distinguish the strength of their cri-

tiques by specifying which are “musts” and which are “wishes”, as well as integrating

simple dialogue into the recommender. Some recommenders, such as Viappiani et al.

[2006], give their users more flexibility in specifying critiques by allowing them to

specify which feature they wish to critique instead of selecting from a prespecified list

of options.

Underlying the concept of critique-based recommendation is the notion of content—

to critique a product, one must know what characterizes that product. Such recom-

menders need a measure of how near any two items are in content space [McGinty

and Smyth, 2003]; this is similar to a content-based recommender. Hong et al. [2010]

implements a critique-based recommender using an embedded conversational agent

(ECA) for e-novel recommendation; in particular, it uses an algorithm that alter-

nates between supervised and unsupervised machine learning techniques to cluster

items along multiple dimensions. Vig et al. [2011] implements a systems-suggested
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critique-based recommender using the tag genome as a natural content-based char-

acterization of movies in the MovieLens dataset.

Most critique-based recommenders rely on forms; i.e., they rely on a prespecified

dialogue or methods of interaction [Jannach et al., 2021]. Moreover, a critique-based

recommender will suggest an item after receiving feedback, even when it is not certain

enough of user preferences to make a good recommendation Gao et al. [2021].

There is no universal definition of conversational recommender systems (CRS);

however, a key component of a CRS is a multi-turn dialogue [Gao et al., 2021, Jan-

nach et al., 2021, Lei et al., 2020a]. Multi-turn conversation allows the CRS to learn

the user’s current preferences and motivation. Most CRSs follow a general algorithm.

First, the CRS is initialized, possibly on offline data [Christakopoulou et al., 2016]

or by asking the user to provide a starting point [Sun and Zhang, 2018]. Next, the

CRS chats with the user to learn the user’s preferences. This can take different forms

depending on the CRS involved—e.g. asking questions [Zou et al., 2020] or provid-

ing lists of recommendations [Sun and Zhang, 2018]—but it is differentiated from

critique-based recommenders by its multi-turn structure. The CRS can ask multiple

questions in a row without providing recommendations, improving the recommenda-

tion process. Finally, the CRS makes recommendation. If the user does not like the

recommendation, then the CRS returns to querying user preferences.

There is no standard anatomy of a CRS, but every CRS must include three com-

ponents: (1) a user interface [Gao et al., 2021], (2) a recommendation algorithm

[Lei et al., 2020a], and (3) a preference elicitation algorithm [Christakopoulou et al.,

2016]. The components are models unto themselves and may include further sub-
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components. CRSs are thus in some sense more ambitious than other recommender

systems because they must integrate additional modeling components.

The details of the user interface—and any subcomponents, such as a dialogue

management system [Jannach et al., 2021]—are outside the scope of this review,

which focuses on the statistics of recommender systems. They bear some similarities

to conversational search, dialog systems, traditional web search, or faceted search, but

differ in that their function is focused on recommendation [Zhang et al., 2018]. User

interfaces can support a wide variety of interaction modalities. Natural language is

the most attractive method of interaction, but it currently faces technical challenges

which make it less effective [Jannach et al., 2021]. End-to-end CRSs, for instance, lead

to broken conversations in about one-third of all interactions [Jannach and Manzoor,

2020]. Recent papers have found evidence that mixed modality strategies outperform

purely natural language methods in terms of user experience [Ma et al., 2021, Narducci

et al., 2020]. This is still an open question, however; Ren et al. [2020b] uses adversarial

learning to improve end-to-end learning and generate more human-like conversations.

The user interface is closely linked to the recommender system and the preference

elicitation algorithm. As the part of the CRS which communicates with the user,

it must pass recommendation and preference information between the user and the

other parts of the CRS. Any change in the user interface may induce change in the

recommender system or preference elicitation and vice versa. Zhou et al. [2020a], for

instance, uses knowledge-graph-based semantic fusion to model language data, and

this necessitates modification of the recommender engine.

Collaborative, content-based, and hybrid approaches have all been employed as
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the recommender systems in a CRS [Jannach et al., 2021]. In theory, any sort of

recommender system could be used here. Christakopoulou et al. [2016] tries a version

of PMF which has been modified to work with their preference elicitation algorithm;

Zou et al. [2020] employs a novel matrix factorization method referred to as QMF; Sun

and Zhang [2018] employs a factorization machine trained on dialogue state, user in-

formation, and item information; Zhang et al. [2018] uses personalized multi-memory

networks; Zhou et al. [2020a] develops a knowledge-graph-enhanced recommender

module using machine learning methods. To be most useful, a recommender in a

CRS should be able to provide guidance to the preference elicitation algorithm.

The preference elicitation algorithm determines how a CRS discovers user pref-

erences. It is similar to the onboarding process described in Sarwar et al. [2000],

as well as the active learning process [Elahi et al., 2016, Rubens et al., 2016]. It

is common for different CRSs to employ different techniques to elicit preferences.

Because the user interface, the recommender system, and the preference elicitation

algorithm need to work together, it is unlikely that any two CRSs employ exactly

the same techniques. Christakopoulou et al. [2016] characterizes items in terms of

features and uses multi-arm bandits to decide which features to query users about or

whether to make recommendations. Zou et al. [2020] asks questions about item fea-

tures extracted from textual information describing the items using General Binary

Search to select a sequence of questions. Sun and Zhang [2018] employs a deep policy

network to decide, at each step, whether to inquire about user preferences or make a

recommendation. Zhang et al. [2018] employs a pre-trained multi-modal network to

decide whether to elicit preferences or to make recommendations.
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A CRS can engage in multi-turn dialogue; it can ask the user multiple questions

in a row without making a recommendation. At each point in the conversation, the

CRS decides whether to elicit a preference or make a recommendation. Eliciting

preferences helps improve recommendations, but if too many questions are asked in a

then the user may grow bored and discard the CRS [Lei et al., 2020a]. Lei et al. [2020b]

proposes a method for framing multi-turn conversational strategy as an interactive

path reasoning problem on a graph. Habib et al. [2020] follows a more rules-based

approach, requesting, for example, additional preference information if the number

of items meeting the current preferences exceeds a predefined threshold. Multi-turn

conversations can be thought of as a version of an explore-exploit problem. This

problem is more intense for new users in a cold-start scenario, where the CRS has

no past information [Gao et al., 2021]. Christakopoulou et al. [2016] explores this

problem by evaluating eight multi-arm bandit strategies.

Evaluating an active recommender system in general, and a CRS in particular, is

more difficult than evaluating other strategies such as content-based recommenders.

The dynamic interactions between users and the system on which active recommender

systems are based are difficult to capture with traditional offline datasets such as the

MovieLens dataset [Gao et al., 2021]. Moreover, for systems with multiple compo-

nents, each component can be evaluated independently and according to different

metrics, which complicates performance assessment [Jannach et al., 2021]. For this

reason, synthetic datasets and in vivo experiments have become more common [Iovine

et al., 2020, Narducci et al., 2020]. Zhang and Balog [2020] proposes a method to

simulate users for use in synthetic environments. Synthetic environments, however,
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will often fail to generalize to real applications, and the best way to evaluate models

is through online experiments, as in, e.g., Zhou et al. [2020b].

3.7 Conclusion

This paper highlights several key findings. The first is that recommender system

methodology is quite complex—there are many approaches, and these can be com-

bined in many ways. To compound things, recommender systems can be used for

multiple goals (e.g., recommend the best, recommend an item that will be liked, and

maximize profit). There are correspondingly many metrics for recommender system

performance. Table 1 shows the MovieLens 25 analysis results based on the three

main recommender methods we have discussed.

One consequence of this combinatorial explosion of methodologies is that there

is no general theory. Each application requires a bespoke analysis, tuned to the

specifics of the problem. But in many industries, such as computational advertising

or Amazon sales, an improvement of a fraction of a percentage point in predicting a

user’s preference can translate into millions of dollars of revenue. So it is worthwhile

to invest in building good systems and continually improving them as more data and

better algorithms become available.

The review also emphasized statistical aspects of recommender systems, both in

their development and their assessment. As was shown, experimental design, latent

space methods, and machine learning techniques are core parts of the design and

refinement of these tools.

Finally, the main conclusion of this paper is that recommender systems are a
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hugely important area, but too few statisticians are engaged in such research. Much

of this territory has been ceded to computer scientists, but statisticians have the

potential to make consequential contributions.
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Table 1: MovieLens 25 Analysis

Recommender RMSE Top5 Recommended Movies

Collaborative Filtering 1.026

Pieces of April (2003)
The Signal (2007)

Hoodwinked! (2005)
Jakob the Liar (1999)

Captain Corelli’s Mandolin (2001)

Content-based Filtering 0.96

Planet Earth II (2016)
Blue Planet II (2001)

Band of Brothers (2001)
Planet Earth (2006)

and Hud (1963)

Hybrid Filtering 2.04

Rivers and Tides (2001)
The Comedians of Comedy (2005)

Facing Windows (La Finestra di Fronte) (2003)
Ghost Rider: Spirit of Vengeance (2012)

Fay Grim (2006)
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4 Time-varying Bayesian Network Meta-Analysis

4.1 Introduction

Methicilin-resistant Staphylococcus aureus (MRSA) infections are a threat to pub-

lic health. MRSA increases mortality, hospital stays, and costs [Crum et al., 2006,

McCollum et al., 2007, Shorr, 2012]. The incidence of MRSA rose globally in the late

1900’s and early 2000’s [Hersh et al., 2008]. The SENTRY antimicrobial surveillance

program, for instance, observed increasing prevalence of MRSA in complicated skin

and soft structure infections (cSSSI) [Moet et al., 2007]. More recent findings suggest

that MRSA prevalence peaked in 2008 and has been declining since in the European

Union and the United States [Diekema et al., 2019, Klein et al., 2017]; see Figure 7

for a plot of MRSA prevalence over time. This may be because medical professionals

began to implement clincial interventions to reduce the spread of MRSA [Liebowitz,

2009]. Yet MRSA remains the second most common cause of antibiotic-resistant

bacterial infections in the European Union [Gasser et al., 2019] and is stable in the

Asia-Pacific region [Lim et al., 2018].

Growing antibiotic resistance in MRSA is a potential problem [Nathwani, 2009,

Wilcox, 2009]. S. aureus is possibly developing resistance to other treatments, such

as fusidic acid and mupirocin [Brown et al., 2021]. The Infectious Disease Society of

America (IDSA) has long recommended vancomycin as a treatment for MRSA [Gould

et al., 2012], and vancomycin is regarded as the “gold standard” of MRSA treatments

[Shorr, 2012]. Daum [2007] and Cosgrove et al. [2004] state that the increase in

MRSA prevalence resulted in increasing use of vancomycin and the emergence of
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vancomycin resistant S. aureus. Diekema et al. [2019] finds that there was no increase

in vancomycin-resistant MRSA from 2013-2016. There remains an “evidence gap”

with respect to vancomycin-resistant S. aureus [Brown et al., 2021].

Many randomized controlled trials (RCT) have been conducted to assess the ef-

fectiveness of treatments for MRSA-related cSSSIs. These studies provide a mix of

direct and indirect evidence for the treatments, so Bayesian network meta-analyses

(BNMAs) have been used to estimate treatment effects; in particular, there is dis-

agreement about whether linezolid is more effective than vancomycin [Brown et al.,

2021, Feng et al., 2021, Guest et al., 2017, Lan et al., 2019, Li and Xu, 2018, Liu

et al., 2016, Mccool et al., 2017, Thom et al., 2015, Zhang et al., 2019b]. If MRSA is

developing antibiotic resistance, however, treatment effects would vary across time.

The selection of treatments for a given RCT, which must take place over a short

time period, will be confounded with the estimated effects of those treatments. This

type of design inconsistency [Higgins et al., 2012] must be accounted for by modelling

time-varying treatment effects across RCTs.

Literature that incorporates time effects into models has focused on capturing

time effects within individual RCTs rather than addressing time-based design incon-

sistencies. This paper highlights some methods; Tallarita et al. [2019] provides a more

exhaustive review. Jansen [2011] uses fractional polynomials to model the hazard ratio

in a network of RCTs which each report the hazard ratio in some longitudinal format.

Jansen et al. [2015] generalizes this approach to other types of longitudinal data.

Mawdsley et al. [2016] proposes a framework, model-based network meta-analysis

(MBNMA), which adapts methods from model-based meta analysis (MBMA) to the
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network setting in order to capture dose-response relationships. Pedder et al. [2019]

extends this approach to time-course models. A common feature of these approaches

is that they model time effects within individual RCTs; each RCT returns data which

has a time component, e.g. dose-response curves, and the goal is to compare these

time-varying functions across trials. However, this time component does not address

time-based design inconsistencies since treatment effects do not change depending on

when the RCT was conducted.

Time-based design inconsistencies could be addressed with standard meta-regression

techniques [White et al., 2012]. Salanti et al. [2009], for instance, employs a meta-

regression over time in a BNMA to study the effectiveness of oral health interven-

tions: placebo treatments became more effective over time. However, existing meta-

regression BNMAs are limited to linear effects. The true pattern of time-varying

effects is unknown. If treatments vary non-linearly, these meta-regression techniques

will have limited value.

This paper develops a class of BNMA models which can detect time-varying treat-

ment effects: time-varying BNMA (tBNMA). The existence of a latent, unobserved

time series for treatment effects is modelled with a Gaussian Process using a combina-

tion of white noise, linear, and Matern kernels. In simulations, tBNMA outperforms

existing methods when even just one treatment has time-varying effects.

The datasets of Thom et al. [2015], Liu et al. [2016], Guest et al. [2017], Mccool

et al. [2017], Li and Xu [2018], Zhang et al. [2019b], Lan et al. [2019], Brown et al.

[2021] and Feng et al. [2021] are combined to form one MRSA-cSSSI dataset that

includes 58 studies comparing 19 treatments from 2000 to 2019. tBNMA detects
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non-linear time trends, finding that vancomycin resistance in MRSA was strongest

between 2002 and 2007, but has since decreased. Moreover, tBNMA finds that, while

linezolid used to be significantly more effective than vancomycin, the difference is no

longer statistically significant in 2019.

4.2 Bayesian Network Meta-Analysis

Often there are many treatment options available for a medical condition. In

a given RCT, researchers compare only a subset of those possible treatments. To

know whether a given treatment, A, is more or less effective than another treatment,

B, then, there is a mix of direct evidence, where A and B are directly compared,

and indirect evidence, where the treatment effect is estimated through some joint

comparator C. When there are only three treatments with two pairwise comparisons

— A compared to B and B compared to C — then analysis is straightforward [Bucher

et al., 1997]. However, situations of greater complexity arise and induce a network of

comparisons amongst the treatments.

Models developed to estimate the treatment effects are referred to as Network

Meta-Analyses (NMA). Frequentist NMA’s have been developed in Higgins andWhite-

head [1996], Lumley [2002] and Chootrakool and Shi [2008] while Bayesian NMA’s

have been developed in Ades [2003], Lu and Ades [2004] and Lu and Ades [2006].

The formulation of Dias et al. [2011] for BNMAs with binomial data is followed in

this paper.

Let there be I studies comparing (some of) K treatments. If treatment k is

used in study i, then the response variable is yik, the number of successes. Each
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yik has probability of success pik for nik subject. Then yik | pik, nik ∼ Bin(pik, nik).

The probabilities are modelled with a logit-link function: logit(pik) = µi+ δi,bi,k1bi ̸=k.

Here, bi is the baseline treatment in study i. If possible, all studies would have the

same baseline, b, but this usually not the case, so the most common treatment is

taken as the baseline. The trial-specific effects of trial i are captured by µi. These

are nuisance parameters and are modelled as random effects, µi ∼ N(mµ, σ
2
µ). The

µi terms allow BNMA to estimate the mean effect of each treatment d1k even when

there are unknown confounding effects between studies.

The difference in efficacy between treatment k and treatment bi in study i is δi,bi,k.

In a random effects model, it is drawn from a normal distribution, δi,bi,k | dbi,k, σ2 ∼

N(dbi,k, σ
2). Homogeneity of variance — that σ2

bi,k
= σ2 for all bi and k — is assumed

because there is not enough data to learn heterogeneous variance [Higgins and White-

head, 1996]. In a multi-arm trial, the joint distribution of the δi,bi,k is the following

multivariate normal:



δi,bi,2

δi,bi,3

. . .

δibi,k−1


∼ N

(


dbi,2

dbi,3

. . .

dbi,k−1


,



σ2 σ2

2
. . . σ2

2

σ2

2
σ2 . . . σ2

2

. . . . . . . . . . . .

σ2

2
σ2

2
. . . σ2


)

It is more efficient to decompose this joint likelihood into a product of conditional
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likelihoods:

δi,bi,k | δi,bi,2, . . . , δi,bi,k−1, dbi,2, . . . , dbi,k−1, σ
2

∼ N

(
dbi,k +

1

k − 1

k−1∑
j=1

[δi,bi,j − dbi,j],
k

(k − 1)
σ2

)

The relative difference in treatment effect between treatment k and baseline bi is

dbi,k. Under the consistency assumption [Lu and Ades, 2006] (also called coherence in

Lumley [2002]), dbi,k can be split into components in a way analogous to a “differences-

in-differences” approach. The difference of bi and k is equal to the the difference of

the difference of k and treatment 1 (which may be taken as the general baseline

b) and the difference of treatment bi and treatment 1. That is, dbi,k = d1k − d1bi .

These baseline differences are drawn from a normal distribution: d1k ∼ N(md, σ
2
d).

The d11, d12, . . . , d1k are called basic parameters while the dbi,k are called functional

parameters.

It remains to choose priors for the hyperparameters. Rosenberger et al. [2021]

compares different commonly used prior specifications for variance priors — inverse-

gamma, uniform, and half-normal — and found that the prior choice had little effect

on point estimates. A vague inverse-gamma prior is thus placed on σ2, σ2
µ, and σ

2
d,

and a vague normal is placed on the mµ and md. Taken together, the contrast-based
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BNMA model with binomial outcomes for each arm is

yik | pik, nik ∼ Bin(pik, nik) logit(pik) = µi + δi,bi,k1bi ̸=k

δi,bi,k | δi,bi,2, . . . , δi,bi,k−1, dbi,2, . . . , dbi,k−1, σ
2

∼ N

(
dbi,k +

1

k − 1

k−1∑
j=1

[δi,bi,j − dbi,j],
k

(k − 1)
σ2

)

µi |mµ, sdµ ∼ N(mµ, σ
2
µ) mµ,md ∼ N(0, 10000)

σ2, σ2
µ, σ

2
d ∼ IG(1, 1) dbi,k = d1k − d1bi

d1k ∼ N(md, σ
2
d)

4.3 Time-Varying Bayesian Network Meta-Analysis

The studies in the dataset are indexed by i ∈ {1, 2, . . . , I}. The time of study i

is ti, so that the list of possibly non-unique timepoints is t1, t2, . . . , tI . Treatment k

occurs in Ik studies, and the list of studies it occurs in can be indexed by ik. The

timepoints in which treatment k occurs are indexed by tik . If there is a time-based

design inconsistency, then dbi,k ̸= d1k − d1bi for some studies i because the basic

parameters d1k cannot capture the time-varying nature of the treatment effect. To

remedy this, model a time-specific value of d1k, d
tik
1k , at each of the timepoints tik .

Then redefine the dbi,k: dbi,k = dtik1k − d
tibi
1bi

. For each k, the d
tik
1k correspond to a

latent, unobserved, potentially nonstationary time series which could exhibit any of a

large number of time-varying trends. To maintain flexibility, the dtik1k are modelled as

arising from a Gaussian Process (GP) kernel [Brahim-Belhouari and Bermak, 2004,

Rasmussen and Williams, 2006]. Let dt11k ∼ GP(d1k, K(·, ·)) represent the following
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distribution:

[
d
t1k
1k d

t2k
1k . . . d

tIkk
1k

]T
∼ N

([
d1k d1k . . . d1k

]T
, K(·, ·)

)
.

Decompose the covariance kernel, K(·, ·) into three separate kernels (for more on

kernel decomposition see, e.g. Corani et al. [2020]): (1) a white noise kernel, (2) a

linear kernel, and (3) a Matern covariance kernel. That is

K(·, ·) = KW(·, ·) +KL(·, ·) +KM(·, ·)

The white noise kernel is

KW = ψ2Ink
,

where Inkk is the nk×nk identity matrix. This kernel adds white noise to the covariance

terms. The linear covariance kernel is

KL(i, j) = s2bk + s2lktiktjk ,

which induces linear functions in the d
tik
1k . The Matern covariance kernel, with ν = 1

2
,

is

KM(i, j) = ϕ2
k exp(−ρk|tik − tjk |)).

This last kernel results in functions equivalent to the Ornstein–Ulenbeck process, the

continuous time equivalent of an AR(1) model [Roberts et al., 2013]. As BNMA

is effective at finding the average values d1k (to be demonstrated below), these are
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taken as the mean value for the Gaussian process. Vague priors are placed on all of

the hyperparameters. Further, note that not all treatments should be modelled with

time-varying effects: some treatments will not vary in time, while others will not have

sufficient data to learn time-varying trends. Let T0 be the set of treatments modelled

as constant in time, and let T1 be the set of treatments modelled as varying in time.

The resulting model, termed tBNMA, is

yik | pik, nik ∼ Bin(pik, nik) logit(pik) = µi + δi,bi,k1bi ̸=k

δi,bi,k | δi,bi,2, . . . , δi,bi,k−1, dbi,2, . . . , dbi,k−1, σ
2

∼ N

(
dbi,k +

1

k − 1

k−1∑
j=1

[δi,bi,j − dbi,j],
k

(k − 1)
σ2

)

µi |mµ, σµ ∼ N(mµ, σ
2
µ) dbi,k = dtik1k − d

tibi
1bi

dtik1k | k ∈ T1, d1k, ψ, ϕ, ρ ∼ GP(d1k, K(·, ·))) dtik1k | k ∈ T0, d1k = d1k

K(i, j) = KW(i, j) +KL(i, j) +KM(i, j) KW = ψ2Ink

KL(i, j) = s2bk + s2lktiktjk KM(i, j) = ϕ2
k exp(−ρk|tik − tjk |))

ψ, sbk, slk ∼ N+(0, 10000) σ2, σ2
µ, σ

2
d, ϕk ∼ IG(1, 1)

ρk ∼ G(1, 1) d1k ∼ N(md, σ
2
d)

mµ,md ∼ N(0, 10000)

A Gibbs sampler is implemented in JAGS.

4.4 Data, Simulations, and Analysis

MRSA-related cSSSI treatments are analyzed using the the combined data from

previous studies that employed BNMA. Using the network, treatment arms, and time-
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points from these data, data is simulated with time-varying effects on one treatment.

The performances of two BNMA methods on this simulated dataset are compared to

each other and to tBNMA.

4.4.1 Data

Data from nine reviews employing NMA techniques to study the efficacy of treat-

ments for MRSA-related cSSSIs are used: Thom et al. [2015], Liu et al. [2016], Guest

et al. [2017], Mccool et al. [2017], Li and Xu [2018],Zhang et al. [2019b], Lan et al.

[2019], Brown et al. [2021], and Feng et al. [2021]. A potential concern with com-

bining datasets from multiple studies is that they will be incompatible — different

experimental designs, for instance, may give rise to RCTs implemented on signifi-

cantly different populations, violating the consistency assumption. The reviews are

all conducted according to PRISMA or Cochrane standards, so there is a measure

of similarity in how they collected studies. In all of these reviews, the vast majority

of studies appeared in at least one other review: this implies transitive consistency.

Given the lack of data on MRSA-related cSSSI’s [Brown et al., 2021], it is better to

be expansive when deciding which studies to include. Moreover, the random effects

allow the models to compensate for inconsistencies introduced by combining data

from different reviews.

These reviews contribute a total of 58 studies comparing 19 treatments from 2000

to 2019. The earliest date of publication of a study is used — if the day of publi-

cation is not available, it is imputed to be the middle of the month. A plot of the

network is provided in Figure 8. Four studies have 3 treatment arms; the rest have

2. The most prevalent treatments are vancomycin (VAN), which appears 46 times,
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and linezolid (LIN), which appears 27 times. There are 13 direct comparisons of the

two. Both vancomycin and linezolid have comparisons with dalbavancin (DAL) and

delafloxacin (DEL), but otherwise have no common comparators and the network

structure can be thought of as having two poorly connected cliques. Vancomycin

has additional comparisons with ceftaroline (CEF1),ceftobiprole (CEF2), oritavancin

(ORI), daptomycin (DAP), telavancin (TEL), tigecycline (TIG), iclaprim (ICL), and

lefamulin (LEF). Linezolid has additional comparisons with rifampicin (SXT/RIF),

teicoplanin (TEI), omadacycline (OMA), a novel fluoroquinolone (JNJ-Q2), fusidic

acid (CLEM-102), tedizolid (TED), and oxacillin-dicloxacililn (OXA). Daptomycin

and telavancin have one comparison with each other while tigecycline and delafloxin

have two. There are no other comparisons in the network.

4.4.2 Simulations

Simulations will show the limitations of existing models in the presence of time-

based designed inconsistencies, and demonstrate the ability of tBNMA to solve this

problem. The treatment comparisons, timepoints, and network associated with the

combined data are used to generate the simulated data.

Three models are compared. The first is standard BNMA, which takes no measures

beyond random effects to compensate for time-based design inconsistencies. The

second is Meta-BNMA, which runs a meta-regression on time effects by modelling the

d
tik
tk as following a linear trend in time for those treatments k which are allowed to vary

in time. Meta-BNMA bears similarities to models discussed by Salanti et al. [2009]

and White et al. [2012]. The third is tBNMA. There is prior information suggesting

that only two treatments present in the study design — vancomycin [Daum, 2007]
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and fusidic acid [Brown et al., 2021] — are potentially experiencing time-varying

treatment effects. Of these, only vancomycin appears in enough studies for time-

varying effects to be detectable. Thus, the two models which account for time-based

design inconsistencies, Meta-BNMA and tBNMA, will allow time-varying effects only

on vancomycin. Linezolid, the second most common treatment is used as the baseline

treatment for all models.

If there are timed-based design inconsistencies, then the d
tik
1k could vary in time

according to a large number of curves — but the specific form is unknown for any

given treatment k. It is thus desirable to assess the performance of the three models

in a number of scenarios. Three datasets, with three different time-varying effects on

the vancomycin d
tik
1k , are generated. In the first, the d

tik
1k are constant in time; in the

second, the d
tik
1k are quadratic in time; in the third, the d

tik
1k are sigmoidal in time.

All three models are run on all three simulated datasets. The 95% credible inter-

vals for the posterior predictive distributions for the d
tik
1k corresponding to the relative

treatment effect of vancomycin compared to linezolid over time are plotted in Figure

9 along with the true values of the d
tik
1k . When the true curve is constant and there

are no time-based design inconsistencies, all three models return approximately con-

stant trends in time. While all models work when there are no time-based design

inconsistencies, Meta-BNMA and tBNMA have wider credible intervals than BNMA

because they are more complex. When there are time-based design inconsistencies,

either quadratic or sigmoidal, there are clear differences between the models. BNMA

cannot detect time trends in the d
tik
1k , though it can estimate the mean value d1k

with considerable accuracy. The time-based design inconsistencies result in elevated
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uncertainty compared to the case where the the constant function is true. Meta-

BNMA detects significant time trends; however, it is limited to detecting only linear

time trends and is thus unable to learn more complicated scenarios. Moreover, it has

greatly inflated credible intervals, indicating that it fits the data poorly. In contrast,

tBNMA is flexible enough to accurately recover the true time-varying effect no matter

the underlying trend.

The better fit found by tBNMA also leads to increased predictive performance.

The quantity most of interest is dT1k, the relative treatment effect of treatment k

relative to the baseline treatment at time T . As time T corresponds to the end of

the study period, it holds the most clinical significance. Point estimates and 95%

credible intervals from the posterior predictive distributions for the dT1k are found

for all treatments and for all three models on the simulated sigmoidal dataset. The

results are plotted in Figure 10 along with the true values. tBNMA consistently

produces the best estimates, with the narrowest credible intervals. Since BNMA and

Meta-BNMA cannot capture the full effect of the design-based inconsistencies, they

compensate by increasing the uncertainty of their predictive posterior distributions,

even for treatments which do not have time-varying effects. tBNMA thus outperforms

existing methods in the presence of significant time-based design inconsistencies.

4.4.3 Implementation on MRSA Data

BNMA, Meta-BNMA, and tBNMA are run on the agglomerated dataset. As

before, linezolid is the baseline treatment for all methods. Meta-BNMA and tBNMA

allow for time-varying effects on vancomycin; all other treatment effects are fixed with

respect to time. No covariates aside from time are considered because of the lack of
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covariate information for most of the RCTs.

Figure 11 shows the 95% credible intervals for the posterior predictive distributions

of the treatment effect of each treatment relative to linezolid at the end of the time

period, dT1k. The three methods produce similar posterior mean estimates of the dT1k.

Meta-BNMA and tBNMA have wider credible intervals because the time-varying

effects modelled in the d
tik
1k for vancomycin induce a larger degree of uncertainty in

the estimates for the other treatments. The estimate where the models most disagree,

however, is that of the treatment effect of vancomycin relative to linezolid. That is,

BNMA and Meta-BNMA find at least a 95% chance that vancomycin is less effective

than linezolid at treating MRSA at the end of the time period; tBNMA finds only

a 75% chance that this is true. At a 95% level, the models lead to different clinical

inferences.

Figure 12 plots the 95% credible intervals for the posterior predictive distribution

of the d
tik
1k relating the relative efficacy of vancomycin compared to linezolid learned

by the tBNMA model. tBNMA discovers significant non-linear trends which are not

found by existing methods. For most of the time period, vancomycin and linezolid are

indistinguishable from each other at a 95% level; however, vancomycin is significantly

less effective from 2002 to 2007. This is consistent with results from the medical

literature concerning the overall prevalence of vancomycin-resistant S. Aureus. Cos-

grove et al. [2004] and Daum [2007] reported the emergence of vancomycin-resistant

S. Aureus during this period, while Klein et al. [2017] claimed that MRSA preva-

lence peaked in 2008 and Diekema et al. [2019] reported that there was no increase

in vancomycin-resistant S. Aureus from 2013 to 2016. The most plausible explana-
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tion is that the prevalence of vancomycin-resistant S. Aureus was rising in the mid

2000s. Medical experts then designed and implemented a set of medical interventions

designed to slow the spread of antibiotic-resistant S. Aureus (see, e.g., Liebowitz

[2009]) which tBNMA finds to be largely successful.

Previous network-meta analyses conducted to assess various treatments for S.

Aureus have been divided on whether vancomycin is more effective than linezolid.

Zhang et al. [2019b], Li and Xu [2018], Feng et al. [2021], and Mccool et al. [2017]

found that linezolid was more effective, while Thom et al. [2015] and Guest et al.

[2017] found them to be equivalent. The above results indicate that one reason for

this disparity may be time-based design inconsistencies. Standard techniques such

as BNMA and Meta-BNMA found linezolid to be significantly more effective than

vancomycin at the end of the time period. However, tBNMA finds that, while linezolid

used to be more effective than vancomycin at a 95% level, it is not significantly more

effective at the end of the time period. Models which do not take the time-varying

nature of this comparison into account may predict that there is a significant difference

at the end of the time period, rather than in the middle.

4.5 Discussion

A novel model, tBNMA, is proposed which accounts for time-based design incon-

sistencies in network meta-analyses of RCTs by modelling time-varying effects as a

latent, unobserved, time series. A Gaussian Process combining white noise, linear,

and Matern kernels is used to model this latent series. tBNMA is fully Bayesian

and allow for posterior uncertainty quantification; posterior computation proceeds
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through a Gibbs sampler implemented in JAGS. tBNMA substantially outperformed

existing methods in simulations in the presence of significant, non-constant, time-

varying treatment effects.

Data from a collection of NMA-based review papers on MRSA-related cSSSIs

is combined and analyzed using BNMA, Meta-BNMA, and tBNMA. tBNMA finds

that MRSA is not more resistant to vancomycin at the end of the period than at

the beginning, but there are substantial non-linear effects. Vancomycin resistance in

MRSA was strongest between 2002 and 2007, in line with clinical trends, but has since

declined. The time-based nature of this disparity may account for the disagreement

about whether linezolid is more effective than vancomycin in the literature.

The time-varying methods presented in this paper could be expanded upon. One

such extension would follow Jansen [2012] or Phillippo et al. [2020] and employ a meta-

regression model to “balance” studies with covariate information to those without.

Such methods are data-intensive, however, and care would be needed to employ them

simultaneously with the time-varying methods proposed in this paper. Alternate

kernels for modelling the time-varying effects could also be explored.
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Figure 7: “SENTRY Program 20-year trends in percentage of Staphylococcus aureus
BSI isolates that are MRSA.” [Diekema et al., 2019]
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Figure 8: The network of treatments found in the agglomerated dataset. Treatments
in larger nodes appeared more often, and the thicker the line between two nodes the
more often they were compared.
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Figure 9: Posterior credible intervals for the d
tik
1k associated with vancomycin in a

variety of simulated environments.
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Figure 10: Point estimate and 95% credible interval from the posterior predictive
distribution for dT1k by model when there is a sigmoidal time effect on VAN.
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Figure 11: 95% credible intervals and mean estimates for the posterior predictive
distribution of dT1k under BNMA, Meta-BNMA, and tBNMA on the agglomerate
dataset.
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Figure 12: 95% credible intervals for the posterior predictive distribution of the d
tik
1k

relating the treatment effect of vancomycin to linezolid under tBNMA on the agglom-
erated dataset.
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5 Concluding Remarks

We investigate three different areas of applied statistics. In Chapter 2, we are

interested in appropriately modelling cross-sample heterogeneity in subcommunity

composition in microbiome count data. To do so, we propose LTN-LDA: a novel

mixed-membership model which models cross-sample heterogeneity using logistic-

tree normal distributions on the phylogenetic tree. To make the model conditionally

conjugate, we introduce a class of auxiliary Pólya-Gamma variables. The resulting

model leads to both improved holistic inference over existing methods and a robust-

ness to overspecifying the number of subcommunities. Though our model is moti-

vated by an application in microbiome data, the methods could be extended to the

topic modelling domain. An R package for implementing LTN-LDA is available at

https://github.com/PatrickLeBlanc/LTNLDA; data and reproducible code are avail-

able at https://github.com/PatrickLeBlanc/ReproduceLTNLDAPaper.

In Chapter 3, we highlight several key findings about recommender systems. Rec-

ommender systems are a critically important topic in computational advertising which

have heretofore received little attention in the statistical literature. Recently, there

has been a combinatorial explosion of recommender system methodologies driven by

an increasing number of methods, goals, and settings. Recommender systems have

become increasingly bespoke and tailored to individual settings and applications.

Much of the ongoing work in the discipline is being performed by computer scientists

in industry despite the statistical nature of the underlying models. Thus, there has

been a general lack of statistical theory; statisticians can contribute by developing
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this theory.

In Chapter 4, we investigate whether MRSA has been developing antibiotic re-

sistance to “gold-standard” treatments such as vancomycin. To do so, we propose

tBNMA: a novel Bayesian model which accounts for time-based design inconsistencies

in network meta-analyses of randomized controlled trials by modelling time-varying

effects as a latent, unobserved, time series drawn from a Gaussian Process combin-

ing white noise, linear, and Matern kernels. We combine and analyze data from

a collection of NMA-based review papers on MRSA-related cSSSIs using tBNMA.

We find that MRSA is not more resistant to vancomycin at the end of the period

than at the beginning, but there are substantial non-linear effects. Vancomycin re-

sistance in MRSA was strongest between 2002 and 2007, in line with clinical trends,

but has since declined. The time-based nature of this disparity may account for the

disagreement about whether linezolid is more effective than vancomycin in the liter-

ature. tBNMA could be extended by incorporating a further meta-regression model

to “balance” studies with covariate information to those without, as in Jansen [2012]

or Phillippo et al. [2020]. Reproducible code and data for Chapter 4 are available at

https://github.com/PatrickLeBlanc/tBNMA.
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A Supporting Information for Chapter Two

A.1 DTM-LDA

Before developing the LTN-LDA model that we propose in this paper, we had

initially attempted to introduce a “DTM-LDA” model, which uses the DTM to model

cross-sample variability within topics. However, it turns out that carrying out fully

Bayesian inference under DTM-LDA is very computationally demanding for even

moderately sized data sets, and this prompted us to seek an alternative solution. We

do acknowledge that there may exist alternative strategies outside of fully Bayesian

inference such as variational Bayes to achieve scalability approximate inference under

DTM-LDA.

We describe the DTM-LDA model that we had initially considered, and demon-

strate how the computational difficulties arise. Our full DTM-LDA model is

yd,k(Al) | yd,k(A), θd,k(A), zdn = k ∝ Bin(yd,k(Al) | yd,k(A), θd,k(A))

zdn |ϕd ∼ Mult(1, ϕd)

ϕd |α ∼ Dir(α)

θk,d(A) | θ(A), τk(A) ∼ Beta(θk(A)τk(A), (1− θk(A))τk(A))

θk(A) | θ0(A), τ0(A) ∼ Beta(θ0(A)τ0(A), (1− θ0(A))τ0(A))

log(τk(A)) ∼ Unif(1, 7)

for k ∈ {1, . . . , K}, d ∈ {1, . . . , D}, n ∈ {1, . . . , Nd}, and A ∈ I. In this model, we

adopted a uniform hyperprior on the log of the per topic dispersion parameter τk,
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and a Beta hyperprior for the per topic mean parameter θk. Note that the computa-

tional issues will remain the same no matter which hyperpriors one adopt for these

parameters as there are no known conjugate priors for the DT distribution.

Let z denote a vector encompassing all subcommunity assignments from all sam-

ples, w denote a vector encompassing all sequencing reads from all samples,the su-

perscript −(d, n) indicate that the nth read in the dth sample is excluded, and Pwd,n

be a path leading from the root node R of T to the leaf corresponding to the sequenc-

ing read wd,n. Then the form of the full conditional for updating the subcommunity

assignments is

p(zd,n = k′ | z−(d,n),w) ∝ (yd,k′(R)−(d,n) + αk)

×

∏
A∈Pwd,n

∫ ∫ ∏D
d=1

[
B(yd,k′ (Al)+1+θk′τk′ ,yd,k′ (Ar)+1+(1−θk′ )τk′ )

B(θk′τk′ ,(1−θk′ )τk′ )

]
p(τk′)p(θk′|τ0, θ0)dθk′dτk′∏

A∈Pwd,n

∫ ∫ ∏D
d=1

[
B(yd,k′ (Al)+θk′τk′ ,yd,k′ (Ar)+(1−θk′ )τk′ )

B(θk′τk′ ,(1−θk′ )τk′ )

]
p(τk′)p(θk′ |τ0, θ0)dθk′dτk′

.

There is no closed-form expression for the full conditional, and instead we numerically

evaluate the double integral by quadrature. While each individual integral can be

computed quickly, for each iteration of the Gibbs sampler we must compute 2 ×

Pwd,n
× D × N̄d × K of them, where N̄d is the average number of sequencing reads

per document. This results in a Gibbs sampler which is orders of magnitudes slower

than the Gibbs sampler for LTN-LDA.
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A.2 Block LTN-LDA

We considered more complex covariance priors, but more flexible covariance struc-

tures did not lead to improved performance in sumulations and could cause non-

identifiability in the model. For demonstration, we implemented the following model,

termed Block LTN-LDA, which incorporates a block-diagonal covariance rather than

a diagonal covariance in order to maintain identifiability while allowing a bit more

flexibility,

yd,k(Al) | yd,k(A), ψd,k(A)
ind∼ Bin(yd,k(A), θd,k(A))

zd,n |ϕd
ind∼ Mult(1,ϕd)

ϕd |α
iid∼ Dir(α)

ψd,k |µk,Σk
ind∼ MVN(µk,Σk),

µk |µ0,Λ0
iid∼ MVN(µ0,Λ0)

Σk |G
iid∼ G

for d = 1, . . . , D, k = 1, . . . , K, n = 1, . . . , Nd, and A ∈ I. The form of the model is

the same except that G now takes the form of a block covariance prior on Σk. That

is, let ΣU
k correspond to the subset of nodes in the upper part of the tree — the set

{A ∈ I||A|≥ C} — and let ΣL
k correspond to the subset of nodes in the lower part of

the tree — the set {A ∈ I||A|< C}. The prior on ΣU
k we adopt has the form

ΣU
k | τUk = diag(τUk )

τUi,k | aU , bU ∼ IG(aU , bU),
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as in LTN-LDA. In contrast, we model ΣL
k as

ΩL
k = (ΣL

k )
−1 |GL

k ∼ GWishGL
k
(aL + pL + 2, bL + ΦL),

where pL is the number of nodes in ΣL
k and (aL, bL) = (100, 200). We draw the preci-

sion ΩL
k of the lower block covariance matrix from a G-Wishart distribution [Lenkoski

and Dobra, 2011]. The G-Wishart prior is a suitable covariance prior because it uses

a graph to model the dependency structure and so can learn the conditional indepen-

dence structure of the nodes from the data. Moreover, unlike other Gaussian graphical

models such as the Bayesian Graphical Lasso [Wang, 2012], the G-Wishart prior al-

lows us to concentrate the prior anywhere in the real line and control the degree of

concentration. This allows us to set the expected level of covariance appropriately

while also restraining the posterior values from growing too flexible.

Block LTN-LDA admits a Gibbs sampler similar to LTN-LDA in that every pa-

rameter except for Σk has the same full conditional. To sample the full conditional for

ΣL
k , we implement the trans-dimensional MCMC sampler described in Mohammadi

and Wit [2015] and make use of the direct G-Wishart sampler described in Lenkoski

[2013]. However, due to the added complexity in this full conditional, the Gibbs sam-

pler for Block LTN-LDA is significantly slower than the one for LTN-LDA, taking

approximately five times as long to complete on datasets of the size used in the paper.

Despite having a more flexible covariance structure, however, Block LTN-LDA did

not result in meaningfully better inference than LTN-LDA in our numerical experi-

ments. Specifically, we repeated the analysis in Section 3.1 but simulated from Block
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LTN-LDA with a prior probability of 1
4
that two nodes were dependent; all other

parameters remained the same. We then ran LDA, LTN-LDA, and Block LTN-LDA

on the dataset for varying K and true C. The results are presented in Figure 13.

LDA behaves similarly on a Block LTN-LDA dataset as it does on an LTN-LDA

dataset. However, LTN-LDA and Block LTN-LDA predict similar mean posterior

ϕd as K changes despite Block LTN-LDA having generated the data. We suspect

this occurs because LTN-LDA offers a flexible enough covariance structure to cap-

ture the cross-sample heterogeneities in the data even though it assumes the nodes

are independent: the additional flexibility provided by the G-Wishart priors on the

lower block of the covariance matrix did not meaningfully improve inference . This

could be related to the strength of the covariance structure and the nature of the

Block LTN-LDA prior. There might exist different prior specifications that lead to a

more noticeable gap in performance by LTN-LDA and Block LTN-LDA. Moreover,

we assume that the covariance structure is related to the nature of the tree—if the

nodes were grouped together according to some other specification, a more flexible

model such as Block LTN-LDA may be more robust and outperform LTN-LDA. In

the context of this assumption and the significant computational burdens induced by

Block LTN-LDA, we deem that LTN-LDA has a flexible enough covariance structure

to capture heterogeneities across compositions.

93



Figure 13: Posterior mean estimates for ϕ as K varies for LDA, LTN-LDA, and Block
LTN-LDA.
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A.3 Robustness to misspecified trees

The tree structure is vital to the way in which LTN-LDA models cross-sample

heterogeneity, and thus it is important to investigate the robustness of the inference

to the choice of the tree. To demonstrate this, we generate a dataset as in section

3.1 based on the tree given in Figure 18, and then repeated the analysis comparing

LTN-LDA based on this correct tree to LTN-LDA using a misspecified tree as given

in Figure 14. The results are presented in Figure 15. The inference provided by the

two approaches is similar when K = 4, the true value. However, as K increases the

mispecified tree’s inference deteriorates faster than does the true tree’s. Further, we

generated a dataset using LTN-LDA with the tree in Figure 18 and ran a perplexity

analysis as C varies with the tree in Figure 14 as the tree. The results are in the

tree in Figure 16. We can see that the bend in the curve appears to occur before

the true value, and so using the mispecified tree can also influence the choice of the

tuning parameter. On the other hand, the fitted subcommunity abundances generally

maintains the same shape for misspecified K and C, indicating a level of robustness

of LTN-LDA with respect to the choice of the tree.
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Figure 14: A close to uniform tree constructed from nodes 1, 2, . . . , 49.

Figure 15: Posterior mean estimates for ϕ as K varies for LTN-LDA using a “true”
tree and a uniform tree.
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Figure 16: Perplexity results for the mispecified tree as C varies
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A.4 Collapsed blocked Gibbs sampler

We integrate the ϕd out of the sampling model and proceed with a collapsed Gibbs

sampler to improve convergence [Griffiths and Steyvers, 2004]. The full conditionals

we will sample from are thus

(1) (vd,k, zd) |ψd,k,µk,Σk,Λ0,α, a1, a2, b
ind∼ p(vd,k, zd|ψd,k,α)

(2) ψd,k |vd,k, zd,µk,Σk,Λ0,α, a1, a2, b
ind∼ p(ψd,k|vd,k, zd,µk,Σk)

(3) µk |vd,k, zd,ψd,k,Σk,Λ0,α, a1, a2, b
ind∼ p(µk|ψd,k,Σk,Λ0)

(4) Σk |vd,k, zd,ψ,µk,Λ0,α, a1, a2, b
ind∼ p(Σk|ψ,µk,Λ0, a1, a2, b),

The joint full conditional (vd,k, zd) is

zd |ψd,k,α
ind∼ p(zd|ψd,k,α)

vd,k | zd,ψd,k,α
ind∼ p(vd,k|zd,ψd,k).

To sample the vector zd from its full conditional, we sample each subcommunity

assignment in order from its multinomial full conditional:

p(zd,n = k|z−nd ,ψd,k,α) ∝ (yd,k(R)−n + α)× β
wd,n

k ,

where z−nd is the vector of all subcommunity assignments in sample d except for zd,n

and yd,k(R)−n is the number of sequencing reads in sample d descended from the root

node R assigned to subcommunity k not counting the nth token. To sample from the
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full conditional for vd,k, we draw vd,k(A) for each A ∈ I:

vd,k(A) | yd,k(A), ψd,k(A)
ind∼ PG(yd,k(A), ψd,k(A)),

the conjugate full conditional of a Pólya-Gamma distribution derived in Polson et al.

[2013]. However, existing Pólya-Gamma samplers are slow for the current context

and so for yd,k(A) ≥ 30 we use an approximate Pólya-Gamma sampler proposed in

Glynn et al. [2019], which uses the Central Limit Theorem to approximate a normal

distribution:

N

(
yd,k(A)

2

2ψd,k(A)
tanh

(
ψd,k(A)

2

)
,
yd,k(A)

2

4ψd,k(A)3
sech2

(
ψd,k(A)

2

)
(sinh(ψd,k(A))− ψd,k(A))

)
.

The full conditionals for µk and the τi,k follow by conjugate updating:

µk |ψd,k,Σk,Λ0
ind∼ MVN

(
(Λ−1

0 +DΣ−1
k )−1Σ−1

k

D∑
d=1

ψd,k, (Λ
−1
0 +DΣ−1

k )−1

)

τi,k |ψ,µk, , a1, a2, b
ind∼ IG

(
a1 +

D

2
,
2b+

∑D
d=1(ψd,k(Ai)− µk(Ai)

2)

2

)
if |Ai|≥ C

τi,k |ψ,µk, , a1, a2, b
ind∼ IG

(
a2 +

D

2
,
2b+

∑D
d=1(ψd,k(Ai)− µk(Ai)

2)

2

)
if |Ai|< C.

Further, the full conditional for ψd,k is also normal,

ψd,k | zd,vd,k, µk,Σk
ind∼ MVN

(
(Σ−1

k + diag(vd,k))
−1(Σ−1

k µk + κd,k), (Σ
−1
k + diag(vd,k))

−1
)
.

The Gibbs sampling algorithm scales linearly with D (Figure 17a), Nd (Fig-

99



(a) Scaling with D (b) Scaling with Nd (c) Scaling with K (d) Scaling with V

Figure 17: Scalings

ure 17b), K (Figure 17c), and V (Figure 17d). The computation time does not

scale with the tree parameters T and C because of the diagonal covariance structure.
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A.5 The phylogenetic tree used in the simulation study

Figure 18: The phylogenetic tree used in simulations
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A.6 Perplexity

Perplexity is a transformation of predictive log-likelihood commonly used to assess

topic models. If p(wd(te)|M) is the predictive log-likelihood of a test set sample d(te)

given a collection of parameters M, then perplexity is defined as

exp

(
−
∑

d p(wd(te)|M)∑
dNd(te)

)
,

where Nd(te) is the number of sequencing reads in d(te)

The document completion method for computing perplexity for LDA is described

in section 5 of Wallach et al. [2009]. It involves splitting each sample d(te) in the test

set into two halves, d(te),1 and d(te),2. A modified Gibbs sampler is run on the first

half, d(te),1 with the value of βk set equal to the posterior mean of βk on the training

set. The results of this Gibbs sampler are used to develop estimates for ϕd and then

for perplexity.

We modify this procedure for LTN-LDA. A modified Gibbs is run on d(te),1, fixing

the values of µk and Σk at their posterior means from the training set. If there are I

iterations in the Gibbs sampler, then the estimate of ϕd at iterate i is ϕd(i) and the

estimate of βd,k of iterate i is βd,k(i). We can then take a Monte Carlo estimate over

all ASVs observed in d(te),2 to estimate the predictive likelihood of dte:

1

I

I∑
i=1

∑
n∈w

d(te),2

log

( K∑
k=1

ϕkd(i)β
wd,n

d,k (i)

)
.

This procedure can be repeated for every sample in the test set, and the resulting set
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of predictive likelihood estimates can be transformed into a perplexity estimate.
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A.7 Dethlefsen and Relman Tree

Figure 19: The tree resulting from the dataset of Dethlefsen and Relman [2011]

A.8 Separating the effects of the tree from that of the ran-

dom effect

LTN-LDA incorporates two new effects: the tree structue and random effects in

cross-sample heterogeneity. We note that, in the context of LTN-LDA, using the tree

structure alone without allowing random effects does not improve inference in any

way.

We provide evidence that the tree structure alone without the random effects does

not improve the inference over LDA. We “knock out” the random effects by forcing

the sample-specific distributions βd,k to not vary from sample-to-sample. Thus, we

can approximate this model with an existing Gibbs sampler. We then replicate the

results of Section 3.1 of the manuscript but comparing LTN-LDA with the usual
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Figure 20: Posterior mean estimates for ϕ as K varies for LTN-LDA with recom-
mended covariance priors vs those with “knock-out” covariance priors.

prior to LTN-LDA with this “knock-out” covariance prior, and present the results in

Figure 20. The version with strict priors misestimates subcommunity proportions for

K = 4, and splits the subcommunities as K grows. We thus deduce that using the

tree structure without allowing cross-sample heterogeneity does not reproduce the

positive results in the paper.

However, it is difficult to implement a model with just random effects without a

tree structures. On the modeling side, without the tree structure, one must induce

more complex constraints on the covariance to ensure identifiability. Moreover, with-

out the tree structure, it is unclear how these models can be implemented efficiently
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to be applicable to modern microbiome data sets. It would be interesting to see such

a comparison so that we can understand to what extent to improvement is due to

the tree modeling assumption. However, we know of no such existing implementa-

tion of the models suggested. Note that even the seemingly simple Dirichlet random

effect model will require a high-dimensional (m-dim) numerical integral where m is

the number of taxa within each iteration for the same reason that the DTM requires

numerical integration as we mentioned before—there is no known conjugate priors for

the parameters in the Dirichlet distribution. For these reasons, we feel that such a

comparison goes beyond the scope of this manuscript. Finally, we emphasize that it is

indeed the adoption of a tree structure that provides an efficient means to computing.

We believe in this regard our use of the tree goes beyond prior works that uses the

tree only for modeling purposes, not a computational technique.
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