Understanding P-values Through Simulation

This applet (programmed by German Molina) simulates the proportion of times that the null hypothesis is true when the p-value is in the range \square to \square. If one wishes to find the proportion of times the null hypothesis is true for a given p-value (e.g., $p = 0.05$), one should choose a small range (e.g., from 0.049 to 0.05).

The applet considers testing of $H_0 : \mu = 0$ versus $H_1 : \mu \neq 0$, where μ is the mean of a normal distribution having standard deviation one. (Any other standard deviation would yield equivalent results.) Normal observations of sample size \square are taken, and testing is based on the usual z-statistic $\sqrt{n} |\bar{X}|$, where n is the specified sample size and \bar{X} is the sample mean. The simulation creates a long series of such tests, and simply counts how often H_0 is true and false, whenever the p-value is in the specified range. These counts are given in the boxes on the right of the graph and are also represented in the graph, which can be chosen to be either of column or line graph type.

Pushing the button Add 1 will cause the program to run until 1 tests have occurred with p-values in the desired range. Any of the Add 1 buttons can be pushed again, and the results will be added to the existing totals. Pushing the Continuous button will cause the program to run continuously. One can switch between the Add 1 buttons and the Continuous button, and totals will stay accumulated.

To start over, one pushes End/Refresh. A summary of the last run is then presented on the screen. If several different runs are done, the results are saved and can be accessed by the Results button.

To run the applet, one must also choose

- the % of true nulls that are to be generated, i.e., the proportion of null hypotheses, H_0, that are initially chosen to be true in the sequence of simulated tests;

- the values of the normal means μ that arise under the alternative hypotheses, H_1, in the sequence of simulated tests.

If one desires to choose all the alternative means to be at a fixed point, choose point mass under Distribution of alternatives and then choose the desired location of the alternative means using with location \square.

The alternative means can also be randomly generated from any of the distributions under Distribution of alternatives. These distributions are all given in standardized form. Thus selecting normal will result in the standard normal distribution. One can shift this distribution

1
to a different location by entering the desired location using with location □, and can change
the scale of this distribution using and scale □. Thus entering a location of 2 and a scale of 3
will result in the normal distribution with mean 2 and standard deviation 3. One can specify the
location and standard deviation either in real units, or in sample standard deviation units
(i.e., in units of $1/\sqrt{n}$), by checking the appropriate box. Finally, the See Means button shows
the values of the generated alternative means μ that happened to have p-values in the indicated
range.

When $p \approx 0.05$, it is interesting to note that the final percentage of true nulls will usually
exceed the initial percentage, unless the values of μ under the alternatives are chosen very
carefully. Indeed, finding the choices of alternatives that minimize the final percentage of true
nulls is an interesting exercise. As an example of what one will find if the initial percentage of
true nulls is 50%:

- the final percentage of true nulls is at least 22% when the p-value is between 0.049 and
 0.050;
- the final percentage of true nulls is at least 6.5% when the p-value is between 0.009 and
 0.01.

Final Note: Essentially the same results can be seen to hold when the point null hypothesis,
$H_0 : \mu = 0$, is replaced by a small interval null hypothesis, $H_0 : -\varepsilon < \mu < \varepsilon$.