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Abstract 

Confidence in computational predictions is enhanced if the potential ‘error’ in these predictions (the 

difference between the prediction and nature’s outcome in the situation being simulated) can be credibly 

bounded.  The “model-validation” process by which experimental or field results are compared to 

computational predictions to produce this confidence provides the raw material for characterizing a 

computational model’s predictive capability in terms of such error limits.  In general, the goal is to evaluate 

predictive capability, first for predictions in the region of experimentation, then, if possible, for predictions 

in untested regions of applications.  This whole process is fundamentally statistical because it requires the 

acquisition and careful analysis of appropriate data.  We establish a statistical model for characterizing 

predictive-capability and discuss various experimental design and statistical data analysis issues and 

approaches for resolving them   Analyses based on both ‘frequentist’ and Bayesian statistical paradigms are 

discussed in general in this paper and illustrated in accompanying papers presented at this workshop. 
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Introduction 

 

Computer models, of increasing sophistication, are being used increasingly in a wide variety of contexts to 

predict the outcomes of physical events.  The credibility and utility of computational predictions requires 

meaningful answers to questions such as: 

 

 How well does the computer model represent reality? 

 

 How well can the computer model predict reality under new, untried conditions? 

 

The process by which such questions are addressed is called model validation [AIAA 1998].  The answers 

to these questions provide an evaluation of a model’s predictive capability.  The model-validation process, 

it is generally recognized, involves the collection of field or experimental data and a comparison of those 

results to corresponding computational predictions of those outcomes.  While this objective is easy to state, 

implementation raises a number of difficult issues that have only recently begun to be addressed.  [See, 

e.g., Trucano, Pilch and Oberkampf 2002.]  Many of these issues are statistical.  The purpose of this paper 

is to discuss and illustrate the statistical foundations of model validation. 

 

The validation process is fundamentally statistical.  It involves the acquisition of data (from designed 

experiments, field experience, surveys, or sampling plans), statistical data analysis (to characterize 

systematic and random patterns in the experimental and computational results), and inference 

(characterizing, subject to and reflecting the amount and nature of the available data, the predictive 

capability of the model in unobserved situations).  Such activities and analyses are not done in a vacuum.  

They must be closely tied to the scientific understanding of the process being computationally simulated.  

a.  The Process of Evaluating Predictive Capability 

Figure 1 is a view of the process of answering the above questions, set in the context of comparing a 

computational prediction to a system requirement.  The top ellipse in Fig. 1 depicts the intended use of the 

computational tool: system requirements specify various performance goals and the computational model 

will be used to predict system performance in scenarios that embody these requirements.  Comparing the 

prediction to the requirement requires an uncertainty yardstick, or frame of reference, depicted by the 

uncertainty ‘cloud’ surrounding the prediction.  To develop such a yardstick, experiments and computations 

must be conducted – depicted by the bottom ellipse.  The design of these experiments should be driven by 

the system scenarios and the structure of the computational model.  These experiments and computations 

provide first for an evaluation of prediction capability in the situations tested.  Next, and most importantly, 
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the ensemble of observed differences are potentially the basis of an inference about prediction uncertainty 

in the system applications of interest -- the connection to the upper ellipse. 

 

Figure 1 provides a glimpse into the difficulty of the model-validation problem.  It’s not enough just to 

compare experiment and computation, where possible and perhaps convenient, and make a assessment of 

the degree of agreement.  The inference bridge to the application has to be constructed.  The distance 

between the two ellipses may make this scientifically difficult, difficult to justify and defend.   

 

Figure 1. Schematic for Characterization of Prediction Capability 

 

Though we will focus on the design and analysis of one set of model-validation experiments, the process in 

Fig. 1 is generally iterative.  Both the experimental database and the computational model will evolve.  

There will be instances in which the analysis of observed prediction errors in the lower ellipse will detect 

flaws in either the computational model or the experimental procedures and data, so they will need to be 

corrected before the inferential loop is completed.  There will also be situations in which the empirical and 

scientific bases are not adequate for the required inference to prediction error in the system application.  

What then? 

 

There are several approaches to solving this dilemma.  The experimentalist’s solution would be to seek to 

expand the space of testable configurations and environments to be more “application-like,” to move the 
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bottom ellipse closer to the upper ellipse.  An engineering solution would be to redesign the system to make 

it less susceptible to phenomena that are difficult to model.  The modeler’s solution might be either to 

develop a deeper model – put more physics into the model – or to simplify the model and replace difficult-

to-validate components of the model by simplified, bounding sub-models.  The program manager, who of 

course wants this process to end because of cost and schedule requirements, might seek to resolve the 

dilemma by convincing the customer to change the requirements, thereby moving the application ellipse 

closer to the testable space.   

 

In spite of all these efforts, it must be admitted that in some situations we may not be able to develop 

credible, defensible statements of a computational model’s predictive capability for the outcomes of 

system-application events.  The statistical framework advanced in this paper will identify the gaps and 

obstacles to successful inference.  Because of the importance of computational models, and the importance 

of characterizing their predictive-capability in some way, the resolution then may be some form of 

quantified informed opinion, such as: “In a wide variety of experimental contexts, we never saw a 

prediction error greater than 20%.  The differences between application and experimental conditions, 

though, are substantial enough that we think an additional factor of 2x is reasonable.  Thus, our judgment is 

that system outcomes can be predicted to within 40%.”  The experience and reputation underlying such 

statements will determine their credibility.  Methods have been developed to enhance the credibility of 

quantified informed opinion, but such are not addressed in this paper.   

b.   Mathematical Framework  

To frame this paper’s discussion we mathematically represent a prediction generated by a computational 

model as: 

yM(x) = M(x:φ),      (1) 

where M(x:φ) represents the computational model of the phenomenon of interest; x is model input variables 

that define the event of interest, φ is model parameters; and yM is the model output or prediction.  All the 

terms in expression (1), namely x, φ, and yM, could be vectors or fields.  The distinction between x and φ is 

discussed in the next paragraph. 

In general, the model’s input vector x is a set of variables whose values define a physical entity and the 

environment to which it is subjected.  This vector will include physical dimensions, materials, 

environmental variables, and initial and boundary conditions.  For example, x could be the temperature to 

which a given material specimen is subjected.  The numerical model parameter vector φ includes 

parameters that are needed to specify physical responses in the model.  Think generally of the vector φ as 

constants such as transfer coefficients in the set of equations on which M is based.  For example, the 

reaction rate of a chemical process is often modeled as depending on temperature via the “activation 
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energy” parameter in an Arrhenius model [Hammes 1978].  Thus, e.g., x would specify a material, �  

would be its (assumed or estimated) activation energy.  The particular parameter-values, �, used to generate 

a prediction may be estimates based on handbooks, other experimentation, or judgment.  The “uncertainty” 

of such estimated parameters will be considered below.  

To focus on the validation problem, as opposed to the model development and verification problem, we 

further assume that it has been ‘verified’ that the code will adequately produce the intended mathematical 

result and that all numerical aspects of M(x:φ), such as mesh size, time steps, and convergence criteria, 

have been satisfactorily resolved and are fully specified in M.  The computer model, M(x:φ), is thus an 

operator that transforms input x into the predicted result, yM.  This transformation is assumed to be 

deterministic in this paper in the sense that for a given specification of x and φ the code always gives the 

same yM.  Repeated runs of a deterministic code, as in a Monte Carlo analysis, however, will be considered. 

c.  Statistical Framework   

Now, corresponding to the prediction, yM(x), consider an experiment conducted at the specified x and 

represent its outcome by y(x,w).  In this expression, w represents variables not included in the model that 

influence nature’s experimental outcome.  For example, a container might be modeled as a perfect cylinder 

and a 2-D model could be used to predict its behavior.  Actual containers, however, are not perfect 

cylinders, so the out-of-roundness characteristics would be this situation’s w’s.  These w’s could affect 

performance and they would vary among nominally identical containers.  in general, the w’s may not be 

recognized, or if recognized, may not be measured and they may not be controlled in the experiment or in 

events for which we desire to make predictions.  We treat this “extra-model” contributor to nature’s 

outcome statistically by modeling w as a random variable (with an unknown probability distribution).  This 

means that the outcome of an experiment at x, say y(x), is a realization of the random variable, y(x,w), 

which has a probability distribution induced by the probability distribution of w.  We define the prediction 

error of the model at x as the random variable,  

ex = y(x) – yM(x).      (2) 

The probability distribution of ex will in general depend on x.  That is, the predictability of an event defined 

by x is apt to differ as one moves around the x-space of events.  For example, both the bias and variance of 

ex may depend strongly on x.  This is not a desirable state, so such a finding is apt to lead to efforts to 

improve the computational model or to find functions of the experimental and computational results that do 

not have this dependence.  For example, the standard deviation of prediction error may depend on x when 

dealing with a selected y(x), but not when the data are analyzed using ln(y(x)). 

In general, y(x) is observed with measurement error, so we express the observed experimental or field result 

as 
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 yE(x) = y(x) + δx,         (3) 

where δx is a random variable representing measurement error.  The probability distribution of 

measurement error may also depend on x.  By combining (2) and (3), the relationship between experimental 

data and model predictions is 

 yE(x) = yM(x) + ex + δx.        (4) 

This relationship can be further complicated in situations in which the experimental and computational x’s 

do not match.  For example, measured temperature in an experiment, used to calculate yM, might be x = 

300C, but the actual temperature in the experiment might have been 301C.  When the differences between 

experimental and computational x’s are small, the resulting error can often be folded into the measurement 

error in yE(x), namely δx.  Good instrumentation is vital in model-validation experiments in order to prevent 

extraneous sources of error from distorting the evaluation of prediction error. 

Equation (4), though written as a sum, in general represents the conceptual relationship that nature’s 

outcome differs from the computational prediction because of prediction errors (ex) and experimental 

measurement errors (δx).  The relationship is not necessarily additive, but one goal of an analysis is to find a 

transformation of y that will linearize the relationship.   

From (2) it can be seen that if the probability distribution of ex was known at an x-value of interest, then, 

given a computational prediction, yM(x), one could probabilistically bound nature’s outcome, y(x).   We 

could then answer the two questions about computational predictions posed in the first  paragraph: How 

well does the model predict nature’s outcome, first at conditions that can be tested, then at untested 

conditions?.  The problem, of course, is that the distribution of prediction-error is not known; it must be 

estimated from model-validation experiments and predictions and ancillary data pertaining to measurement 

error.  For reasons of cost and high-dimensionality of the x-space, the data from which to estimate the 

prediction-error distributions at x-values or over x–regions of interest are apt to be quite sparse.  Hence, 

estimation, particularly of tail-percentiles of the distribution, will be quite imprecise, if even realistic.  

Statistical methods are aimed at characterizing the imprecision of data-based estimates.  One can see from 

this framework, however, that the too-common notion that validation can be accomplished via a few well-

chosen validation experiments is not apt to provide an adequate characterization of prediction error for 

complex, high-dimensional computational models. 

Evaluating model predictive capability means estimating the probability distribution of ex  at selected x-

points or over selected x-regions.  This evaluation requires selecting a set of x-points, then obtaining 

computational predictions and experimental results for each.  The results of a suite of model-validation 

experiments and corresponding computational predictions is thus a set of (x, yM, yE) values.  This is the raw 

material from which estimates of the probability distribution of ex must be constructed.  Note that ex and δx 
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in (4) cannot be separated using only the (x, yM, yE) data.  Their effects are “confounded.” Ancillary data 

pertaining to measurement error, as a function of x, are needed in order to isolate the probability 

distribution of prediction error, ex.  Again, one can see the importance of good instrumentation in model-

validation experiments in order that the observed prediction errors, yE(x) – yM(x), will predominantly reflect 

ex, not δx. 

[Note. It is also possible to analyze predictive capability when the experimental and computational results 

are not obtained oncommon x-values.  Let (xE, yE) denote a set of experimental results and (xM, yM) denote a 

set of computational results.  Then one can fit response surfaces (y as a function of x) to each set of results 

and use the difference between fitted values as an estimate of prediction error at selected x-values.  In this 

paper we will focus on the analysis of (x, yM, yE) data to avoid the complications associated with separate 

fitting of experimental and computational results.] 

One can also see from the preceding framework that the only way to learn about prediction error is to run 

experiments (or collect field data) and compare the results to computational predictions.  Monte Carlo 

simulation on M(x:φ) can only provide information on how the computational prediction, yM, would vary as 

x or �  vary.  Because such simulations cannot address the variability of the w’s, they cannot provide 

information on the difference between nature and computational prediction.  We mention this because there 

has been a tendency in some work to claim that such simulations provide a measure of prediction 

uncertainty. 

Viewing the differences between experiment and model as statistical has engineering precedent.  For 

example, in bridge design, civil engineers use a mathematical model for “scour” – the erosion of soil 

around a bridge’s foundation due to river flooding [Johnson 1995].  This model is a function of soil type, 

flood magnitude, river velocity and other pertinent variables.  For predictions civil engineers incorporate an 

additional “modeling factor” to represent the deviation of actual scour depths from the theoretical model 

predictions.  This modeling factor corresponds to ex in (4). 

Implementing the process represented by Fig. 1 and the analysis based on eq. (4) leads to a variety of 

issues.  The design of experiments is critical in the generation of data that can potentially yield a 

meaningful characterization of predictive-capability and the statistical analysis used to extract that 

information from the data is also important.  Following a brief literature review, the next two sections 

discuss some of the problems that are likely to be encountered in these areas and indicate directions to take.  

More concrete illustrations of methodology are given in subsequent papers, [Bayarri et al. 2002] and 

Easterling [2002]. 
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d.  Brief Literature Review 

There has been limited recognition in the computational modeling community of the statistical nature of 

model-validation and the evaluation of predictive capability.  The authors of a National Academy of 

Sciences review of defense acquisition [Cohen et al. 1998] stated,  

 

“Given the critical importance of model validation.. ., it is surprising that the constituent 

parts are not provided in the (DoD) directive concerning … validation.  A statistical 

perspective is almost entirely missing in these directives.”    

 

While it is generally recognized that model-validation involves the comparison of data to model 

predictions, Trucano et al. [2002] have characterized the typical analysis as being based on a “viewgraph 

norm” – data and model  predictions are overlaid on a transparency and a judgment – good enough? – is 

made.  We can and must do better.  The organizers of this workshop have recognized the need to address 

the statistical aspects of model-validation in a more complete and fundamental way and we hope this paper 

is useful in this regard. 

The preceding subsections have identified some of the difficulties in evaluating predictive capability.  In a 

philosophical paper, Oreskes et al. [1994] argue that, “Verification and validation of numerical models of 

natural systems is impossible.”  Rather, in their view, the best we can hope for is a demonstration of 

“empirical adequacy.”  This goal is in the spirit of our statistical perspective – using data to evaluate 

adequacy.  We don’t expect perfection.  The view of Oreskes et al. [1994], as they acknowledge, does not 

mean that numerical models have no value.  We prefer the pragmatic view expressed by (University of 

Wisconsin statistician) George Box [1980]: “All models are wrong, but some are useful.”  Our goal is to 

use statistical methods to characterize a model’s usefulness. 

 

There has been prior work on statistical comparisons of experimental data and computational predictions.  

For example, Kleijnen [1995] addresses the comparison of binary (success/failure) outcomes from R runs 

of a simulation model and K field trials.  Note that this is an aggregate comparison, not a test-by-test 

comparison as we primarily address here.  The performance of military systems is the context for this 

analysis.  Fries [2000], in a similar context, considers a combined analysis of a suite of comparisons of 

single field trials to a large number of simulation runs.  In the area of Department of Energy applications, 

examples of statistical analysis of physics models and experiments are given in Hills and Trucano [2001] 

and Easterling [2001].  An extensive discussion of validation literature is given by Oberkampf and Trucano 

[2000].   
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Experimental Design   

In broad terms, experimental design for model-validation means selecting a set of x-points (that define, e.g., 

test hardware and environments) at which to do experiments and computational predictions.  This set 

constitutes the suite of experiments on which to build an evaluation of predictive capability.  In detail, this 

specification of experiments also means determining experimental plans that specify the test hardware, 

methods, conditions, instrumentation, data collection, and post-processing techniques used to obtain 

information required for subsequent data analyses.  All of these elements have different nuances for 

experiments that are designed for model validation studies as opposed to phenomena discovery or 

exploration. It is critical to emphasize this point.  It is also important to recognize at the outset that 

measuring predictive capability has profound implications for the experimental sciences, not just the 

analytic. 

The role of experimental design in the inference problem is illustrated in Fig. 2 in which the space of 

validation experiments and system applications is defined by two meta-variables, configuration and 

environment.  Because of economic and other reasons it may not be possible to test actual systems in their 

required environments.  (For this reason, Fig. 2 depicts an extrapolation situation; intuitively, interpolation 

should be easier.)  For example, the application of interest might be the performance of a sophisticated 

electro-mechanical component in a severe radiation environment, but experimentation will be conducted 

using greatly simplified component mock-ups in less severe radiation environments.  Thus, we have to 

extend what we can learn about predictive capability (represented by the prediction errors, {y(x)-yM(x)}, in 

Fig. 2) at the selected x-points where we can evaluate it to an inference about predictive capability where 

we cannot.  This inference requires an extension of the model itself plus an extension of what we know 

about unmodeled phenomena, as represented by the observed prediction errors.  It requires merging 

prediction error data from tests of a variety of single and multiple phenomena into an inference about 

prediction error in the application’s environment and configuration.  Making this extension successfully 

and credibly requires subject-matter knowledge about the axes along which we can make such extensions 

and it requires a suite of experiments suitably located in the configuration-environment space to provide the 

data necessary to make such extensions.  The design of this set of experiments thus has to be driven by the 

ultimate applications for which computational predictions and a model’s predictive capability are required, 

as was discussed above. 
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Figure 2. Inferring predictive capability  

 

Clearly, extrapolation is a matter of judgment and potential disagreement.  Experimental design should 

strive to minimize the need for extrapolation, to the extent possible.  For example, if the application of 

interest is defined by a specified thermal profile – temperature ranges, ramp rates, and dwell times, say – 

then the experiments should duplicate this profile, if possible, rather than be conducted with perhaps more 

convenient and less model-stretching temperature profiles. That is, scientific validation of a computational 

model is not the same as estimating a model’s predictive-capability in particular applications and this 

difference should influence the design and conduct of model-validation experiments. 

a.  Experimental Objectives 

Meaningful validation experiments are designed to meet one or more explicit objectives.  In general, the 

experiments conducted (1) should provide a sufficient test of predictive capability for the selected 

experimental situations and (2) the collective set of experiments and associated computational predictions 

should provide a basis for making the desired inference of predictive capability in application conditions.   

There are various ways to translate the first objective into a basis for experimental design.  For example, 

one measure of predictive capability at x is the standard deviation of prediction error, ex, at that point.  One 

could define the objective to estimate this standard deviation, call it sigma, within 100P% (at a specified 

confidence level) and then derive the number of experiments required to achieve that precision.  These 

experiments could either be n replications at the selected x-point or n total experiments at different x-points 

within a region within which it is reasonable to expect a constant standard deviation.  Under a distributional 

assumption for ex, such as normality, one determine n so that, e.g., the ratio of an upper 95% statistical 
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confidence limit on the standard deviation to the point estimate provided by the data is 1+P.  Extending this 

sort of analysis to the simultaneous design of a suite of experiments, ranging from single-phenomenon to 

multi-phenomena system-like tests, is a problem-specific research problem.  If the prediction errors in 

individual experiments can be mathematically linked to prediction error for the application, then potentially 

we can link the precision with which the application sigma is estimated to the precisions with which the 

constituent sigmas are estimated and thus arrive at a basis for specifying the suite of experiments.  Also, we 

can work the problem sequentially, determining where additional experimentation would most improve the 

precision with which the application prediction-error sigma can be estimated.   

The conduct of a validation experiment also influences how well predictive capability can be measured.  As 

mentioned above, a variety of random and systematic factors can contribute to the difference between 

computational prediction and nature.  Validation experiments need to be conducted in ways that allow these 

factors (nature’s w’s) to be manifested as they would in an application of interest.  For example, predictive 

capability measured in a tightly-controlled, pristine lab environment may not be appropriate for inferring 

predictive capability for predictions for a much less controlled, noisier application environment.  The 

objective of assessing predictive capability in a specific application influences experimental design in terms 

of both what is controlled and what is not controlled in the experiments. 

Another situation that will arise is when in an application some of the x’s, such as environmental 

conditions, will vary, but they will be fixed in any particular experiment.  The ultimate objective will be to 

predict characteristics of the distribution of system response over some probability distribution of these x’s.  

The analysis problem in this case is discussed below.  The experimental design objective in this situation is 

to conduct experiments over a suitable set of specified x’s to support the required distributional predictions 

and to characterize the precision of such predictions. 

Time, resources, and experimental capability constrain validation experimental design and conduct.  Such 

constraints must be balanced against the experimental objectives in arriving at a plan for model validation 

experimentation.  A difficult decision will have to be made as to whether a meaningful evaluation of 

predictive capability is possible under existing constraints in any given situation.  Of course, there are other 

reasons for experimentation and model-building besides characterizing the precision of application-level 

computational predictions. 

b.  Experiment-Model Compatibility   

The computational and experimental elements of the model validation process cannot be executed in 

isolation.  The vector x needs to be meaningful to both the experimentalist and modeler in order to align 

experiment and model so that both computational predictions and experiments at selected x-points can be 

run and compared.  Further, this alignment needs to be meaningful in terms of the system scenarios for 

which computational predictions are required. 
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The discussion so far has assumed that the full x-vector could be controlled or measured in an experiment.   

If the modeler’s x-vector contains variables that have no experimental meaning, this is not the case and it 

may not be possible to make meaningful comparisons.  If the modeler’s x-vector requires measurements 

that cannot be made, the result will be increased prediction uncertainty.  To avoid this misalignment, there 

may be a need to develop new experimental and instrumentation capabilities.  The definition of the 

variables in the x-vector is not just a modeling issue.  The experimenter, the requirements-setter, and the 

decision-maker have to be able to operate and communicate in terms of this x-space. 

c.  Simplification  

 The objective of characterizing predictive capability over some high-dimensional x-space can quickly 

require an experimental design that exceeds available or reasonable resources.  One way to avoid this 

problem is to vary only a subset of the variables in x while holding the others fixed at nominal or bounding 

values.  Statistical experimental design methods [e.g., Box, Hunter, and Hunter 1978] should be used to 

efficiently and adequately explore the specified x-space. 

Model simplification is another route to reduce the cost of predictive capability measurement.  For 

example, suppose a model contains high-order effects or phenomena that cannot be controlled or measured 

in an experiment.  It may be more appropriate to make computational predictions without those effects in 

the model and then capture those effects experimentally through the observed prediction errors.  Where 

computational resources are constraining factors, model simplification increases in importance and 

attractiveness, but may also increase the complexity of inferring a computational model’s predictive 

capability from the validation process. 

Analysis 

After conducting a suite of experiments and computational predictions the next task is to analyze the 

resulting data, {xi, yE(xi), yM(xi) : i = 1, 2, … n}.  It is important to note that the subscript i refers to distinct 

experiments.  Both y and x, though, may be fields or vectors containing thousands of measurements or 

calculations.  It is decidedly not the case, however, that thousands of measurements, e.g., of temperature 

over a fine grid of space and time, for one experiment is equivalent to thousands of separate experiments.  

The number and nature of the experiments conducted will determine the precision with which predictive 

capability is measured, not the number of measurements per experiment.  It is the variability of nature’s w’s 

from experiment to experiment (or among replications of the application) that determines the variance of 

prediction error; multiple measurements on one experiment do not capture this variability.  (Incidentally, 

awareness and proper treatment of multiple sources of variation is a characteristic of a careful statistical 

data analysis.)   Given the computational and experimental outcomes from the suite of experiments, the 

objective of the analysis of these results is to measure and/or estimate predictive capability.  The following 

subsections address issues that arise in this analysis. 
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a.  “Metrics”   

Predictive capability at an x-point can be characterized by a variety of “parameters” (in the statistical sense 

of being a characteristic of a probability distribution) pertaining to the probability distribution of ex.  The 

expected value and the standard deviation of ex are two important possibilities. Others might be the square 

root of the expected squared error, the 99th percentile of the distribution of absolute error; the lower and 

upper 95th percentiles on the distribution of ex; and others.  If the computational model was designed to be 

conservative on the high-side (i.e., ex is intended to be negative), the metric of interest might be Prob(ex < 

0).  When ex has a normal distribution all of these distributional characteristics (parameters) are functions of 

the two parameters that characterize a normal distribution, the mean and the standard deviation.   

Any of these measures of predictive capability must be estimated from the experimental and computational 

results.  With limited data, estimation uncertainty will be appreciable.  Statistical methods account for 

estimation uncertainty by methods such as confidence, prediction, and tolerance intervals [see, e.g., Hahn 

and Meeker 1991].  For example, a conclusion might be stated as: with 90% confidence the upper 95th 

percentile of the distribution of ex for a specified x is no more than U90/95.  Hence, with 90% confidence, 

there is at least a 95% probability that nature’s response, y(x), at x will be less than yM(x) + U90/95.  

Comparing such a limit against a requirement provides an assessment of margin.  The essential analysis 

point is that any “metric” of predictive capability derived from the model validation process will be a 

statistical estimate and the reliability of that estimate must also be evaluated and communicated. 

b.  Hypothesis Testing Metrics 

It is common [e.g., Hills and Trucano 2001] to treat model-validation as a hypothesis testing problem.  The 

approach is to create “uncertainty” probability distributions for yE(xi)and yM(xi), separately.  Let ΣE and ΣM 

denote the assumed/estimated covariance matrices for the vectors of experimental and model results, 

respectively.  Then, under the further assumption that the experimental and model “uncertainties” are 

independent random variables, the covariance matrix for the difference between the experimental and 

computational results, d = yE – yM, is  

Σd = ΣE + ΣM.     

A dimensionless metric that measures the distance between the experimental and computational results is  

   X2 = dT(�d)-1d, 

where the T superscript denotes the vector transpose.   

Now let �E and �M denote the expected values of yE and yM.   Under the hypothesis that �E = �M, and the 

assumption that the assumed/estimated covariance matrix, �d, is the actual covariance matrix of d, the 

metric, X2, has a chi-squared probability distribution with degrees of freedom equal to the dimension of the 
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vector of differences.  Comparing the observed value of X2 to percentiles of this distribution provides a test 

of the hypothesis: �E = �M.  Under the further assumption that measurement error is unbiased (has expected 

value = 0) this test is a test of whether the model predictions are unbiased. 

The question asked via this hypothesis test is whether the observed difference, yE – yM, is satisfactorily 

within the combined estimated uncertainties.  When this is not so, the hypothesis is rejected and the model 

is declared invalid.  If the agreement is satisfactory, it is noted that, at least, the data don’t rule out equality 

of �E and �M.  If the agreement is satisfactory, then at least the data don’t rule out equality of �E and �M.  

.Of course, failure to reject an hypothesis does not imply that the hypothesis is true. Indeed, for very 

uncertain yM  or very noisy data, a statistical test will typically not reject the hypothesis unless the model is 

egregiously bad. Because of this, it is only permissible in classical testing to accept a null hypothesis if a 

careful power analysis has been performed, and this can be a difficult undertaking in model validation. In 

the Bayesian approach discussed in the accompanying paper [Bayarri, et al. 2002], one can directly assess 

the posterior probability that the null hypothesis is true, but this is also a difficult computation   

Finally, rejecting the hypothesis of equal underlying expectations, however, does not mean that the model 

is not useful for predictive purposes.  An ensemble of differences might show that yM predicts y (suppose 

there is reason to assume measurement error is negligible) consistently within 15%, which might be 

perfectly tolerable in the context of interest, even though the combined assumed separate uncertainties 

were, speaking heuristically, only 5% in magnitude.  Conversely, if the hypothesis of equal expectations is 

not rejected, this result does not guarantee that useful predictions of y are provided by yM.  In fact, the more 

uncertain yM  is or is assumed to be, the more unlikely it is that the hypothesis of equal expectations will be 

rejected.   Thus, hypothesis-test results, or refinements such as P-values, discussed in the following 

paragraph, associated with the test, are inadequate and inappropriate tools for characterizing predictive 

capability.  

Classical hypothesis testing requires the prior determination of �, the probability of falsely rejecting the 

null hypothesis, and then an acceptance criterion is established that achieves this �.  Rather than the binary 

pass/fail outcome, an alternative is to summarize the test by finding the largest �-value for which the test 

would fail.  This threshold value is termed the P-value and is continuous on the [0, 1] interval.  Stated 

another way, a P-value is the probability of observing a result that contradicts the hypothesis by as much or 

more than does the observed result.  Thus, the greater the disagreement between model and experiment, the 

smaller the P-value is.  But, the P-value does not provide a measure of predictive capability.   

The estimates of the covariance matrices, ΣE and ΣM, are generally based on limited data and other 

information.  Passing or failing the hypothesis test of equal expectations can occur due to errors in 

estimating these covariance matrices, so one does not, in general, achieve a reliable test of the hypothesis of 

unbiasedness. 
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One further flaw in this hypothesis-test metric is that the assumed covariance matrix, �d, created by adding 

the separately constructed covariance matrices for yE and yM, does not capture what may be a major 

contributor to the difference, yE – yM .  That contributor is the effect of the w’s that influence nature’s 

outcome but are not in the model.  The effect of this omission, all else being the same, is to increase the 

probability of declaring the two expectations to be significantly different.   

Approaching model-validation as a pass/fail test of a computational model has led to treating model-

validation as a statistical hypothesis-testing problem.  However, the problem of measuring a model’s 

predictive capability calls for a statistical estimation analysis, which is the objective here. 

c.  Choice of Analysis Variables.   

In both experiments and computations there are a large number of response, or output, variables that can be 

observed and compared.  Making the analysis manageable and the results meaningful and communicable 

requires a careful selection of outcome variables for which to evaluate predictive capability. 

The selection of variables should first be driven by system requirements.  If the requirement is that peak 

strain at a given location should not exceed some value, for example, then the model validation objective is 

to measure the predictive capability pertaining to calculated peak strain at that location.  While it would add 

confidence in the computational model to know that the complete strain vs. time history at various sites in 

the test device can be reasonably well predicted, it is really not appropriate in the given situation to devote 

a lot of analysis effort to measuring predictive capability over an extensive time and space grid.  This 

requirements focus is also a way to greatly reduce the dimensionality of the data, which in general may be 

time-histories of responses such as acceleration, strain, or temperature in time and space, to a small number 

of ‘integral’ variables such as peak acceleration or the time to reach critical temperatures at selected points 

in a system or component.   

d.   Statistical Models 

Statistical analyses are generally carried out by modeling observed data as observations from some family 

of probability distributions, often, but not only, the normal distribution family.  This family is characterized 

by two parameters, the mean and standard deviation, and the objective of the analysis is to estimate these 

two parameters or pertinent functions of them, such as the probability that a characteristic of interest 

exceeds its required lower limit.  Statistical tolerance limits, such as U90/95 in the previous subsection, are 

based on such models.  For a given set of data, different values of U90/95 would be obtained using normal 

distribution theory than would be obtained based on, say, the Weibull or logistic distributions.  The choice 

of distribution family, however, is not ad hoc or blind.  The data themselves can be used to guide the 

selection and to assess the aptness of a selected distribution family.  Limited data may be consistent with 

different distribution families in which case one could choose a family based on mathematical convenience, 

precedence, or other subjective grounds.  Or, one could conduct an analysis under a variety of plausible 
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models to illustrate the sensitivity or insensitivity of the results to the choice of statistical model and to 

envelope the results.   

For the sake of illustration, suppose the normal distribution family is used to analyze the observed 

prediction error data, {xi, e(xi) = yE(xi) – yM(xi)} .  Suppose further, for the time being, that in the 

experimental region it has been established that measurement error is statistically negligible relative to 

prediction error.  The statistical model for the observed error data will be that at x, e(x) is normally 

distributed with a mean β(x) and standard deviation σ(x) (the subscripts are suppressed for ease of notation).  

If replicate experiments are conducted at a given xi (allowing the w’s to vary appropriately), then β(xi) and 

σ(xi) can be estimated directly from the data at xi.  More likely, because of limited data, and more 

appropriately, because there are apt to be smooth patterns in β(x) and σ(x) over regions in the x-space, the 

analysis objective would be to use the ensemble of data to estimate the bias and standard deviation 

functions of x.  To this end, the fitting functions could range from simple linear models to spatial or 

statistical process models [e.g., Chiles and Delfiner 1999], depending on the nature and the amount of data.  

The analysis would be done in an exploratory, adaptive mode as different models for the bias and standard 

deviation functions are tried.  For high-dimensional x and limited data, it may not be possible to obtain 

meaningful estimates.  Hence, there is a need, as discussed above, to reduce the dimensionality of x in order 

to obtain useful results.   

 e.  Statistical Analyses 

The basic objective of statistical data analysis is to extract and convey what the data have to say about 

various issues, the resolution or clarification of which is the reason the data were obtained.  There are a 

variety of statistical paradigms that have been developed to meet this objective.  We focus on the two most 

prominent and their application to the problem of characterizing predictive capability. 

Frequentist 

As noted in the previous section, a statistical analysis starts by modeling data as realizations of random 

variables, generally with some underlying structure.  For example, in a situation in which a response, y, is 

observed at various values of a possible explanatory variable, x, the “simple linear regression” model for 

such data is: 

y = α + βx + e;   e ~ N(0, σ2).      (5) 

Thus, (5) means that observed y is modeled as a linear function of x plus “random error” generated by a 

Normal distribution with mean zero, variance σ2.  (The observed {x,y} data and diagnostics calculated from 

them can be used to assess the appropriateness of this model, so the adoption of the model, (5), is not done 

blindly.) The three parameters in this model, α, β, and σ, are unknown and the analysis objective is to 

identify plausible values of these parameters, given the data.  (With this information about the model’s 
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parameters, one can address issues such as how large might y be for x within some specified range and the 

probability it is within requirements.)  Finite data cannot uniquely identify the parameters, but can identify 

parameter regions that are consistent with the observed data to some specified extent..  To this end, the 

frequentist approach is to derive estimators (functions of the data) of the model parameters that have known 

statistical relationships with the parameters, relationships that permit the analysis objectives to be met.  For 

example, for the linear regression model, the least squares estimator of the slope, β, is  

b = Σ(x-x-)(y-y-)/Σ( x-x-)2,  

where x- and y- are the means of the observed x and y data.  This estimator has the “frequentist” property 

that in repeated realizations of data from the model (5) the expected value of b is β.  Thus b is an unbiased 

estimator of β.  Further, the precision of the estimator is given by the variance of b, which is σ2/Σ(x-x-)2.  

The unknown variance, σ2,  is estimated by the “residual mean square,” say s2, and the quantity, s/[Σ(x-x-

)2].5, which is the square root of the estimated variance of b, is termed the standard error of b, denoted here 

by se(b).  This standard error is important because the “pivotal quantity,” 

 

  t = (b – β)/se(b), 

 

has a known probability distribution: the Student’s t distribution with, in this case, n-2 degrees of freedom 

(df).  This frequentist property enables one to bound β, given b and se(b).  For example, a 95% confidence 

interval on β is those values of β for which t will fall in the middle 95% of the t(n-2) distribution.  Thus, to 

be consistent with the data, as summarized by b and se(b), at the 95% level, β would have to be in the 

derived confidence interval.  (See any statistical text on regression for more details of this analysis.)   

The frequentist approach encounters difficulty in complex situations for which exact variances and pivotal 

relationships cannot be obtained.  For the case at hand, the prediction-error data may exhibit a strong 

nonlinear relationship with several x-variables and non-Normal patterns of variability.  To work these sorts 

of problems, various approximations are used.  For example, Taylor’s series expansions can lead to 

approximate standard errors of complex estimates and further analysis [Satterthwaite’s method; see e.g., 

Ostle 1963] can associate an approximate df associated with the standard error.  Normal distribution-theory 

results then provide approximate confidence intervals, perhaps after data-transformations that enhance the 

accuracy of such approximations.  Another approach is to estimate the probability distributions of pivotal-

like quantities via parametric or nonparametric Bootstrap methods [Efron and Tibshirani 1993].  The 

trouble with these approximate methods is that they are ‘guaranteed’ to be sufficiently accurate only with 

large enough data sets, and the definition of ‘large enough’ is highly situation-dependent.  Their 

performance in small-data set situations is highly situation-dependent.  The only way to know how well 

“truth” is approximated is to know “truth,” in which case one wouldn’t need an approximation.  When the 

available data are limited, as is common in model validation scenarios, large-scale simulations, spanning a 
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variety of “truth-states,” are often required to provide adequate insight into the adequacy of an 

approximation.  In complex situations, such simulations are often not feasible. 

 
Bayesian 

The Bayesian approach adds further probabilistic structure to the data model by assuming that the fixed but 

unknown parameters underlying the data are themselves random realizations from assumed “prior 

distributions.”  Bayes Theorem is then used to “update” these prior distributions, which means to obtain the 

posterior distribution of the parameters, given the data.  For some standard problems, such as the simple 

linear regression model, and well-chosen priors, closed form solutions are possible.  Modern computing 

capabilities, however, permit more general Bayesian analyses to be well-approximated in complex 

situations.  (See [Bayarri et al. 2002] for details and discussion.)   

Bayesian analysis does not require large data sets for implementation in complex situations, as do the 

approximations discussed earlier in the frequentist approach.  On the other hand, when there is only a small 

amount of data, the choice of prior distribution can be critical to the analysis and influential on the results.  

Whereas the adequacy of a frequency model for the data can be evaluated via the data, the data provide 

very little information regarding the adequacy of the assumed prior distribution.  (Because we have data 

from only one value of β, for the linear model example, it is hard to evaluate, from the data, how well the 

assumed underlying variability of β is represented by the assumed prior distribution.)  There are two 

approaches to this issue. 

The subjective Bayesian approach is to use prior distributions to represent degree of belief or state of 

knowledge about the parameters, prior to collecting the data.  This can be both a blessing and a curse.  The 

blessing is that expert opinion and/or partial prior scientific knowledge can easily be incorporated into the 

Bayesian analysis, allowing for predictive accuracy assessment to be performed based on a mixture of prior 

knowledge and data; this can be especially valuable when it is impossible to perform a complete suite of 

validation experiments.  The curse is that such statements will often be treated more skeptically by others 

than will statements based primarily on data. One device for overcoming such skepticism is to conduct 

sensitivity studies with respect to the choice of priors but, in complex situations, this can become 

unmanageable.   

The objective Bayesian approach is to choose innocuous priors, priors that will minimally influence the 

message in the data, then use the Bayesian machinery to obtain results that can be regarded as useful 

approximations to unobtainable exact frequentist results.  For example, a 95% posterior probability interval 

on a parameter may be nearly the same as a 95% statistical confidence interval.  In the linear regression 

example, for a suitable objective prior, the posterior distribution of β, given the data, will exactly satisfy the 

t-distribution relationship in the previous subsection.   
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An advantage of the objective Bayesian approach is that one set of machinery can be used to work all 

problems.  One can write down the defining relationships between data and parameters and adequate 

computing power can work out the implications.  A problem with sparse data and complex relationships is 

that selected prior distributions can still be influential, so sensitivity analyses are required to try to discern 

how much of the message is data and how much is artificially introduced by the prior. 

 

Comment.   

There can be sharp (and entertaining) philosophical and technical disagreements between Bayesian and 

frequentist adherents, although the two schools seem to have been growing closer in recent years.  In any 

case, it is our view that such issues are secondary to those that must be addressed in order to conduct the 

right experiments and generate enough of the right kind of data to permit a meaningful evaluation of 

predictive capability by whatever method.  

f.  Model Tuning   

When the analysis of prediction error data shows evidence of a bias in the computational model, one can 

potentially either incorporate that bias into subsequent prediction error limits, in essence calibrating out the 

model’s bias, or one can modify the model in an attempt to remove the bias.  One mode of modification is 

to adjust the φ parameters, which may often be uncertain estimates of, e.g., materials properties.  Such 

‘tuning’ can be suspect, but there are legitimate analyses that compensate for parameter estimation in 

characterizing the uncertainty of subsequent predictions.  

Consider the case of a simple linear model, yM = � + �x.  If an experiment is done at x1, yielding y1, then 

there are infinite ways to adjust � and � to achieve perfect agreement between yM and y1.  No rational 

statement could be made, however, about predictive capability for the adjusted model.  If a second 

experiment is done at x2, then a unique � and � can be found to achieve perfect agreement at both points, 

but no statement about subsequent predictive capability can be made (obviously, a claim of perfect 

predictions is bogus).  For three or more experiments, however, we can use standard statistical methods to 

estimate � and � and characterize the prediction error for subsequent predictions based on these estimates.  

The following case study [Easterling 2002] demonstrates this analysis.  This sort of prediction-error 

analysis that accounts for tuning can be extended to the situation of more complex, higher-dimensional 

models, as in the accompanying paper [Bayarri, et al. 2002].  

For complex codes and corresponding experiments, one computation and one experiment can each yield 

thousands of data-values – traces of multiple response variables over time and space.  There may be many 

parameters in φ that could be adjusted to improve the agreement between computation and data.  Even 

when there is a scientific basis for selecting the parameters on which to tune the computation, the residual 

errors over time and space after tuning to one experimental outcome do not contain any information about 

predictive capability.  One could only infer at best that: If another similar experiment were run and tuned, 
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the resulting residual errors should look like the post-tuning errors obtained in the first experiment.  One 

could not infer: If we used the tuned model to make a prediction in a similar experiment, the error of that 

prediction should be in line with the post-tuning errors we obtained in the initial experiment. 

g.  Dealing With Bias 

The finding of (possibly x-dependent) bias can lead down several paths:  i. Bias could be evidence of 

correctable flaws in either the computational model or the experiments.  Tuning the model parameters is 

one potential fix, though as just discussed, tuning can lead to misleading impressions of predictive 

capability.  Making fundamental changes in the computational model’s structure is another possible fix.  

The maturity of the model would be a factor in whether to pursue this fix.  If the model is modified, 

additional experimentation, essentially another loop through the validation process, may be required to 

“validate” the model changes.  Bias in the experiments’ conduct or measurements is a source of apparent 

prediction-error bias that should be eliminated (rendered negligible), to the extent possible.  Otherwise, we 

will be making predictions of a biased measurement of nature’s outcome, not the outcome itself.  

ii. If there are no (affordably) correctable flaws, and one still wants to use the computational model to make 

predictions, then another way to deal with bias is to adjust model predictions by adding the estimated bias 

function to them.  Such an empirical fix is regarded as bad science by some, bit it only seems prudent to 

take advantage of the superior predictions that are available by bias-correction, until the source of the bias 

in the model can be identified and corrected. 

Bias-correction of a model prediction for a single input often results in roughly replacing the computational 

model by an empirical model built from the validation-experiments’ data.  To see this, let b(x) denote the 

estimate of the prediction-error bias function, β(x) (= expected value of e(x)).  This estimate, by whatever 

means it is obtained, can be regarded as a “smooth” of the observed prediction error data, {xi, yE(xi) – 

yM(xi)}.   Let yM^ denote the bias-corrected prediction.  Then, 

  yM^ = yM + smooth(yE - yM) 

       ≈ smooth(yE). 

That is, the model essentially cancels out so that prediction is based on a possibly science-guided, but 

nevertheless empirical function based on the validation data.  Thus, bias-correction can effectively reject 

the computational model in favor of the data.  .  In the Bayesian approach, bias-correction is often less 

extreme, with the answer being a weighted average of the model-prediction and the data-prediction, with 

the weights (typically themselves a function of x) reflecting the variabilities and uncertainties in the models 

and data.  
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In certain situations, the model-predictions can dominate the data-predictions. One such situation is when 

the model is used to predict outside the range of the data. For instance, in the Bayesian approach, the 

weight that is given to the data-prediction will typically sharply decline as one moves away from the range 

of the data. A second important situation is when predictions for a small change in input values is desired. 

Indeed, if one desires to predict the difference between reality at x and x + �, the bias-corrected answer will 

typically behave as  

yM^(x)- yM^(x+��) = yM(x)- yM(x+��)  + smooth(yE(x)- yM(x)) - smooth(yE(x+��)- yM(x+��)) 

                            ≈ yM(x)- yM(x+��), 

so that the result from the model-prediction then dominates.  Note that this is consistent with the commonly 

heard folklore that even globally biased models are often useful for predicting small changes. 

 

There are situations in which bias is deliberately introduced into a computational model: e.g., a simplified, 

conservative mathematical model is used for a complex relationship that is difficult to model more 

accurately.  The analysis of the observed prediction error data would quantify the degree to which this 

conservative strategy was successful.  The choice of whether to use model predictions directly, or to bias-

correct them would depend on the results of the analysis. 

Regardless of how bias is dealt with, this discussion highlights an important point: Having enough data to 

estimate the bias function adequately means having enough data to build an empirical model of the 

phenomena of interest, at least within the experimental region.   This observation is not to downplay the 

value of computational model, but it does indicate that data-based modeling still has a role to play. 

h.  Dealing With Variation 

In addition to bias, the variance of prediction error is an important measure of predictive-cpability.  The 

statistical analysis of the observed prediction-error data can result in an estimate of the variance of 

observed prediction error as a function of x.  Denote this estimate by s2(x).   Under the general statistical 

model, (4), s2(x) estimates the variance of the sum of prediction error, ex, and measurement error, δx.  Under 

the generally plausible assumption that measurement error is independent of prediction error, the variance 

of this sum, ex + δx, is σe
2(x) + σδ2(x), the sum of the individual variances.  Unless individual experiments 

have been measured more than once, these two “variance components” cannot be separated using the 

results of the model-validation suite of experiments.  The recourse in this case is to separately estimate the 

variance of measurement error via gauge studies or other evaluations of measurement processes, then 

subtract that estimated variance from the estimated total variance.  The accompanying implementation 

paper, [Easterling 2002] illustrates this analysis. 
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Suppose that a consideration of the estimated prediction-error variance in the appropriate context leads to a 

conclusion that this variance is “too large.”  This is an indication that the unmodeled, uncontrolled w’s in 

nature are causing more variation than is acceptable, either in terms of how well the experiments can be 

predicted or in terms of the ability to infer predictive-capability in untested applications.  That is, large 

observed prediction-error variation.may mean that there are just too many unknowns in controlled 

situations to risk extrapolation to less controlled situations.   The recourse, in terms of our framework, 

would then be to attempt to incorporate some of these w’s into the model, i.e., convert some of the w’s to 

x’s.  For example, replace a 2-D model of a 3-D phenomenon by a 3-D model.  This means that the 3-D 

characteristics of an experimental unit, such as a map of thicknesses and diameters (assumed constant in a 

2-D model), would need to be measured so that unit-specific model predictions could be computed and 

compared to each unit’s experimental outcome.   

 i.  Inference 

While it is valuable to know, thorough statistical evidence, how well a computational model can predict the 

outcomes of observable situations, computational models are particularly valuable if we “know” their 

predictive capability in situations that cannot be tested.  Such situations occur, e.g., when the objective is to 

predict the outcomes of abnormal, or catastrophic events involving major systems such as transportation or 

weapons.  To characterize predictive capability in these situations requires extending information about 

predictive capability where it can be evaluated to the applications of interest.  This is the “inference bridge” 

in Fig. 2. 

The inference bridge can be constructed, first of all, if the underlying scientific relationships can be 

assumed to extend over a region containing both the xA and the xE.  Secondly, there needs to be a credible 

basis for similarly extending the prediction-error distribution.  The scientific basis for this extension, 

however, is more tenuous because the prediction-error distribution, after all, reflects factors in nature not 

captured by the scientific model.  Nevertheless, an informed judgment can sometimes be made.  When 

there is a mathematical connection, statistical methods can account for and reflect the ‘distance’ between 

these points.  The greater the distance, the greater the prediction uncertainty is.   

An example is simple linear regression, y vs. x.  The data in the experimental region may support the 

assumptions that the expected value of y is a linear function of x and that deviations from this relationship 

are randomly distributed according to a Normal distribution with mean zero and a variance that is constant 

across the experimental region.  Given the assumptions that both the linear model and the homogeneous-

variance, unbiased, Normally-distributed extra-model variability can be extended from the experimental 

region to the application region, statistical methods exist for characterizing the precision of application 

predictions based on the experimental data [see any statistical text that includes regression analysis].  The 

statistical analysis is conditional on those assumptions; it does not characterize how well they extrapolate.  

Theory may support extending the linearity assumption, but assumptions about the extra-model variability 
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are much more ad hoc.  There is no guarantee, statistical or otherwise, e.g., that unbiasedness will hold 

outside of the experimental region, so inferences will be conditional on such assumptions.  Subject-matter 

knowledge about the differences between experimental and application conditions, however, can lend 

credence to the assumptions.  As with a Bayesian analysis, the sensitivity of inferences to untestable 

assumptions should be investigated. 

As mentioned earlier, the spatial representation of the experimental design (in x-space) and inference 

problems suggests that spatial statistical methods [Chiles and Delfiner 1999], such as kriging, can be used 

to model a metric, such as the estimated standard deviation at x, as a function of x, then estimate the value 

of that metric at xA and estimate the uncertainty of that estimate. 

There are several different inference situations (and a careful taxonomy of these is a research need).  In one 

category, predictions of system performance may be made during design or development.  Then, when the 

system goes into operation it provides field or system-test experience that can confirm or deny the 

assumptions on which the development-based inferences, say, were drawn.  Such experience provides 

prediction-error data that may be pertinent for the next round of model and system development.  In 

another category, such as predictions of abnormal events such as nuclear power plant accidents, it is 

unlikely and undesirable that data will be obtained to compare against model-based predictions.  This 

situation puts a premium on transparency and communicability of the experimental evidence and its 

analysis in order that users of computational predictions have a clear view of their limitations and risks. 

 

One other inference situation is discussed in the following subsection.  In experiments, the conditions, x, 

may be held fixed at specified levels, while in applications, they will vary.  Examples are temperatures, 

velocities, impact conditions – boundary conditions, in general.  Given assumptions about the nature of that 

variability in the application, inferences about the resulting distribution of y can be obtained.  Extrapolation 

can still be a concern here if, e.g., one controlled experimental temperatures in the range of 600C to 1000C, 

then sought to predict the distribution of application outcomes when temperature is assumed to vary 

randomly between 1200C to 1500C.   

 

If no credible inference is possible, one may have to re-examine everything from requirements to system 

design to test program.  More system-like testing may be required to reduce the inferential gap.  A system 

may have to be redesigned so as not to be vulnerable to an environment whose effect cannot be well-

predicted computationally.  The sort of framework proposed here provides a vehicle for addressing such 

fundamental issues. 

 j.  Distributional Predictions  

A deterministic code calculates a prediction for a single, completely specified situation.  Predictions of 

interest, though, are often ‘statistical,’ or distributional predictions, not single point predictions, as 
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considered up to this point.  For example, in a weapon systems context, delivery and target conditions, such 

as impact angle, impact velocity, and target hardness, vary from mission to mission.  In such situations the 

objective may be to predict the resulting probability distribution of some characteristic of weapon-

performance, such as maximum shock on a key component, over some probability distribution of 

environmental conditions, and then to predict characteristics of this distribution.  These characteristics 

could be the distribution’s mean, its upper two-sigma point, or the probability of exceeding a failure 

threshold.   

 

Suppose that xr, a subset of the variables in x, is to be treated as random to obtain a distributional 

prediction.  Suppose further, as a starting point, that the probability distribution of xr is a given.  Our 

objective is to estimate the resulting distribution of y and parameters associated with it.  The statistical 

model specified above in (3) provides the means to do this, given appropriate experiments and data. 

Consider now the model relating nature’s outcome at x with the model prediction:  

   y(x) = yM(x) + ex       (6) 

The law of total variance[8] says that 

var(y) =  varx[E(y|x)] + Ex[var(y|x)],    (7) 

where var(.) denotes variance, E(.) denotes expectation, and | denotes conditioning.  The subscript indicates 

the random variable over which these moments are calculated.  In words, (6) says that the unconditional 

variance of y is the sum of the variance of the conditional expectation of y, given x, and the expected value 

of the conditional variance of y, given x.  Applying this relationship to the problem at hand leads to: 

   varr(y) = varr[yM(x) + �x] + Er[var(ex)],    (8) 

where the subscript r denotes that the indicated variance or expectation is with respect to the distribution of 

xr and �x is the bias function, the expected value of ex.  .   

Suppose, to simplify things for this discussion, that �x = 0, for all x in the x-region of interest.  Then (8) 

becomes 

   varr(y) = varr(yM) + Er[�x
2].     (9) 

Propagation of the assumed distribution of xr through M(x:�), by methods such as Monte Carlo, provides an 

estimate of the first right-hand term in (9).  Model-validation experiments and data analysis, if successful, 

provide an estimate of �x
2, as a function of x.  The expectation of this function with respect to the 

distribution of xr could then be calculated or approximated to estimate the second right-hand term in (9).  In 
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the ideal situation in which �x is independent of x in the region of interest, the second right-hand term is 

simply �2, the variance of the difference between nature and computation.  In either case I call �x
2 the 

‘extra-model’ variability.  Similarly to (9), other parameters of the distribution of y, such as an exceedance 

probability, would have to be estimated by folding in the extra-model variability represented by the 

distribution of ex. 

Equation (9) shows that the role of the extra-model variability is not to provide bounds on the 

computational prediction, as was the case for point predictions.  Rather, it is to add an additional variance 

component to the analysis; the effect of this addition is to inflate the variance one would get from 

propagation through the code.  By itself, the code propagation variance, the first right-hand term in (9), 

underestimates the variance of nature’s y, the left-hand term.  If the code propagation variance, varr(yM), 

was used as an estimate of nature’s variation, then, e.g., failure probabilities would tend to be 

underestimated, sometimes drastically, even if the model has been deemed valid via a hypothesis test.  To 

obtain valid distributional predictions it is necessary to combine the estimated ‘extra-model variability’ 

with the estimated model-propagated variability.   

Traditional code uncertainty-propagation analyses work the first right-hand term in (9), in various 

manifestations.  Much research has been and continues to be conducted trying to wring out one more 

significant digit in approximations to this first term, all the while ignoring the second term (sometimes of 

necessity in situations in which meaningful model-validation experiments cannot be run).  The only way to 

know whether the second term is ignorable is to run the model-validation experiments and perform 

analyses to evaluate it.  Estimating the second term and the bias function, �x, should be the objective of 

model-validation programs.  This is a much harder problem to work.  It requires designing and running 

experiments, not just conducting computer exercises.  It requires test facilities.  It requires collaboration 

with experimentalists.  It is messy.  But it is necessary if credible measures of predictive capability are to be 

obtained.  See [Aeschliman and Oberkampf 1997] for discussions and illustrations on this point in the 

context of fluid dynamics. 

Summary 

This paper has attempted to lay out the statistical foundations of model-validation, by which we mean the 

process of evaluating the predictive capability of a computational model.  Issues pertaining to the design, 

conduct, and data analysis of suites of model-validation experiments were discussed.  Our primary message 

is that a substantial amount of experimentation may be required to develop a credible evaluation of 

predictive capability.  Success is not always assured, particularly when findings pertaining to predictive-

capability in an experimental regime must be extrapolated to a system-application environment.  The real 

test of the proposed statistical approach will come through attempts to implement the ideas and concepts 

presented.  We believe that the appropriate statistical theory and methods exist, research should be aimed at 
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situation-specific implementation of these methods.  To this end, implementation methodology is illustrated 

in two accompanying papers, [Bayarri et al. 2002 and Easterling 2002]. 

 

Computational models are and will (have to) be used to make predictions of complex, unobservable events 

in a wide variety of applications, whether or not a credible statistical evaluation of predictive-capability can 

be accomplished.  Even if the ideal outcome we set forth is not achieved, the reality checks provided by a 

robust suite of comparisons of experiments to computational prediction increases credibility.  Furthermore, 

a careful statistical evaluation of predictive capability within the experimental region is a valuable step 

beyond much current practice.  We hope that the framework and examples we present encourage producers 

and consumers of computational predictions to increase the statistical content of their efforts to construct 

and communicate the credibility of computational predictions.   
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