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Abstract

Objective priors for sequential experiments are considered. Common priors, such

as the Jeffreys prior and the reference prior, will typically depend on the stopping rule

used for the sequential experiment. New expressions for reference priors are obtained

in various contexts, and computational issues involving such priors are considered.
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1 Introduction

Bayesian analysis using objective or default priors has received considerable attention; cf.

Datta and Mukerjee (2004), Bernardo (2005), Berger (2006), Ghosh, Delampady and Samanta

(2006), and references therein. The latter book, in particular, contains an excellent discus-

sion of the issues and controversies involving objective priors, reflecting the many years of

leadership in the field of J.K. Ghosh (along with his many coauthors).

A common objective prior is the Jeffreys prior (Jeffreys, 1961), which is proportional to

the square root of the determinant of the Fisher information matrix. The Jeffreys prior is

quite useful for a single parameter model, but can be seriously deficient for multiparameter
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models; this has led to preference for reference priors in multiparameter situations (cf. Berger

and Bernardo, 1992, and Bernardo, 2005).

Almost all results on objective priors have been for fixed sample size experiments. In

practice, however, statistical experiments are often conducted sequentially, with a known

stopping rule (cf. Siegmund, 1985, and Ghosh, Sen and Mukhopadhyay, 1997). Bartholomew

(1965) and Geisser (1979) introduced the notion that objective priors for a sequential exper-

iment should depend on the expected stopping time. Ye (1993) derived the reference prior

for sequential experiments when the expected stopping time depends on the parameter of

interest only. In this paper we generalize Ye’s result in various directions, and provide some

new computation tools for use with priors that depend on expected stopping times.

The paper is arranged as follows. Section 2 reviews the Fisher information matrix for

sequential experiments with a known stopping rule, derives the Jeffreys/reference prior for

illustrative one-parameter examples, and then provides an expression for multiparameter ref-

erence priors when the stopping rule satisfies a certain property. In Section 3, reference priors

and matching priors (cf. Datta and Mukerjee, 2004) are derived for Bar-Lev and Reiser’s

(1982) two-parameter exponential family. Illustrations are given for normal distributions

with several commonly used stopping times.

Computation of expected stopping times is often difficult, so that utilization of reference

priors for sequential experiments is typically challenging. In Section 4, an approximation

to the reference prior for sequential experiments is introduced which is exact under some

circumstances, seems to be a reasonable approximation in general, and allows for much

simpler computation.
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2 Noninformative Priors with a Known Stopping Rule

2.1 Notation and the Jeffreys-rule Prior

We assume that X1, X2 · · · , is an iid sequence of random variables with density f(x | θ) that

is regular (Walker, 1969). Here θ is a q × 1 vector of unknown parameters. Let N denote a

proper stopping time for the sequential experiment – see Govindarajulu (1981) for definition,

which also is a source for the following well-known lemma:

Lemma 1 Let I(θ) be the Fisher information matrix based on X1. Under the proper

stopping time N , the Fisher information based on (X1, · · · , XN) is

I∗ = IEθ(N)I(θ). (1)

The Jeffreys-rule prior (Jeffreys, 1961) for θ is defined as the square root of the determi-

nant of the Fisher information matrix. In the fixed sample size case, this is πJ(θ) ∝ |I(θ)|1/2.

For the sequential experiment, it follows from the above lemma that Jeffreys prior is

π∗

J (θ) ∝ {IEθ(N)}q/2|I(θ)|1/2 ∝ {IEθ(N)}q/2πJ (θ) . (2)

Example 1 Let Nr be a random variable with a negative binomial distribution NB(r, p),

where r is a positive integer and p ∈ (0, 1). Let X1, X2, · · · be a sequence of Bernoulli random

variables with success probability p. Nr can be viewed as a stopping time for this Bernoulli

sequence as follows:

Nr = inf{n ≥ 1 : X1 + · · ·+Xn = r}.

The probability of Nr is

P (Nr = k) =

(
k − 1

r − 1

)
pr(1 − p)k−r, for k = r, r + 1, · · ·

An easy computation yields IEp(Nr) = r/p. Since the Jeffreys rule prior for a Bernoulli

random variable is πJ (p) ∝ 1/
√
p(1 − p), it follows from (2) that the Jeffreys rule prior for
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the negative binomial distribution is π∗

J(p) ∝ (r/p) πJ(p) ∝ 1/(p
√

1 − p). This, of course, is

well known from a direct computation with the negative binomial distribution, as discussed

in Geisser (1984) and Bernardo and Smith (1994, Example 5.14, p. 315).

We next consider an example with a continuous stopping time.

Example 2 Let {Z(t) : t > 0} be a Brownian motion with constant drift θ and variance 1

per unit time, so Z(t) ∼ N(θt, t). Let −∞ < a < 0 < b <∞, and let Tab denote the random

stopping time

Tab = inf{t > 0 : Z(t) ≤ a or Z(t) ≥ b}. (3)

It follows from Hall (1992) that

IEθ(Tab) =





1

θ

{
b− (b− a)

e2bθ − 1

e2(b−a)θ − 1

}
, if θ 6= 0,

−ab, if θ = 0.

Note that the constant prior is the Jeffreys prior based on stopping at a fixed time (Polson

and Roberts, 1993; Sivaganesan and Lingam, 2002), from which it follows that the Jeffreys

or reference prior for this situation is π(θ) =
√

IEθ(Tab).

This is of additional interest because of the study in Brown (1988), which showed that

the commonly used estimate Z(T )/T , which is the posterior mean under a constant prior for

θ, is inadmissible under estimation with squared error loss. Brown (1988) further suggested

that prior distributions which behaved like |θ|−1 as |θ| → ∞ were optimal for this situation.

The Jeffreys/reference prior has behavior |θ|−1/2 as |θ| → ∞, and so is not of this form, but

admissibility is very dependent on the loss function used. Indeed, it can be argued that a

weighted-squared error loss is appropriate for this situation, and the reference prior is likely

admissible for an appropriate weight.

2.2 Reference Priors

Reference priors depend on a grouping and ordering of the parameters; see Berger and

Bernardo (1992). Suppose that θ = (θ(1), · · · , θ(m)) is an m-ordered grouping, where the
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dimension of component θ(i) is qi for i = 1, · · · , m. Datta and Ghosh (1995) considered the

special case in which the (fixed sample size) Fisher information matrix is diagonal, with the

diagonal elements being products of functions of the θ(i). Our first result is a generalization

of their result.

Theorem 1 Suppose that the Fisher information matrix corresponding to a single obser-

vation X1 is of the form

I(θ) = diag
( m∏

i=1

G1i(θ(i)), · · · ,
m∏

i=1

Gmi(θ(i))
)
, (4)

where Gli is a qi × qi matrix. Assume further that the expected stopping time is of the form

IEθ(N) =
m∏

i=1

gi(θ(i)). (5)

Then the reference prior for θ in the sequential experiment is

π∗

R(θ(1), · · · , θ(m)) ∝
m∏

i=1

[gi(θ(i))]
qi/2πR(θ(1), · · · , θ(m)), (6)

where πR(θ(1), · · · , θ(m)) is the reference prior based on the single observation X1, given by

πR(θ(1), · · · , θ(m)) =
m∏

i=1

|Gii(θ(i))|1/2. (7)

Proof. The proof is essentially identical to that in Datta (1996), noting that, under

(5), the sequential Fisher information matrix has the product structure of Datta and Ghosh

(1995).

This theorem can also be considered to be a generalization of Ye (1993), who considered

the case where IEθ(N) depends only on θ(1), the parameter of interest.

Berger and Bernardo (1992) suggested that one should always try to use a one-at-a-

time reference prior, where each component of the grouping of parameters contains only one

parameter. The following result is an immediate corollary of Theorem 1.

Corollary 1 Suppose that the conditions of Theorem 1 hold. If qi = 1, for i = 1, · · · , m =

k, then the resulting one-at-a-time reference prior for θ in the sequential experiment is

π∗

R(θ) ∝
√

IEθ(N)πR(θ1, · · · , θk).
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For later purposes, we also note another corollary of Theorem 1, which applies if the

dimension of each component of the grouping of parameters has dimension 2.

Corollary 2 Suppose that the conditions of Theorem 1 hold. If all qj = 2, then the

reference prior for θ in the sequential experiment is

π∗

R(θ) ∝ IEθ(N)πR(θ(1), · · · , θ(m)).

3 A Two-Parameter Exponential Family

3.1 The Model and Reference Priors

Bar-Lev and Reiser (1982) considered the following density function of the generic two-

parameter exponential family:

f(x | θ1, θ2) = a(x) exp{θ1U1(x) − θ1G
′

2(θ2)U2(x) − ψ(θ1, θ2)}, (8)

where θ1 < 0, θ2 = IE{U2(X) | (θ1, θ2)}, Gi(·), (i = 1, 2) are infinitely differentiable functions

satisfying G′′

i > 0, and ψ(θ1, θ2) = −θ1{θ2G′

2(θ2) − G2(θ2)} + G1(θ2). This is a large class

of distributions, which includes, for suitable choices of G1, G2, U1 and U2, many popular

statistical models such as the normal, inverse normal, gamma, and inverse gamma. Table 1,

reproduced from Sun (1994), indicates how each distribution arises.

Table 1. Special cases of Bar-Lev and Reiser’s (1982) two parameter exponential family,

where h(θ1) = −θ1 + θ1 log(−θ1) + log(Γ(−θ1)).

G1(θ1) G2(θ2) U1(x) U2(x) θ1 θ2

N(µ, σ2) −1
2
log(−2θ1) θ2

2 x2 x −1/(2σ2) µ

Inverse Gaussian −1
2
log(−2θ1) 1/θ2 1/x x −α/2

√
α/µ

Gamma h(θ1) − log θ2 − log x x −α µ

Inverse Gamma h(θ1) − log θ2 log x 1/x −α µ
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Let X1, X2, · · · be a sequence of random variables from (8). The Fisher information per

observation is

I(θ1, θ2) =



G′′

1(θ1) 0

0 −θ1G′′

2(θ2)


 .

Thus the Jeffreys prior for a single observation is

π
J
(θ1, θ2) ∝

√
|θ1|

√
G′′

1(θ1)G
′′

2(θ2). (9)

When either θ1 or θ2 is the parameter of interest, it is shown in Sun and Ye (1996) that the

one-at-a-time reference priors are

π
R
(θ1, θ2) =

√
G′′

1(θ1)G
′′

2(θ2). (10)

The parameter θ2 is the expectation of U2(X1). Bose and Boukai (1993) considered

inference about θ2 in sequential experimentation with the following stopping time:

Na = inf
{
n ≥ m0 : Yn < nG′

1

(
−a

2

n2

)}
, a ≥ 0, (11)

where Yn = n−1∑n
i=1 U1(Xi) − G2{n−1∑n

i=1 U2(Xi)} and m0 ≥ 2 is an initial sample size.

From Theorem 2 of Bose and Boukai (1993), we have

lim
a→∞

Na

a
=

1√
|θ1|

a.s. (12)

lim
a→∞

IEθ

(Na

a

)
=

1√
|θ1|

. (13)

Bar-Lev and Reiser (1982) showed that the distribution of Yn does not depend on the

parameter θ2. So condition (5) satisfies when either θ1 or θ2 is the parameter of interest.

The following result is immediate from Theorem 1 or Corollary 1.

Fact 1 (a) The Jeffreys prior for (θ1, θ2) in model (8) with the stopping time (11) and when

a is large is approximately

π∗

J(θ1, θ2) ∝
√
G′′

1(θ1)G
′′

2(θ2). (14)
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(b) The one-at-a-time reference prior for (θ1, θ2) in model (8), when either θ1 or θ2 is the

parameter of interest, the stopping time (11) is used, and a is large enough, is approximately

π∗

R(θ1, θ2) ∝
1

|θ1|1/4

√
G′′

1(θ1)G
′′

2(θ2). (15)

Example 3 Suppose X1, X2, · · · , are a sequence of N(µ, σ2) random variables. Then θ1 =

−1/2σ2, θ2 = µ, G′

1(θ1) = −1/2θ1, and Yn =
∑n

i=1(Xi − Xn)2. The stopping rule (11)

becomes

Na = inf
{
n ≥ m0 : n−1

n∑

i=1

(Xi −Xn)2 < n2/(2a2)
}
.

So the priors (9), (10), (14), and (15) are, respectively,

πJ(µ, σ2) ∝ 1

(σ2)3/2
, πR(µ, σ2) ∝ 1

σ2
, π∗

J(µ, σ2) ∝ 1

σ2
, π∗

R(µ, σ2) ∝ 1

(σ2)3/4
(16)

or equivalently,

πJ (µ, σ) ∝ 1

σ2
, πR(µ, σ) ∝ 1

σ
, π∗

J(µ, σ) ∝ 1

σ
, π∗

R(µ, σ) ∝ 1√
σ
. (17)

3.2 Probability Matching Priors for a sequential experiment

Asymptotic frequentist coverage is an often-used criterion to compare objective priors; see

Datta and Ghosh (1995), Datta, Ghosh, and Mukerjee (2000), and Datta and Mukerjee

(2004) for discussion and references. The most common approach is to find a ’matching

prior,’ i.e. a prior which results in posterior one-sided credible intervals that are also accurate

as frequentist confidence intervals. Another type of matching prior, considered by Sun and

Ye (1996), is a prior such that the confidence interval based on the signed squared root

transformation of the log-likelihood ratio is also a Bayesian credible interval. Almost all of

the literature considers the fixed sample case for iid observations; exceptions are Ye (1993)

and Sun (1994).

For sequential experiments involving the Bar-Lev and Reiser (1982) two-parameter expo-

nential family, let ln(θ1, θ2) be the log-likelihood function of (θ1, θ2), given Xn = (X1, · · · , Xn),
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and let (θ̂n1, θ̂n2) be the maximum likelihood estimator of (θ1, θ2). Write Yn = n−1∑n
i=1 U1(Xi)−

G2{n−1∑n
i=1 U2(Xi)}. Then, on {Yn ∈ G′

1(Θ1)} ∩{n−1∑n
i=1 U2(Xi) ∈ Θ2}, θ̂n1 is the solution

of Yn = G′

1(θ̂n1), and θ̂n2 = n−1∑n
i=1 U2(Xi). Define

I1(ω1, θ1) = G1(θ1) −G1(ω1) −G′

1(ω1)(θ1 − ω1), ω1, θ1 ∈ Θ1,

I2(ω2, µ2) = G2(ω2) −G2(θ2) −G′

2(θ2)(ω2 − θ2), ω2, θ2 ∈ Θ2.

From the convexity of G1 and G2, these two functions are nonnegative. From Sun (1994),

the log-likelihood ratio is ln(θ̂n1, θ̂n2) − ln(θ1, θ2) = (Z2
n1 + Z2

n2)/2, where

(
Zn1

Zn2

)
=

( {2nI1(θ̂n1, θ1)}1/2 sgn(θ1 − θ̂n1)

{−2nθ1I2(θ̂n2, θ2)}1/2 sgn(θ2 − θ̂n2)

)

is a generalized signed square root of the log-likelihood ratio.

Let P(θ1,θ2) denote probability over X1, X2, . . ., given (θ1, θ2), and, for a fixed prior

π(θ1, θ2), let P π(· | Xn) denote posterior probability given Xn. Suppose we are consid-

ering a stopping time, Na, such that Na → ∞ almost surely as a → ∞. An asymptotic

frequentist matching prior in this sequential setting is a prior π such that

P π(ZNa,1 ≤ c1, ZNa,2 ≤ c2 | XNa
) = P(θ1,θ2)(ZNa,1 ≤ c1, ZNa,2 ≤ c2) +O(a−1), (18)

for all c1 and c2 in P(θ1,θ2)−probability.

Suppose now that the stopping rule satisfies

Na

a
→ τ(θ), in L1. (19)

From Sun (1994), the unique prior satisfying (18), and hence the unique asymptotic matching

prior, is

π∗

m(θ1, θ2) ∝
√
τ(θ)G′′

1(θ1)G
′′

2(θ2) . (20)

As an immediate example, for the stopping time defined in (11), property (13) establishes

that (19) holds; hence the reference prior given in (15) is also the asymptotic matching prior,

a very desirable situation.
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Example 3 (continued). In deriving the sequential likelihood ratio test to see if (µ, σ2) =

(µ0, σ
2
0), Woodroofe (1982) considered the following stopping rule,

Na = min
(
b2a, inf

{
n ≥ b1a :

n∑

i=1

X2
i − n− n log(σ̂2

n) > 2a
})
, (21)

where 0 < b1 < b2 < ∞ are two prespecified numbers, σ̂2
n = n−1∑n

i=1(Xi − Xn)2, and

Xn = n−1∑n
i=1Xi. Theorem 8.3 of Woodroofe (1982) implies that

a

Na

→





b2, if ρ2(θ) < 1/b2,

ρ2(θ), if 1/b2 < ρ2(θ) < 1/b1,

b1, if ρ2(θ) > 1/b1,

in P(θ1,θ2)−probability, as a→ ∞, where ρ2(θ) = G1(θ1)−G1(−0.5)−G′

1(−0.5)(θ1 + 0.5)−

θ1θ
2
2 = {(µ2 + 1)/σ2 + log(σ2)− 1}/2. Thus (20) gives an asymptotic matching prior for this

situation. Note, however, that the expected stopping time is not of the form (5), so that we

cannot assert that this prior is also a one-at-a-time reference prior.

4 Computation

If IEθ[N ] is available in closed form, as in the examples in this paper, computation with

any of the sequential priors can be done using common MCMC techniques. Hence we only

consider here the case in which IEθ[N ] can only computed numerically.

4.1 Brute Force Computation

All the Jeffreys, reference, and matching priors that have been discussed for a sequential

experiment are of the form Ψ(IEθ[N ])πF (θ), where Ψ is some operator and πF is the corre-

sponding prior for the fixed sample size experiment. The posterior distribution corresponding

to this prior is

π∗(θ | XN) ∝ Ψ(IEθ[N ])πF (θ)
N∏

i=1

f(Xi | θ), (22)
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where XN = (X1, · · · , XN) is the data.

The brute force method for simulating from this posterior distribution is the following

Metropolis algorithm:

Step 1. Sample a proposed θ
′, from the fixed sample size posterior density of θ, which is

proportional to πF (θ)
∏N

i=1 f(Xi | θ).

Step 2. Numerically estimate IEθ′ [N ]. For instance, one could repeatedly sample N from

its distribution given θ
′, by simply repeatedly simulating the sequential experiment

for the given θ
′, observing the N that results from each simulation, and averaging to

obtain the estimate ̂IEθ′ [N ].

Step 3. Perform a Metropolis step: sample u ∼ uniform (0, 1) and, with θ denoting the

previous value the parameter, accept θ
′ if

u ≤ min



1,

Ψ( ̂IEθ[N ])

Ψ( ̂IEθ′ [N ])



 ,

and set θ
′ equal to the previous θ otherwise.

If one cannot directly draw from the posterior in Step 1, one could instead using any

MCMC scheme, e.g. Gibbs sampling or Metropolis-Hastings. If doing so, however, be sure

to iterate Step 1 many times before moving on to Step 2. This is because Step 2 is typically

extremely expensive, as it may involve thousands of simulations of the entire experiment

simply to compute one Metropolis acceptance probability. In situations where one dependent

step is much more expensive than others, it pays to iterate first on the others.

4.2 The Two-Dimensional Case

If using the Jeffreys prior in a two-dimensional problem or the reference prior in the situation

of Corollary 2, the posterior distribution is of the form

π∗(θ | XN ) ∝ IEθ[N ] πF (θ)
N∏

i=1

f(Xi | θ) . (23)
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This allows a remarkable simplification in the computation, by introducing N as a latent

variable.

To avoid confusion, we will label the latent variable as Ñ ; it is a variable with the same

distribution as N , but is independent of N . Write the density of Ñ given θ as p(Ñ | θ).

Then the joint density of (Ñ, θ), given the data XN = (X1, · · · , XN), is proportional to

p(Ñ | θ)Ñ πF (θ)
N∏

i=1

f(Xi | θ) . (24)

Sampling (Ñ , θ) from this distribution will result in θ from (23), as can easily be seen by

marginalizing over Ñ in (24).

Here is a Metropolis algorithm for sampling from (24).

Step 1. Sample a proposed θ
′, from the fixed sample size posterior density of θ, which is

proportional to πF (θ)
∏N

i=1 f(Xi | θ).

Step 2. Sample a proposed Ñ ′ from p(Ñ | θ
′). This can always be done by simply simulating

the sequential experiment once, given θ
′.

Step 3. Perform a Metropolis step: sample u ∼ uniform (0, 1) and, letting (Ñ, θ) denote

the previous value the parameter, accept (Ñ ′, θ′) if

u ≤ min

{
1,
Ñ

Ñ ′

}
,

and set (Ñ ′, θ′) equal to the previous (Ñ, θ) otherwise. (Note that, if Ñ ′ < Ñ , one

would always accept the candidate.)

The reason that this is a vastly more efficient algorithm than the brute force algorithm

is that one need only simulate a single draw of Ñ ′ in Step 2, whereas thousands of draws

would be needed in Step 2 of the brute force algorithm to compute ̂IEθ′ [N ]. Again, of course,

Step 1 could be replaced by any convenient dependent MCMC scheme. Whether one then

needs to iterate Step 1 before moving on to Step 2 will be context dependent.
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4.3 Modified Reference Priors

The most desirable prior is the one-at-a-time reference prior given in Corollary 1, resulting

in the posterior distribution

π∗(θ | XN ) ∝
√

IEθ[N ] πR(θ)
N∏

i=1

f(Xi | θ) . (25)

Unfortunately, the latent variable trick is not available for sampling from this distribution.

Interestingly, however, it is frequently the case that

√
IEθ[N ] ≈ IEθ[

√
N ] . (26)

When this is the case, the latent variable trick can be applied, and the algorithm from Section

4.2 can be utilized by simply replacing Ñ/Ñ ′ in the Metropolis step with
√
Ñ/Ñ ′.

In the remainder of the section, we discuss the reason that the approximation (26) often

holds. The first is that the sampling distribution of N may be rather concentrated in a

region of large N , in which case the approximation is clearly good.

Example- Bar-Lev and Reiser (1982) (continued). For the stopping time Na defined in (11),

it follows from (12) and (13) that lima→∞ IEθ(
√
Na/a) = 1/|θ1|1/4. We then have

lim
a→∞

IEθ

√
Na

a
∝ lim

a→∞

√

IEθ

(Na

a

)
.

Example 1 (continued). Let Nr have the negative binomial distribution NB(r, p). Note

that IEp(Nr) = r/p and V arp(Nr) = rp/(1 − p)2. As r → ∞, we have

√
Nr/r → 1/

√
p in probability and IEp(

√
Nr/r) →

√
IEp(Nr/r) ≡ 1/

√
p.

To see the difference between IEp(
√
Nr/r) and

√
IEp(Nr/r) for moderate r, they are plotted,

as a function of p, in Figure 1 for r = 1 and r = 9. For r = 9, the curves are essentially

indistinguishable; even for the minimal r = 1 they are quite close.

It is also interesting to look at the posterior distributions for this example. In Figure 2,

we plot the posterior densities of p for three priors πJ (p) ∝ 1/
√
p(1 − p), π∗

R(p) ∝ 1/
√
p and
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Figure 1: Negative binomial example: comparison of
√

IEp(Nr/r) and IEp(
√
Nr/r) for r = 1

and r = 9.

the approximate prior πM(p) ∝ IEp(
√
N∗

r /r). For even the very small r = 2, the posterior

densities under the two priors π∗

R and πM are quite close, yet substantially different from

that under πJ . For a moderate r = 10, the posterior densities under π∗

R and πM are almost

identical. Note that the posterior densities of p under πJ and π∗

R are Beta (r,Nr − r + 0.5)

and Beta (r = 0.5, Nr − r + 0.5), respectively. The posterior densities of p under πM were

computed using 5000 Metropolis samples.

As a final indication of the similarity of the true and approximate reference priors in this

example, and of the value of using the sequential reference priors, we compare the frequentist

coverage probabilities that result from their use in obtaining confidence intervals for p. Table

2 considers the frequentist coverage of one-sided 95% Bayesian credible regions, based on

the fixed sample size Jeffreys prior πJ , the sequential Jeffreys/reference prior π∗

R and the

approximate prior πM for various combination of r and p. The fixed sample size Jeffreys

prior performs worse then the other two, indicating the value of using the sequential versions,

while the reference prior and the approximate prior are almost equally good.
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Figure 2: Posterior densities of p based on the priors πJ(p) = 1/
√
p(1 − p), π∗

R(p) =

1/(p
√

1 − p), and πM(p) = IEp(
√
N∗

r /r) for r = 1, 10; (a) (r,Nr) = (2, 5); (b) (r,Nr) =

(10, 25).
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Table 2: Coverage Probability of one-sided 95% Bayesian credible sets for the negative

binomial Example 1, under the three priors πJ(p) = 1/
√
p(1 − p), π∗

R(p) = 1/(p
√

1 − p), and

πM(p) = IEp(
√
N∗

r /r).

r p πJ π∗

R πM

2 0.1 .1142(.9738) .0516(.9511) .0487(.9509)

2 0.5 .0002(.9652) .0010(.9381) .0008(.9455)

2 0.9 .0001(.9724) .0003(.9700) .0000(.9729)

8 0.1 .0751(.9642) .0474(.9498) .0465(.9534)

8 0.5 .0552(.9688) .0522(.9536) .0568(.9517)

8 0.9 .0000(.9307) .0001(.9310) .0002(.9339)

30 0.1 .0617(.9571) .0508(.9497) .0516(.9523)

30 0.5 .0556(.9594) .0512(.9495) .0525(.9503)

30 0.9 .0426(.9369) .0438(.9410) .0442(.9368)
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