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A ROBUST GENERALIZED BAYES ESTIMATOR AND 
CONFIDENCE REGION FOR A MULTIVARIATE NORMAL MEAN' 

Purdue University 
It is observed that in selecting an alternative to the usual maximum 

likelihood estimator, 6', of a multivariate normal mean, it is important to take 
into account prior information. Prior information in the form of a prior mean 
and a prior covariance matrix is considered. A generalized Bayes estimator is 
developed which is significantly better than 6O if this prior information is 
correct and yet is very robust with respect to misspecification of the prior 
information. An associated confidence region is also constructed, and is shown 
to have very attractive size and probability of coverage. 
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1. Introduction. Let X = (X,, . . . ,Xp)' have a p-variate distribution with 
mean vector 8 = (O,, . . . ,@,)I and nonsingular covariance matrix Z. (Z will be 
assumed known until Section 5.) It is desired to estimate 8 using an estimator 
6(X) = (6,(X), . . . ,6,(X))' and under a quadratic loss L(8,6) = (6 - O)'Q(S -
O), Q being a positive definite (p  x p) matrix. Two common problems giving rise 
to this setup are (i) estimating a multivariate mean where X is the vector of sample 
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means, and (ii) estimating a vector, 9, of regression coefficients where X = 
(DID)-'D'Y is the least squares estimator and I: = u~(D'D)-', D being the design 
matrix and a2 the variance of the errors in the observation Y. 

The usual estimator &'(x) = X has been observed to have several deficiencies. 
These include: 

1. It is inadmissible if p 2 3. Indeed an estimator 6' can be found with 
R(9, 6') < R(9,a0) = tr QI: for all 9, where R(9,6) = EoL(9, 6(X)) is the ex-
pected loss. This was first noticed by Stein (1955). 

2. It does not use often existing prior information or relationships among the 
coordinates, such as when the 9, are a sample from a superpopulation. 

3. When X is the least squares estimator from a regression problem, 6' is 
unstable in that (DID) is often nearly singular, so that small changes in the 
observation Y result in very large changes in the estimates of the regression 
coefficients. (This problem has given rise to the theory of ridge regression, in- 
troduced by Hoerl and Kennard (1970).) 

In attempting to improve upon 6', a number of different approaches have been 
taken. For the most part, these can be categorized into three areas, according to the 
nature of the resulting estimator. 

The first category consists of approaches resulting in estimators which are linear 
(i.e., of the form S(X) = CX + y, C a matrix and y a vector). For example, the 
Bayesian approach with normal priors and the original form of ridge regression 
(with a fixed ridge constant) give rise to linear estimators. 

The second category of approaches consists of those for which coordinates of 9 
are set equal to zero, the remainder being estimated in a standard way. For 
example, preliminary test estimators and typical regression procedures which select 
the "significant" regression coefficients (effectively setting the others equal to zero) 
are of this type. 

The third category consists of approaches leading to estimators which satisfy 

(1.1) 6(x) = (I- T /  (xtcx))x + o(lx1-') as 1x1 + oo, 

where T and C are ( p  x p) matrices, 1x1 is the Euclidean norm of x, and "o" is the 
usual little oh notation. For example, minimax, empirical Bayes, Bayes with t-like 
priors, and the usual stochastic ridge regression approaches all result in estimators 
of the form (1.1). (In stochastic ridge regression, the ridge constant is usually 
estimated from'the data using the inverse of some quadratic form in X.) 

A number of articles dealing with the above approaches are listed in the 
references. Unfortunately, the number of articles is by now too large to allow 
discussion of each contribution specifically, and even too large to reasonably 
include all in the references. Therefore, only the latest articles and articles specifi- 
cally referred to in this paper are listed. References to earlier works can be found in 
these articles. 

In looking for an alternative to 6', only the third category of estimators will be 
considered. Linear estimators have the well-known disadvantage of a lack of 
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robustness with respect to the assumptions under which they are derived. For 
example, if a Bayesian approach with a normal prior were taken, the resulting 
linear estimator would have infinite Bayes risk if the true prior were Cauchy. (By 
"true prior" is meant that prior distribution which the person would choose if an 
infinite amount of time were available for introspection and comparisons among 
alternate possibilities. In any real situation the actual prior distribution chosen will 
necessarily be only an approximation to this true prior distribution.) In contrast, 
estimators of the form (1.1) tend to be considerably more robust. Some evidence of 
this will be presented later (see also Rubin (1977)). 

Estimators from the second category will not be considered for two reasons. 
First, if, indeed, estimation is the sole goal, then it has generally been found that 
discontinuous procedures (such as preliminary test, estimators) can be improved 
upon by smooth shrinkage procedures satisfying (1.1). Of course, there are often 
compelling reasons (in regression, for example) to try for model simplification by 
setting "nonsignificant" coordinates equal to zero. The goal then is not simply 
estimation, however, and it seems simplest to approach the problem in two stages 
-decide first which coordinates are to be set equal to zero, and then use a good 
estimation procedure on the remaining coordinates. The first stage is outside of the 
scope of this paper, while for the second stage using a smooth estimator is 
desirable. 

In choosing among estimators of the form (1.1), one is presented with a wide 
array of principles to go by. The key in choosing among these principles lies in 
observing the behavior of the estimators-namely, that the estimators perform well 
(have risk significantly better than 8 4  only in specific regions of the parameter 
space RP. Outside these regions they have risks which are either essentially 
equivalent to, or possibly worse than, So. (This is basically due to the fact that So is 
minimax, so that no uniformly large improvement in risk is possible.) Since the 
region of significant improvement differs from estimator to estimator, it seems 
inescapable that choosing an estimator can best be done by choosing the region of 
8 over which improvement in risk is desired. In other words, prior knowledge must 
come into play in effectively choosing an estimator of the form (1.1). (As we shall 
see, this prior knowledge can be quite vague, such as merely believing that the prior 
distribution of the Oi is exchangeable. See Section 4 for a discussion of this.) 

Note that the above reasoning is not the usual rationality argument for being 
Bayesian, but, instead, a seemingly inevitable conclusion of the particular problem 
being considered. Indeed, if it is felt that there is no prior information whatsoever 
available, then So might as well be used, since the "chance" that 8 would happen to 
be in the region of significant improvement of a competing estimator would be 
negligible. In the remainder of the paper comments will often be phrased in 
Bayesian terms, not necessarily because a prior distribution on 8 is thought to exist, 
but because it seems necessary to act as if one does exist if a good alternative to S o  
is to be chosen. 

The above considerations also point out the difficulty in meaningfully comparing 
estimators of the form (1.1) by numerical studies. In numerical studies, the 8 at 
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which the estimators are evaluated must be chosen in some fashion, and different 
estimators will perform best depending on how the 9 are chosen. This point was 
raised by Efron and Morris, Bingham and Larntz, and Thisted in the discussion of 
Dempster, Scliatzoff, and Wermuth (1977). 

It would be enormously difficult to specify prior information for a particular 
problem, and then choose among all available estimators of the form (1.1) accord- 
ing to which does best for that particular set of prior beliefs. Instead, an estimator 
should be developed which allows the direct incorporation of prior information in 
order to adjust its region of significant improvement. This and other desirable 
properties of an estimator are listed below. 

1. 6 should readily allow incorporation of prior information. 
2. 6 should be robust with respect to misspecification of prior information. 

Equivalently, 6 should not have risk R(9, 6) seriously worse than R(9, SO) = 

tr(QI:) over a significant region of the parameter space. 
3. 6 should be expressible in a closed form, relatively simple formula, not only 

for ease of calculation but also to enable examination for unintuitive or unappeal- 
ing features. 

4. 6 should be stable in a ridge sense (providing this is consistent with 1). 
5. 6 should be admissible (or nearly so). 
6. 6 should have the following "empirical Bayes" property. Assume I: = a 2 ~  

and that the 9, are a random sample from a prior distribution with mean 0 and 
variance r2.Then lin$,,l~ 12/p = a2 + r2with probability one. The estimator 

is thus very close to the optimal linear Bayes estimator aL(x) = (1 - a2/(02 + 
r2))x, while having a risk uniformly better than 6'-a very desirable situation. (See 
Efron and Morris (1973a) for further discussion.) 

7. 6 should have good associated confidence regions for 9. 
The rationale for property 1 has been discussed. Property 2 is also crucial, in that 

while it is necessary td make use of prior information to significantly improve upon 
a', we do not want to run the risk of being significantly worse than 6' if the (often 
vague) prior information is wrong. Bayesians might disagree with defining robust- 
ness with respect to misspecification of the prior information in terms of the 
relationship of R(9, 6) to R(9, 60) = tr(QI:), as done here. To a Bayesian, a more 
relevant concept would be robustness of the posterior distribution or of the 
posterior expected loss. A thorough discussion of this issue would take us too far 
afield. (See Berger (1980) for such a discussion.) We content ourselves here with the 
observation that when X is "extreme" (by which we mean not plausible according 
to prior beliefs) it is reasonable to suggest that a "robust posterior Bayesian" would 
doubt his prior beliefs, and want 6(X) to be close to 6 ' ( ~ )  = X (the rule that 
corresponds to no prior information). (See Hill (1974) for discussion of this.) Since 
extreme X correspond to large 9, a comparison of R(9, 6) and R(9, 60) for large 9 
is often an appropriate way of investigating this relationship. 
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Property 3 seems important, partly to make the estimator more attractive to 
practitioners, but also to make a thorough analysis of the estimator possible. 
Properties 4, 5, and 6 are all appealing, but perhaps will not be compelling to some 
statisticians, depending on their philosophical viewpoint. Property 7 is of consider- 
able importance in typical applications of estimation. Section 3 will be devoted to 
the development and analysis of an interesting set of confidence regions. 

In attempting to verify the above properties for a proposed estimator, numbers 2, 
5, and 7 cause the most difficulty. In checking 2, Berger (1976b) can be useful, 
though numerical studies are probably necessary. The only certain method of 
ensuring that 5 is satisfied is to develop 6 as an admissible generalized Bayes 
estimator. (Brown (1971) shows that an estimator must be generalized Bayes to be 
admissible.) Trying to verify that an estimator is "nqarly" admissible is difficult. A 
useful negative result is given in Berger and Srinivasan (1978), namely that 
estimators satisfying (1.1) are approximations to generalized Bayes estimators (up 
to a o(lxl-') term) if and only if T = k 2 C  for some constant k. 

Estimators so far proposed do not fully satisfy the above list of properties. The 
only estimators of the form (1.1) which allow the incorporation of prior informa- 
tion are empirical Bayes estimators (see, for example, Efron and Moms (1973a) 
and Rolph (1976)) and Bayes estimators arising from flat-tailed prior densities (see, 
for example, Box and Tiao (1968), certain examples in Lindley and Smith (1972), 
Hill (1974), Dickey (1974) and Leonard (1976)). Unfortunately the estimators 
which have been developed using these approaches cannot be written in closed 
form (except for a few special cases of Q, Z, and prior information), making a 
meaningful analysis of them very difficult. In Section 2 a reasonable generalized 
Bayes estimator is developed which does satisfy the above seven properties. 

Before proceeding, a word is in order as to what type of prior input is envisaged. 
Recall that the real goal is to decide what region of the parameter space is of 
greatest importance. A relatively simple approach would be to specify an ellipsoid 
of interest. This ellipsoid could be written as (9 : (9 - y)'A -'(9 - y) < p). 
Alternatively it seems plausible to assume the availability of a prior mean vector, y, 
for 9, and also of a variance (or covariance) matrix A which reflects the believed 
accuracy of the guess, y. In either case the prior input is conveniently summarized 
by y and A. Only rarely will additional prior knowledge (such as knowledge of the 
functional form of the prior) be available. Hence it is desired to construct an 
estimator which can make use of y and A, but which requires no further knowledge 
of the prior in order to be better than 6'. The estimator should also be robust in the 
sense that if y and A do not reflect the true value of 9 (or the true prior of 9 for 
Bayesians), the estimator should not be significantly worse than 6'. Further 
discussion of the prior input is given in Section 4, where it is shown how to 
incorporate into the above framework such things as a belief in exchangeability of 
the prior, or a belief that certain linear restrictions on 9 hold. 

It should be emphasized at the outset that the only "real" prior beliefs are those 
in y and A. The procedures we recommend will be developed with respect to a 
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particular (generalized) prior distribution which allows incorporation of y and A. 
This prior should in a sense be considered a technical artifact, however, and not as 
the believed prior distribution. The prior was chosen because it does seem to 
accurately reflect y and A, because it is flat-tailed (which leads to robust proce- 
dures), and because it leads to explicit procedures which can be easily evaluated. It 
is reasonable to think of the prior as a very conservative (and hence not necessarily 
optimal) representation of the prior beliefs in p and A. 

The development and analysis in the following sections is rather lengthy. For 
convenience, therefore, we present here the actual estimator and confidence region 
that are suggested for use (whenp > 3). Define, for convenience, 

The suggested estimator is 

where n* = (p  - 2)/2 and hn, is given by (2.7). The suggested confidence region is 

where k(a) is the 100(1 - a)th percentile of the chi-square distribution with p 
degrees of freedom, and (letting v = 1 1  X - y1l2) 

For the situation Z = a2Zo, where 2, is known but a2 is unknown, assume a 
random variable s2(independent of X) is observable, and that s 2 / a 2  has a 
chi-square distribution with m degrees of freedom. Then S* and C* should be used 
with Z replaced by 

5 =[s2/(m + 2)]Xo 

and 

k(a) = (1 + 2/m)pF,,,(l - a), 

where 5,,(I - a) is the 100(1 - a)th percentile of the Fdistribution withp and m 
degrees of freedom. (This is discussed in Section 5.) 

2. The generalized Bayes estimator. In this section (and Sections 3 and 5) it 
will be assumed for convenience that p = 0. This can be effected by a simple 
translation of the problem, and so can be assumed without loss of generality. 
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The notation det(B), tr(B), and c&,,(B) will be used to denote the determinant, 
trace, and maximum characteristic root of a matrix B. Also, E will be used to 
denote expectation, with subscripts denoting parameter values and superscripts 
denoting random variables with respect to which the expectation is to be taken. 
When obvious, subscripts and superscripts will be deleted. 

2.1. Development of the estimator. Let C be a (p X p) symrneti;, ~ndtrix such 
that (C - 8 )  is positive semidefinite. Define B(A) = X-'C - 2 ,  for 0 < X < 1. For 
n > 0, consider the generalized prior density 

Note that the conditional density of 8 given X is normal with mean 0 and 
covariance matrix B(A), while X has the (generalized) density (~T)P/~A("-'-P/~) on 
(0, 1). This prior is a generalization of one considered in Berger (1976a), and for 
8 = C = I was first introduced by Strawderman (1971). (Judge and Bock (1977) 
give a good discussion of these special cases.) 

Several aspects of g,, are interesting to observe. First, it can be shown that 
asymptotically (for large 181) g,, behaves like k(8'C -9 ) - "  for some constant k. 
Thus larger n correspond to "sharper tails" for the prior. It can also be checked 
that g,, has finite mass for n >p/2. 

For certain C, n, and p, gn(8) can be calculated explicitly. For example, if 
C = cC(c 2 l ) ,p = 4, and n = (p - 2)/2 = 1, then 

The actual form of g,, is not of great importance, however, since we do not really 
think that g, is the true prior. ~ndeed, in one respect g, is rather unnatural, in that it 
depends on 2, the covariance matrix of X. (Thus, in a sampling situation, the prior 
changes as the sample size increases.) Intuitively this is unappealing. Prior informa- 
tion should, by definition, be independent of the experiment. Recall, however, that 
the goal is to obtain robust Bayesian procedures. Robustness can only be evaluated 
with regard to the particular experimental setup, so it is not necessarily unreason-
able for the prior to depend on the experiment. For example, as the sample size 
increases and the sample information becomes more accurate, robustness becomes 
easier to obtain and one might be willing to be more daring in the choice of a prior 
(or, more specifically, in the quantification of true prior beliefs). 

The above discussion is all rather speculative, however, and our basic attitude is 
that the proof is in the pudding. There are many situations in which reasonable 
priors give unreasonable results and questionable priors give very good results. 
Thus a necessary part of any truly convincing Bayesian analysis is a thorough 
examination of the resulting procedures, an analysis with respect to classical as well 
as Bayesian criteria. Hopefully the extensive analysis in the remainder of the paper 
will convince the reader that, whatever its faults, the prior g, works. 
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We begin with the calculation of an, the generalized Bayes estimator of 9 with 
respect to g,. For those not interested in the calculation, the result is given in 
expressions (2.4), (2.6) and (2.7). 

Since the loss is quadratic, 6" is simply the mean of the posterior distribution of 8 
given x.  Hence 

It is straightforward to check that gn(9) has finite mass over any compact neighbor- 
hood of zero. This, along with the fact that gn(9) is bounded outside a neighbor- 
hood of zero, allows interchanging the order of integration in the numerator above 
to get 

18 exp{ - (X - 8 ) ' ~ - ' ( x  - 8)/2) g,(9) d9 

= (:/9 exp{- [(x - 9 ) ' ~ - ' ( x  - 9) + 9 ' ~ ( ~ ) - ' 8 ] / 2 ) d 9  

x [det{B(h)} ] - h ( " - ' - ~ / ~ ) d h .  

Completing squares and integrating out over 9, in the last expression results in the 
equivalent formula 

x [det(2-' + B(A)-')I-;[det ~ ( h ) ] - ~ h ( " - ' - ~ ~dh. 

Using the matrix identities 

= 2 - z(c/x)- '2  = 2 - m c - ' 2 ,  
it can be concluded that 

= /:(I  hZc- ' )X exp{-hYf~-'X/2) [ d e t ( ~ - ' ~ ) ] - ~ h " - '  - dh. 

A similar calculation verifies that 

= /Aexp{ - X f C  -'X/2) [de t (X1c) ]  -+A"-' dh. 

Hence, defining 
1lX(l2= xtc-'x 

and 

(2.3) 
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it follows that 

This calculation could have heuristically been done more quickly by first doing 
the analysis for 8 conditional on A and X, and then integrating out over the formal 
posterior density (on (0, 1)) of A given X, namely 

(2.5) exp{ -Au/2)A("- ')/jAexp{ -Au/2)A("- ')dA, 

where u = (1x11~.From (2.3) it is clear that the mean of this posterior density is 
rn(u)/u. Such an analysis would not be rigorous, however, due to the fact that gn(8) 
is not a proper density. 

An integration by parts in the numerator of (2.3) establishes that 

Integration by parts also shows that 

(2.7) 

--	 (u/2In if n is an integer 

n! [exp{u/2) - Z::;(u/2)'/i!] 


if n - is an integer, 

where erf((u/2):) = (2/n)il:'exp{ - t2/2) dt. The last expressions in (2.7) are 
particularly convenient for calculation. The following lemma gives several proper-
ties of rn which will be needed in the evaluation of 6". 

LEMMA^.^.^. If n > Oandu > 0, then 
(i) 0 < rn(u) < 2n; 
(ii) rn(u) is increasing in u; 
(iii) lim0,,rn(u) = 2n; 
(iv) lim,,,[rn(u)/{nu/(n + I))] = 1; 
(v) limn,,rn(u) = u; 
(vi) limn,,[rn(2nc)/(2n {min(l, c)))] = 1; 

(vii) rn(u)/u is decreasing in u; 
(viii) lim,,,[r;(u)/ {exp(-u/2)(~/2)"/I'(n))] = 1, where rA(u) = (d/ du) rn(u); 
(ix) lim,,,umr~(u) = 0 for all m > 0; 
(x) rn(u)/u n/(n + 1); 

(xi) lim,,,um(rn(u) - 2n) = 0 for all m > 0. 
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PROOF. Parts (i), (ii) and (iii) follow immediately from (2.6) and the first 
expression in (2.7). Parts (iv) and (v) follow from the first expression in (2.7), after 
noticing that the first two terms of the summation are dominant as v +0 or 
n + w .  

To prove part (vi), the first expression in (2.7) will again be used. For fixed i, the 
ith term of the summation satisfies 

lim,,,[(nc)'I'(n + l ) / r (n  + 1 + i)] = c'. 

Hence 

The result follows. 
To prove part (vii), consider X as a random variable with the density (2.5). It is 

easy to check that this density has decreasing monotone likelihood ratio in v, and 
hence that the expected value of X must be decreasing in v. But since the expected 
value of h is simply rn(v)/v, the conclusion follows. 

To prove part (viii), observe that a calculation using (2.6) gives 

exp{ -V/2)j,3("-')(1 - A)exp{ - A v / ~ )  dh 
(2.8) rA(v) = [~$("-"exp{ - b / 2 )  dh]' 

But 

jam dh = exp{ -A) exp{ -hv/2) ( V / ~ ) - ( ~ + ' ) J ~ / ~ X ~  dX 

Using this in (2.8) gives the desired result. 
Part (ix) follows immediately from part (viii). Part (x) follows from parts (iv) and 

(vii). Part (xi) follows from (2.6) and the first expression in (2.7). 0 
The first question which arises is how should n and C be chosen? The choice of n 

that is recommended is n = (p - 2)/2. The estimator 6" can then be easily 
calculated using (2.4) and (2.7), and the resulting estimator will be seen to have 
many nice properties. Note that by Lemma 2.1.1 (iii), lim,,,r,(v) = 2n = (p - 2) 
for this choice of n. When C = I: is thus similar to = I, the estimator ~ ( P - ~ ) / ~ ( X )  
the original Stein estimator 6(X) = (1 - [p - 2]/Ix12)x. Further justification for 
this choice of n will be seen later. 

As a guide to choosing C, consider the situation where the prior is known to 
have mean zero and covariance matrix A .  If absolutely certain about this, one 
would probably be fairly happy to use the best linear estimator (in terms of Bayes 
risk.) This best linear estimator is easily calculated to be 
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This suggests choosing C = p(Z + A), p a constant, for then 

where l l ~ l =l ~Xf(Z + A)-'x/~. This estimator "corrects" X in the direction 
Z(Z + A)-'X exactly as does the best linear estimator, but controls the amount of 
correction in a way which is quite reasonable. To see this, note that if A is the 
"correct" prior covariance matrix, then (unconditionally) X has mean 0 and 
covariance matrix (Z + A). Therefore limp,,Xf(Z + A)- 'x/~ = 1 with probabil- 
ity one. Hence ( /x ( /~  for large p. ("-- denotes approximate equality.) By --p/p " 


Lemma 2.2.1 (vi), it follows that, for largep, 


qp-2)/2(llxl12) -- P(&{L ~ I P } ) .  


Thus, if A is correct, p is large, and p < 1, then 


as would be desired. If, on the other hand, A is wrong, or 8 is not in the region 
expected (i.e., near zero), then [Xr(Z + A)-%] will tend to be much larger than 
r(p-2)/2(ll~l12)(which, recall, is bounded by (p  - 2)), and 6(p-2)/2 will correct 
SO(x)= X very little. 

The above considerations are not meant to prove anything, but merely to 
indicate why the suggested estimator is reasonable. Note, in particular, that 
choosing 2n --p (as in n = ( p  - 2)/2) was necessary to obtain the desired 
convergence to the best linear estimator for large p. 

A decision must also be made as to what value of p to use. Note that p affects Sn 
only through rn(Xt(Z + A)-'x/~). It is clear from Lemma 2.1.1 (ii) that rn is 
decreasing in p, so that larger p result in more conservative estimators (in that they 
are closer to aO(x)  = X). One reasonable choice of p follows from the observation 
(using Lemma 2.1.1 (iv)) that for small X 

Since a small X strongly supports the prior beliefs and the best linear estimator is 
reasonable in such a situation, the indicated choice of p is 

A slight annoyance is that in the development of 6" we were constrained to have 
C > Z. For C = p(Z + A), this is satisfied only if p > ch,,{Z(Z + A)-'). This 
inequality will typically hold for p = n/(n + l), but even if it does not there seems 
to be no clear reason to worry about it. The estimator 6" will be very reasonable 
and appropriate even if p < c&,{Z(Z + A)-') (although it will no longer clearly 
be generalized Bayes). Hence, for simplicity, the choice in (2.9) is recommended. 
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As a summary of the preceding arguments, the estimator suggested for use is 

where r* = r(,-,,I, and p* = (p - 2)/p. 

2.2. Evaluation of 6*. The estimator 6* will now be examined carefully to see 
if it satisfies properties 1 through 7 given in Section 1. Some of what follows 
pertains to the whole class of estimators an, while some refers specifically to a*. 
Which is being discussed will clearly be indicated. 

PROPERTY 1.  a* readily allows the incorporation of prior knowledge, which was 
the main goal. The question arises as to whether the incorporation of the prior 
knowledge, A, leads to a significant improvement for kstimators of this form 
(assuming the prior knowledge is approximately correct). To investigate this ques- 
tion p-variate normal priors KO), with mean 0 and covariance matrix rB were 
considered. Note that these priors are not really close to the priors gn(8) in terms of 
tail behavior. Therefore, we are not loading the dice in favor of the estimator S*. 
(Of course the priors I have the same mean (here assumed to be zero) as the priors 
g,, and this is a significant similarity. If the priors differed in this respect also, 
however, there would be little to compare, since drastically different priors will, of 
course, give quite different conclusions.) The Bayes risks r((, S) = jR(8, S)K8) d8 
of three estimators, STB, aB, and 6' were compared. aTBis S* with the "correct" 
choice A = rB. SB is S* with A = B, meaning the wrong scale factor is being used. 
6' is 6* with A = I ,  so that an entirely wrong covariance matrix is being used. 
Typical of the numerical results obtained are those given in the first three rows of 
Table 1. The calculations there are for p = 6, Q = ): = I ,  and B diagonal with 
diagonal elements {. 1, .5, 1, 3, 6, 16). (Note that this is a wide spread of variances 
(for r = 1 anyway), in that some coordinates have comparatively small sample 
variance, some have comparatively small prior variance, and some are in between.) 
For varying r ,  the Bayes risks of aTB, aB, and 6' are given in Table 1. is clearly 
best, while aBis significantly better than 6'. Thus it appears that the incorporation 
of prior knowledge in 6* is quite worthwhile, though it need not be absolutely 
correct in order to achieve significant gains. Note that the Bayes risk of the usual 

TABLE1 
Bayes risks 
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estimator is r(5, 6 4  = 6. (The entries in the table were calculated by simulation and 
have a standard error of .02.) 

PROPERTY2. S* is quite robust with respect to misspecification of prior infor- 
mation, and has a risk R(8, S*) which compares favorably with R(8, 8 4 .  

The robustness is indicated by Table 1. SB and 8' use (at say r = 50) drastically 
wrong prior information, and yet still have better Bayes risks than So. Indeed it can 
be shown that lim,,,r([, S*) = 6 no matter what fixed A is used in S* (since 
limll,l,,,lS*(~) - X I  = 0).This compares quite favorably with the corresponding 
situation when linear Bayes estimators are used. The estimators SLB, S:, and 8; in 
Table 1 are the linear estimators defined by 

Thus SLB is the optimum linear and, indeed, optimum Bayes estimator for the 
situation of Table 1. 8; and 6,' correspond to misspecified prior information. The 
risks given in Table 1 show the nonrobustness of the linear estimators compared to 
S*. The case for estimators such as S* would be even more telling if prior densities 
with flat tails were used. (We are looking at linear estimators on their home ground 
so to speak.) 

Studies of Bayes risks alone tend to put estimators such as S* in a very flattering 
light. To discover the seamier side of such estimators, it is important to look at the 
regular risk R(8, S*) in comparison with R(8, 80). Since S* generally pulls SO(X) = 

X closer to zero, it can be expected that R(8, S*) < R(8, 8 4  for 8 in a neighbor- 
hood of zero. It also usually turns out to be true that R(8, &') < R(8, 60) for 8 in 
certain directions of the parameter space. The reverse inequality can hold in other 
directions. Of usefulness in analyzing this behavior are the results of Berger 
(1976b). (See also Brown (1979)). Using Theorem 1, Lemma 1, and Lemma 2 of 
Berger (1976b), together with Lemma 2.1.1 (i), (iii), and (ix) of this paper, it can be 
shown that 

Note immediately that A(8) -+ 0 as 181 -+ co.Furthermore, if 1/31 is large enough, it 
follows that A(8) < 0 if 

From (2.12) can be determined the directions in which A(8) < 0 for large 181. 
Usually, R(8, 8") will be less than R(8, 6") for all 8 in these directions. Note in 
particular that if (2.12) holds for all 8,  or, equivalently, if 
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then A(8) < 0 for large 1/31. Indeed, using Theorem 1 of Berger (1976~)~ the 
following stronger result can be obtained: 

THEOREM2.2.1. If (2 + n)ck,(ZQZc-') < ~ ~ ( Z Q Z C - ' ) ,then R(8, 8") < 
R(8, 6") for all 8. (6" is hence minimax.) 

PROOF. Since n > 0, the condition of the theorem clearly ensures that p > 3. 
Assumptions (i) and (ii) of Theorem 1 of Berger (1976~) follow immediately. 
Assumptions (iii) and (iv) of Berger (1976~) can be verified by a simple calculation 
of V rn (the gradient of r,), together with Lemma 2.1.1 (ii), (iii) and (ix). Assumption 
(v) of Berger (1976~) is satisfied by the condition given in the theorem. The 
conclusion follows. 0 

2.2.2.COROLLARY 6* is minimax if p > 3 and 

This is true in particular if 
(a) Q = clI, Z = c,I, A = c31, c, > 0, c, > 0, c3 > 0; 
(b) Q = c(I + 2-'A)Z-', c > 0; or 
(c) A = C Z Q ~- z , c  z c&,(z-~Q-~). 

PROOF. Immediate. 
Thus, whenever (2.14) holds, S* will have risk smaller than R(8, SO) for all 8, a 

very nice situation. Note, in particular, that this will be true for the symmetric 
situation described in (a) of the corollary. (The result of Corollary 2.2.1 was 
obtained in the particular case A = [c&,(Z-'Q -')ZQZ - Z] in Berger (1976a), 
and in the case Q = Z = I and A = 0 in Strawderman (1971).) 

Unfortunately, for nonsymmetric problems (2.14) will not typically be satisfied. 
It is instructive to examine the risk function R(8, S*) in such a situation by 
numerical methods. The situation considered was p = 6, Q = I, A diagonal with 
diagonal elements (1.55, 2, 2, 2, 2, 6.51, and Z diagonal with diagonal elements 
{.I, 1, 1, 1, 1, 10). This is a case of considerable nonsymmetry where S* can be 
expected to be worse than So in certain directions of the parameter space. The 
normalized risk function R(8, S*)/tr(QZ) was numerically computed along the six 
coordinates axes and along the line 8 = IB((1, 1, 1, 1, 1, 1)'/6f. From (2.12) we 
would expect that A(8) < 0 along all these lines except the 8, axis. The numerical 
results in Figure 1 bear this out. (R(8,S?/tr(QZ) = 1 is the constant line on the 

graph.) 
The risk of S* along the 8, axis appears to be seriously worse than that of So, but 

recall that the prior belief is roughly that 8, has mean 0 and variance 6.5. If indeed 
8, turns out to be 5 standard deviations away from zero, some penalty must be 
expected. Note, at least, that the penalty is bounded. For comparison purposes, the 
normalized risk R(8, S,)/tr(QZ) along the 8, axis of the optimum linear Bayes 
estimator is also given in Figure 1. The comparative robustness of S* is clear. 
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6; then from the pth coordinate, and it can be checked that 

Figure 1 .  

Similar behavior has been observed in all realistic examples investigated. We 
have not found a plausible situation in which the risk of S* is bad for 8 near the 
prior beliefs. The worst hypothetical case is when, say, qi = e for 1 < i < p - 1, 
where E is much smaller than q, andp is large. The major contribution to the risk is 

will behave roughly 
like the linear Bayes estimator for reasonable values of 8. The risk of 6* can thus 
get fairly bad if only one coordinate of 8 is important. 

Figure 1 makes it graphically clear that in using S*, Lnimaxity will often be 
sacrificed. It seems reasonable, however, to give up minimaxity in unimportant 
areas of the parameter space in order to achieve sizeable improvement elsewhere. 
Minimax estimators do not appear to be able to achieve the sizeable gains in 
(Bayes) risk offered by S* in nonsymmetric problems. See Berger (1979) for a 
discussion of this (along with the development of a minimax estimator that at least 
allows the incorporation of prior information). 

S* has another advantage over minimax estimators in applications. This is that 
the loss matrix Q need not be known in order to calculate S*. (On the other hand, 
Q plays a crucial role in all minimax estimators.) In applications it is usually much 
easier to obtain prior information (like y and A)  from a client, than it is to obtain 
Q. (People will readily guess where 8 is, but are reluctant to say which coordinates 
are more important than others.) This point was also made by Moms (1977). 
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PROPERTY 6* is clearly relatively easy to calculate, use and analyze. 3. 

PROPERTY Stochastic ridge estimators make no formal allowance for prior 4. 
information, but they are similar to 6" with the choices C = [c&,(Z)]I and 
n =p/2. Hence estimators 6" can be found with about the same "stability" as 
stochastic ridge estimators (which, however, may not be as stable as fixed constant 
ridge estimators). (See Casella (1977) for some definitions of stability). The prior 
input into an estimator seems far more important than its stability, however, so no 
attempt was made in choosing 6* to force it to be stable. 

PROPERTY 5. AS in Berger (1976a), the results of Brown (1971) (in particular 
Theorem 6.4.2) can be used to show that 6" is admissible if n > (p  - 2)/2 and 
p > cLa,[Z(Z + A)-'], but inadmissible if n < ( p  - 2)/2. Thus 6* is admissible 
if c&,,[Z(Z + A)- '1 < (p  - 2)/p. 

As indicated previously, the flatter the tails of a prior density are, the more 
robust the generalized Bayes estimator derived from the prior tends to be. Since, 
for g,(O), smaller n correspond to flatter tails, it appears that 6* is about as robust 
as possible (in terms of choice of n), while preserving admissibility. This was 
another reason for choosing' n = (p  - 2)/2. 

PROPERTY The discussion leading to the choice of 6* in Section 2.1 showed 6. 
that 6* has a crude empirical Bayes property-namely that if A is chosen correctly 
and p is large, then 6* is approximately the optimum linear Bayes estimator. For 
the symmetric empirical Bayes situation discussed in Section 1, the following 
stronger empirical Bayes property can be obtained. 

Assume 2 = a21,A = el, and the 8, are a sample from a prior distribution with 
mean zero and variance T~ > C. Note that for a*, 

limp+m-l l x l 1 2 =  I x l 2  = (a2 + T2) (with probability one). 
P pp*(a2 + c) (a2 + c) 

Lemma 2.1.1 (vi) can be used to conclude that 

li=$+m
r*(llX112) a2 + r 2  (with probability one). = min(1, (a2 + c) ] = 1 

Hence 6*(X) behaves like (1.2) as desired. 

3. Confidence regions for 8. While there has been a great deal of research on 
multivariate estimation of 0, there has been comparatively little on the development 
of improved confidence regions for 0. The theoretical works of Brown (1966) and 
Joshi (1967) established that the usual confidence region could be improved upon, 
but did not provide explicit improved confidence regions. By the usual confidence 
region is meant 

c'(x) = ( 0  : (X - 0 ) ' ~ - ' ( x  - 0) < k(a)), 

where k(a) is the 100(1 - a)th percentile of the chi-square distribution with p 
degrees of freedom. Stein (1962) and (1974) suggests certain confidence regions for 
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large p (based on heuristic considerations), but leaves open the question of what to 
do for small or moderate p. Faith (1976) in the symmetric situation (2  = A = I )  
develops Bayesian confidence regions using priors similar to gn(8), and gives 
convincing numerical and theoretical arguments to support their superiority over 
CO.Unfortunately, his confidence regions are difficult to work with, having a 
complicated shape arising from their Bayesian derivation. 

Moms (1977) suggests an appealing way to proceed in a Bayesian fashion with a 
resulting confidence region which is fairly simple. In the symmetric situation he 
considers the prior gn(8) with n = (p - 2)/2 and C = I ,  and calculates the 
posterior mean, an(X), and posterior covariance matrix, Zn(X). He uses the 
diagonal elements of Zn(X) to construct confidence intervals for the 8,, centered at 
6,"(X). The resulting confidence region is simple and yet hopefully retains the 
advantage of a robust Bayesian approach. We will differ somewhat from Moms by 
considering confidence ellipsoids based on the entire Z,(X), and, of course, dealing 
with the nonsymmetric situation. 

3.1. Development of the confidence region. The first step is the calculation of 
Z,(X), the covariance matrix of the posterior distribution of 8 given X (for the 
prior gn(8)). Clearly, Bn(X) is given by 

Completing squares and interchanging orders of integration, as in Section 2, gives 
that the numerator of (3.1) is 

(3.2) 

j;exp( -x'[z- ' - P-'(Z- ' + B(h) - ' ) - ' 2 - ' ]~ /2 )  [det ~ ( h ) ]  - h ( " - ' - ~ / ~ )  

xjRP[eet- an(x)an(x)']exP{- (e - z)'(z-' + B(A)-')(e - ~ ) / 2 )  dedh, 

where z = (Z- ' + B(A)- ')- '2-'x. Replacing [88'] by [(8 - z)(8 - z)' + 8z' + 
z8' - zz'] and integrating over 8, the inside integral in (3.2) is equal to 

Using this along with the identities in (2.1) and the definitions of an(X) and z, the 
expression (3.2) can be calculated to be 
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Using (2.2), (2.3), (3. l), (3.3), and defining 

v21Aexp{ -hv/2)hn+' dh 
(3.4) 

"(*) = nexP{- b / 2 ) h n - I  dh ' 
it follows that 

From (2.3) and (2.6) it is clear that 

(3.6) tn(v) = rn(v)rn+,(v) = rn(v)[2(n + 1) + u] - 2nv. 

The following properties of tn will be needed. 

L ~ m 3 . 1 . 1 .  If n > 0, then 
(i) 0 < tn(v) < 4n(n + 1); 

(ii) limv,,tn(v) = 4n(n + 1); 
(iii) limv,~tn(v)/{nv2/(n + 2))] = 1; 
(iv) tn(v) - ri(v) = 2rn(v) - 2vrA(v); 
(v) 0 < tn(v) - r;(v) < 2rn(v). 

PROOF. Parts (i), (ii), and (iii) follow from (3.6) and Lemma 2.1.1. To prove part 
(iv), note that differentiating in (2.3) gives 

Rearranging terms gives the desired result. The upper bound in part (v) follows 
immediately from (iv) and Lemma 2.1.1 (ii). To establish the lower bound, assume 
that h is distributed as in (2.5), and note from (2.3) and (3.4) that 

The following lemma will be needed later on, and provides an interesting bound 
on Z,(X). For two (p  X p) matrices A and B, let A < B mean that (B - A) is 
positive semidefinite. 

PROOF. The lower bound follows from (3.5), using Lemma 3.1.1 (v) and Lemma 
2.1.1 (x). The upper bound follows from Lemma 3.1.1 (v), Lemma 2.1.1 (x), and the 
fact that I ~ x ~ ~ - ~ c - ~ x x ' c - ~< I .  0 

The lower bound in Lemma 3.1.2 is sharp, in that Zn(0) = I: - (n/n + 1) 
ZC-'2. (This follows from Lemma 3.1.1 (iii) and Lemma 2.1.1 (iv).) The upper 
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bound is not sharp in that the rank one matrix C - ~ X X ' C - t  was bounded by the 
rank p matrix IIX /121. 

The confidence regions that will be considered are the ellipsoids 

where k(a) is the 100(1 - a)th percentile of the clu-square distribution with p 
degrees of freedom. Note that these are not the true Bayesian confidence sets for 
the priors gn, but are only approximations based on the posterior means and 
covariances. They do have a familiar shape, however, and are quite easy to work 
with. In the calculation of Zn(X)-', the following lemma is useful. 

LEMMA3.1.3. If Y is a (p x 1) vector and B a (p X p) matrix, then 

PROOF. Calculation. [I 
For convenience, define 

(As observed in the proofs of Lemmas 2.1.1 and 3.1.1, these quantities can be 
interpreted as the mean and variance of the formal posterior distribution of X given 
X. The dependence of 	 u and w on n will be suppressed.) 

Letting B = (Z - uZC -'Z)- ' and Y = ZC-'x, Lemma 3.1.3 can be applied to 
(3.5) to give 

Thus the calculational problem is reduced to finding B = (Z - uZC-'2)-'. If, in 
particular, Z = I and C = PI, then 

The particular choice of n and C that is recommended is n = (p - 2)/2 and 
C = p*(Z + A) (p* defined in (2.10)), so that the resulting confidence region is 
centered at S*. Let C*(X), Z*(X), and t* denote Cn(X), Zn(X), and tn for these 
choices of n and C. Thus 
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where llxl12= Xt(Z + A)-'x/~*, and 

It is interesting to consider certain intuitive explanations for the terms of Z*(X). 
Note first that in the standard Bayesian model where 9 has a multivariate normal 
distribution with mean vector zero and covariance matrix A, the posterior covari- 
ance matrix is 

In Section 2.1 it was shown that if A is the correct prior covariance matrix andp is 
large, then ~ * ( I I x I I ~ ) / ( ~ * ~ ~ x ~ ~ ~ )  - 1. Hence the first two terms of 2*(X) behave like 
(3.14) when A is correct andp is large. On the other hand, if the A used is incorrect, 
then r*(l~ x1l2)/(p*1 1  x 11,) will usually be small and Z*(X)' will behave more like 2. 
Note that the last term of Z*(X) is relatively insignificant in large p situations, 
since it is a rank one matrix. 

Another appealing facet of the large p behavior of C*(X) is that, for the 
symmetric situation (2 = I ,  A = TI), C*(X) is similar to the confidence region 
suggested by Stein (1962). Indeed when 1 1  x 1 1 2  >p (the likely situation for large p), 
then r*()1 X 112) -p, so (ignoring the rank one third term) 

which is the confidence region suggested by Stein up to first ordel terms. 
The third term of X*(X) seems rather strange at first sight. It has a very 

reasonable intuitive explanation, however. Note that the characteristic vector 
corresponding to the nonzero characteristic root of the third term of 2*(X) is 
z = Z(Z + A)-,X. Hence in the direction of z, the contribution of the third term is 
positive. (The confidence ellipsoid is widened.) In directions perpendicular to z the 
third term is zero and the confidence ellipsoid is narrowed. 

To intuitively explain this phenomenon, note that 6* (at which Z* is centered) 
performs relatively badlq when it "corrects" X along the same line that contains 9. 
(Correcting only along a line results in essentially a one dimensional problem.) 6* 
achieves its gains when correcting those X for which the direction of correction is 
close to perpendicular to (X - 9). This phenomenon is exhibited in Figure 2, 
where 9 is shown with four symmetrically placed possible X values (intended to 
crudely represent a spherically symmetric distribution). Assume the simple estima- 
tor 6*(X) = (1 - is being used, so the X values will be shrunk ~ * ( I x ~ ~ ) / I x ~ ~ ) x  
towards zero. Clearly the effect of 6* upon x, and x, (the x's corrected along the 
line containing 9) is harmful, in that the average distance of 6*(x,) and 6*(x3) from 
9 is larger than the average distance of x, and x, from 9. On the other hand, 6* 
moves x, and x, closer to 9. Thus the correction appears to be beneficial for those 
X for which the direction of correction is close to perpendicular to (X - 9). (This 
type of picture was shown to me by Lawrence Brown.) 
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Figure 2 .  

Returning to the original situation, the ,heuristics in the above paragraph suggest 
that if 8 lies in the same direction from X as z, then 6* will not be doing too well. 
This harmful effect should be compensated for by widening the confidence region 
in that direction. This is precisely what C*(X) does. 

Moms (1977) bases his confidence regions only upon the first two terms of 
Z*(X) and the diagonal elements of the third term. The above argument indicates 
this may be undesirable. 

We now proceed with a more rigorous analysis of the properties of C*(X). The 
two common criteria used in evaluating confidence regions are size and probability 
of coverage. Size will be considered first. (Many of the mathematical results which 
follow will be stated for general Zn(X).) 

3.2. Size of Cn(X). There are a number of reasonable measures of the size of 
an ellipsoid. Virtually all are functions of the lengths of the semiaxes of the 
ellipsoid. For Cn(X), the lengths of the semiaxes are proportional to the character- 
istic roots of z,(x)~. Actually, it is perhaps more appropriate to be concerned with 
the roots of [QZ,(X)]+, in order to take into account the relative importance of the 
various coordinates as reflected by Q. This is natural as can be seen by transform- 
ing the problem by Q + (i.e., define Y = Q +x,7 = Q $9, etc.). In the transformed 
problem, the loss is sum of squares error loss so that all coordinates are of equal 
importance. It is easy to check that the posterior covariance matrix (given Y) in the 
transformed problem is 

and hence it is natural to look at the characteristic roots of the square roots of this 
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matrix, or equivalently the roots of [QZ,(X)]~. For those who prefer to consider 
size of the original Z,(X), merely set Q = I in the results below. 

The following three measures of size of Cn(X) will be considered: 
1. det[QZ,(~)]; = (det Q);(det z,(x));, which up to a multiplicative dimen- 

sional constant is the volume of the transformed confidence ellipsoid. Clearly it 
suffices to consider only [det Zn(x)];, since Q occurs only in a multiplicative 
constant which will be the same for all transformed ellipsoids. Hence comparisons 
of volumes will be unaffected by Q. 

2. tr[QZ,(x)];, which is the sum of the semiaxes of the transformed confidence 
ellipsoid. 

3. tr[QZn(X)], which is the sum of the squares of the semiaxes of the trans- 
formed confidence ellipsoid. This measure of size is of additional interest since it is 
also the posterior expected loss of 6". 

The results in this section will be concerned with comparing the size of Cn(X) 
(and C*(X)) to the sue of CO(X), the usual confidence region. Note that for 
c0(X), the three measures of size that will be discussed are det(Zf), tr(QZ);, and 
tr(Q 2)  respectively. 

The first result gives a condition on X under which Zn(X) < Z, and hence 
Cn(X) has smaller size than c0(X) under any reasonable measure of size. The 
notation in (3.9) will be used extensively from here on. 

THEOREM3.2.1. If U(IIx1l2)> w(llx113, then Z,(X) < Z. 

PROOF. This follows immediately from (3.9, noting that ZC-'XX'C-'Z 6 
11x11~zc-'z.0 

To investigate the measures of sue, the following two lemmas are needed. 

det Zn(X) = [det Z]  [det(l-  u(llx I I ~ ) c - ' z ) ]  

PROOF. Clearly 

(3.15) det Z,(X) = [det I:][det(I - uc -'z + wc -'xx'c-'Z)] 

= [det Z]  [det(l - UC-'Z)] 

Note that C-'XX'B has rank one for any nonsingular (p X p) matrix B, and has 
characteristic roots 0 (with multiplicity (p  - 1)) and (XtBC-'x). (C-'X is the 
characteristic vector of the nonzero root.) The characteristic roots of [ I  + 
WC-~XX'B] are hence 1 (with multiplicity (p  - 1)) and (1 + wXrBC-'x). It 
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follows that 
det(1 + WC-'XX'C-'2{1- U C - ' Z ) - ' )  

= 1 + ~ x ~ c - ~ z { r~ c - ~ z ) - ' c - ? Y-

= 1 + w x t ( C z - ' c  - u c ) - ' x  

Together with (3.15) this gives the desired result. 0 

LEMMA3.2.3. Assume that ai > 0 and bi > 0 (i= 1, . . . ,p), and that p > 2, 
Z:,,bi = > 2 ma~ ,< ,<~{a , ) .  1, and Z:,,ai Then 

(3.16) II:-,(l +yai[2bi- I ] )  < 1,forally € [ ~ , ( m a x , { a , ( l  - 26,)))-'1. 

PROOF. Without loss of generality assume that a,, is the largest a,. If bi < ifor 
all i, the conclusion is obvious. Hence assume b, > for some j. Note then that 

b, < for all i # j. Examining (3.16), it is clear that the worst case to consider is 
j = 1 (since a, is the largest a,). Thus assume b,  > i. 

Since 2a, < Z:=,ai (or a, < Z:-2ai), it is clear that 

(3.7) 

II:-,(l + yai[2bi - 1 1 )  < ( 1  + y{Z:.~a,)[2b1 - l])[IIf=2(1+ yai[2bi - l ] ) ] .  

Denoting the right-hand side above by cp(y),a calculation gives 

Since (2b, - 1 )  > 0, (26, - 1 )  < 0, ai > 0, (b,  + 6, - 1) < 0,and (1 + y+[26, -
11) > 0 (due to the domain of y), it is clear that (d/dy)cp(y)< 0. Hence cp(y) is 
maximized at y = 0, which together with (3.17) establishes the result. IJ 

Measure of size I :  volume. The following theorem gives conditions under which 
the volume of C n ( X )is less than the volume of CO(X). 

THEOREM3.2.4. < [det 21;for[det z,(x)]~ all X, if and only i f  t r (C- '2)  > 
2chm,(C -'Z). 

PROOF. Using Lemma 3.2.2, it is clear that  showing that 
[det x n ( x ) ] f< [det 214is equivalent to showing that 

(3.18) 


H = [det(l - u ( ~ ~ x I ~ ) c  - u(llX l12)C)-'x] < 1.
- '2)][ 1 + W ( ( ( X ~ ~ ~ ) X ~ ( C ~ - ~ C  
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For convenience, let T be orthogonal such that TtC - f xc-4 T = D is diagonal 
with diagonal elements {dl, . . . ,d , ) ,  dl being the largest. Note that the condition 
tr(C - '2) > 2c&,,(C -'Z) is simply 
(3.19) 2f-ld. > 2d,. 

Also define z = T'C -;x, so that 1 1  x 1 1 2  = X'C - 'X = Iz12. Then H can be rewrit- 
ten 

= [IIf-l(l - u ( l ~ ( ~ ) d , ) ]  u(Iz12)di))].[1 + w((z12)zf-I{zi"4/ (1 -

To prove the "only if" part of the theorem, choose z = Jzl(l,O,. . . ,0)'. Then 

(3.21) H = [IIf-l(l - u(lzI2)d,)][ 1 + w(kI2)Izl2d~/(1 - ~(Iz l~)d l ) ]  

= [rIf,2(1 - u(lz12)4)] [ l  + dl{~( Iz I~) Iz l~~ ( l ~ l ~ ) ) ] .-

Letting lzl + co and using Lemma 2.1.1 (iii) and (ix) and Lemma 3.1.1 (iv), it is 
clear that 

.(Iz12) = rn(lzI2)/1zl2 = 2n/lz12 + o ( l ~ I - ~ ) ,  

= 2n/lzJ2 + ~ ( J z J - ~ ) .  

Hence from (3.21) 

= 1 + -2n 
{d, - Z:,,4) + ~ ( J z l - ~ ) .  

lz12 

Thus if (3.19) is violated, then H > 1 for large enough JzJ  (and z in the given 
direction). This proves the "only if" part of the theorem. 

To prove the "if" part, observe from (3.20) that 

(3.22) H < [11:,1(1 - ~d,)] [ I I f -~( l+ W Z , ? ~ /  (1 - d ) ) ]  

= rIf-'(l + d,[wz,? - u]) 

the last step following from Lemma 3.1.1 (v). Letting y = u, ai = d., bi = z,?/)zI2, 
and applying Lemma 3.2.3 gives that if (3.19) is satisfied, then H < 1, completing 
the proof. 0 

COROLLARY3.2.5. If C = pZ(p > 1)andp > 2, then [det Z,(X)]~ < [det 21;for 
all X. 
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PROOF. tr(C -'Z) = p~ > 27 = 2c&,(C -'Z), so Theorem 3.2.4 gives the de- 
sired result. 0 

COROLLARY3.2.6. C*(X) has smaller volume than c'(x), for all X, i f  and only i f  

PROOF. Obvious from Theorem 3.2.4, noting that Z(Z + A)-' = ( I  + 
AX-')-'. 0 

Note in particular that for the symmetric problem where I: and A are multiples 
of the identity, then Cn(X) and C*(X) have smaller volumes than c'(x) forp > 2. 

The question arises as to how significant an improvement in volume is obtain- 
able using C*(X) instead of c'(x). Using Lemma. 3.2.2 it is an easy matter to 
calculate 

volume of c*(x) - [det z*(x) 1'
V*(X) = 

volume of c'(x) 
-

[det Z] 'I ' 

Typical of the results obtained are those given in Tables 2 and 3 below. Table 2 
considers the symmetric situation Z = I and C = p*(Z + A) = 21, for p = 6 and 
p = 12. V,* and V:, are the volume ratios in 6 and 12 dimensions, respectively. 
V*(X) is a function of I X 1 in this situation. It is somewhat easier to picture things 
in terms of 

which is termed by Faith (1976) the ratio of the effective radii of C*(X) and 
c'(x). (The effective radius of a set is the radius of a p-sphere having the same 
volume as the set.) In Table 2, R,* and R:, stand for R*(X) in 6 and 12 dimensions. 
In the symmetric situation C*(X) is clearly significantly smaller than c'(x). 

Table 3 deals with the nonsymmetric situation p = 6, I: = I, and A diagonal 
with diagonal elements {.65, 3.5, 6.5, 9.5, 12.5, 45.5). The entries <* and q ( l  < i 
< 6) refer to the quantities V*(X) and R*(X) calculated along the ith axis. V; and 
R; are calculated along the Pne IX [(I, 1, 1, 1, 1, 1)~/61. Note that 

tr(I + AX-')-' = 1.729 < 1.818 = 2c&,(I + AX-')-', 

so by Corollary 3.2.6 it must be true that V*(X) > 1 for some X. Indeed for large 
(XI along the first axis, Table 3 shows that this is the case. Such X are very unlikely 

TABLE2 
Volumeratio 
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TABLE3 

Volume ratio 

to occur, however, if the prior information that 8,  has mean 0 and variance .65 is 
even approximately correct. 

Measure of size 2: sum of semiaxes. 'For the second measure of size, 
tr[QX,(X)]+, general results were not obtained. However, for the case Q = X-'  
and C = pX(p > 1) (which includes the symmetric case where Q, 2 ,  and C are all 
multiples of the identity) the following result shows that Cn(X) is smaller than 
c O ( x )if p a 2. 

THEOREM If Q = 2-', C = pX(p > I), and p > 2, then tr[QZ,(X)]f 43.2.7. 
tr[Q21;. 

PROOF. Defining a = u(l(X (12)/p, it can be calculated that 

[ Q ~ ~ ( x ) ] ~[(1 - u/p) I+  W X X ~ / ~ ~ ] ~= 

+ { I  - a + (X~X-'X)W/~~}~](X~X-'X)L-'XX~. 
Hence 

tr[QXn(x)lt = (p - 1)(1 - a); + {I - a + ( x ' X - ' X ) W / ~ ~ ) ~  

4 ( p  - l)(l - a)f + (1 + a)? 
I 

= h(a), 

the last step following from Lemma 3.1.1 (v). For 0 < a < 1, 

Thus h(a) is maximized at h(0) = p = tr(Q2)) and the result follows. [I 
Numerical calculations will not be given for the above measure of loss since (at 

least for the symmetric situation) tr[QXn(x)]4 behaves like p(1 - R*). 
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Measure of size 3: sum of squares of semiaxes. The final measure of size is 
L(X) = tr[QZ,(X)], which is also the posterior expected loss. Clearly 

(3.23) L(X) = tr(QZ) - u(ll x l12)tr(QZC-'Z) + w(llx l12)x'c -'EQEc-'x. 

THEOREM 3.2.8. L(X) = tr[QZ,(X)] < tr[QZ] for all X, if and on& if 
tr(ZQZC-') > 2chm,(ZQZc-I). 

PROOF. The "if" part follows immediately from (3.23) and the inequality 

< 2u(ll x 112)chm,(Z~Z~- I ) .  

The "only if" part is proved analagously to the "only if" part of Theorem 3.2.4. 
Choose X to be a multiple of the eigenvector corresponding to the largest char- 
acteristic root of C -4ZQZC + ,let X -+ w in (3.23), and use Lemma 2.1.1 (iii) 
and (ix) and Lemma 3.1.1 (iv). [1 

COROLLARY3.2.9. C*(X) has smaller size (measure 3) than c'(x) for all X, if 
and only if 

PROOF. Obvious. fl 
An interesting observation can be made concerning the relationship between 

R(O,an) and E,L(X). 

THEOREM If t r ( Z Q 2 ~  c -I), then R(0, 6") <3.2.10. -I) > (2n + 2)c&,(ZQZ 
E, L(X) for all 0. 

PROOF. Integrating by parts as in Berger (1976~) (the technique was first 
noticed in the symmetric case by Stein (1973)) gives 

Applying Lemma 3.1.1 (iv) and (3.23) to this expression gives 

(3.24) 
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Since r~(11x112) > 0, r,(11~11~) < 2n, and 

the conclusion follows. 1 

COROLLARY If ZQ 2C = TI and n < (p 2)/2, then R(0, 8") < 
E,L(X) for aN 0. 

PROOF. Obvious. 1 
The above result was obtained for the situation Q = Z = C = I and n = (p  -

2)/2 by Morris (1977). Stein (1974) has related results in the symmetric situation. 
Theorem 3.2.10 essentially says that, under the given condition, L(X) is an 

overestimate (on the average) of the true expected loss for 6". In some sense, this 
indicates that the corresponding confidence sets Cn(X) are larger than necessary, 
i.e., an error on the side of conservatism is being made. Note that for the symmetric 
situation, C*(X) satisfies the condition of Corollary 3.2.1 1. 

Theorem 3.2.10 is somewhat puzzling in light of the fact that if n >p/2  (so that 
the priors gn have finite mass) then 

JR(@, an)gn(@) do = J[E,L(X)] gn(@) do. 

(Both sides are equal to the Bayes risk, up to the normalizing constant of g,.) If 
n < p/2, the integrals above are infinite, making the result of Theorem 3.2.10 
possible. The following result indicates what happens for ( p  - 2)/2 < n < p/2. 
The proof will be omitted. 

THEOREM3.2.12. If ( p  - 2)/2 < n < p/2, then 

J[ R(0, 8") - E,L(X)] gn(0) d0 = 0. 

Thus for n > ( p  - 2)/2, E,L(X) is "on the average" equal to R(0, an), and 
hence L(X) is not an overestimate. 

In conclusion, it can be noted that for the important symmetric problem (Q, 2, 
and C multiples of the identity matrix), Cn(X) is smaller than c'(x) for all 
measures of size considered and p > 2. Even for nonsyrnmetric problems, Cn(X) 
tends to be smaller than c'(x) under quite weak conditions. For example, the 
conditions of Theorems 3.2.4, 3.2.7, and 3.2.8 tend to be considerably weaker than 
the minimax condition of Theorem 2.2.1. 

3.2.1 1. - -

3.3 Probability of coverage of Cn. The other major facet of the confidence 
region Cn  which is of interest is its probability of covering the true value of 6, i.e., 
(3.25) 

Pa(@E Cn(X)) = Jh(2r)-~"(det 2)-;exp{- (X - B ) t Z - l ( ~- 6)/2) dx, 

where a, = {x E RP : 0 E Cn(x)). Note that (3.25) is the usual (frequentist) 
probability of coverage, not a Bayesian probability. 
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Dealing with probability of coverage analytically is very difficult. It seems 
virtually impossible to theoretically obtain uniform (for all 0)  dominance results as 
were obtained for size. Numerical studies of probability of coverage are very useful 
(and will be given), but they have the weakness in these high dimensional, many 
parameter settings of not being able to adequately cover the broad range of 
possible problems. When discussing R(0, 6") in Section 2.2, it was shown that a 
very useful analytical way of determining approximate risk behavior was to look at 
the "tail approximation" given in line (2.1 1). This suggests doing a similar thing for 
probability of coverage: obtain a large 0 approximation for the probability of 
coverage of Cn. In looking at numerical studies, it will be seen that this approxima- 
tion is a very good guide in determining the behavior of Po(@ E Cn(X)). 

THEOREM3.3.1. For the confidence ellipsoid 

PROOF. Given in the Appendix. 0 

COROLLARY If 2n < [tr(ZC -')/c&,(ZC -')I - 2 and 0 < a < 1, then3.3.2. 
Po(O E Cn(X)) > (1 - a)  for large enough 101. 

PROOF. Obvious from Theorem 3.3.1 and the fact that (BtC-'ZC-'0)/ 
(0 'C - '0) < c&,,(Z C - I). 0 

COROLLARY If C = pB, then3.3.3. 

PROOF. Obvious. 
Corollaries 3.3.2 and 3.3.3 show that Cn(X) can possibly have probability of 

coverage greater than (1 - a )  for all 0 only if n < (p - 2)/2. Unfortunately, the 
estimator Sn is inadmissible if n < ( p  - 2)/2. Thus to obtain a good estimator and 
a probability of coverage which is not seriously worse than (1 - a), it seems that 
the choice n = (p - 2)/2 should be made. In part, this is why 6* and C* were 
recommended with the choice n = (p  - 2)/2. 

For problems in which C # pZ, Theorem 3.3.1 is useful in determining the 
directions in which C*(X) has greater or smaller probability of coverage than 
(1 - a). Indeed, since the error term in Theorem 3.3.1 is 0((01-4) while the second 
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term is 0(191-2), the approximation is fairly accurate for even moderate values of 
18). (Numerical studies showed this to be the case.) 

As an example, the case p = 6, Z = I, A diagonal with diagonal elements 
{.65, 3.5, 6.5, 9.5, 12.5, 45.51, and 1 - a = .90 was considered. (This example was 
discussed in Section 3.2 with respect to the size of C*(X).) The probabilities of 
coverage, Pe(8 E C*(X)), were calculated along the six axes and along the first 
quadrant diagonal. Table 4 gives the results for various values of (8). (pi stands for 
the probability of coverage along the ith axis (1 < i < 6), whilep, is for along the 
diagonal.) From Theorem 3.3.1 (with C = p*(Z + A)) it could be predicted that C* 
would have a probability of coverage smaller than (1 - a) for large enough 191 
along the first two axes and the diagonal, and probability of coverage which 
eventually exceeds (1 - a) along the remaining axes. This behavior is exactly what 
is observed in Table 4. The coverage probability along the first axis appears 
particularly bad, but again the chance of being in this region is small (according to 
the prior information). (The probabilities in this and subsequent tables were 
computed by simulation, with M random vectors Xi being generated, andp = Po(@ 
E C*(X)) being estimated by 

p̂  = M -' (the number of i for which 9 E C*(Xi)). 

Clearly @ is the sample proportion from a binomial sampling situation, so the 
standard deviation of p̂  is 

= [p( l  - p ) / ~ ] i  -[j(1 - p ^ ) / ~ ] i .  

The entries in Table 4 were obtained with M = 20,000. Thus, for example, the 
standard deviation of p, when (91 = 10 is approximately [(.908)(.092)/20,000]f -
.002.) 

For symmetric problems (or more generally those with C = pZ), one would hope 
that C*(X) does have coverage probability greater than (1 - a). Unfortunately, 
Theorem 3.3.1 or Corollary 3.3.3 are no longer of any assistance, since [p - (2 + 
2n)l = 0. It is thus the term of order that is dominant, as the following 
theorem shows. (In one sense, this also helps justify the choice n = (p - 2)/2; the 
resulting confidence procedure is closer to the usual confidence procedure for 
"extreme" X.) 

TABLE4 

Probabilities of cooerage of C8(X). 
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THEOREM3.3.4. If C = p 2  and n = (p  - 2)/2, then 

PROOF. Given in the Appendix. 0 

COROLLARY3.3.5. If A = p2, then for large 181, Pe(8 E C*(X)) > (1 - a)pro-
viding 

(i) 0 <k(a) < 1.212 (i.e., 0 < (1 - a) < .25) whenp = 3; 
(ii) 0 < k(a) < 4.8 (i.e., 0 < (1 - a) < .69) when p = 4; 

(iii) 0 < k(a) < 25.45 (i.e., 0 < (1 - a) < .9999) when p = 5; 
(iv) 0 < k(a) < co (i.e., 0 < (1 - a) < 1) when p 2 6. 

PROOF. The conditions on k(a) are simply those for which {4p(p - 2) + 
k(a)[2(p + 2)]-1[p3 + 2p2 - 32p - 481) > 0. Theorem 3.3.4 thus gives the desired 
result. 1 

Forp > 6 (and virtually always for p = 5), the coverage probability of C* is thus 
greater than (1 - a)  for large enough 18 1. To determine the behavior for small 18 1, 
numerical studies were conducted for (1 - a) = .90,p = 4, 6, and 12, and C = 22. 
The results are given in Table 5 for various values of (8'2-'8);. The coverage 
probability is never much worse than .90, and for small (8'2-'8); was consider- 
ably better. Note that as predicted by Corollary 3.3.5, the coverage probability fell 
below .90 for p = 4 and large 18 1, but was above .90 forp = 6 and 12 and large 18 1. 
The dip below .90 at (8'2-'8)$ = 8 and p = 12 is somewhat surprising. The 
0()81-~)term of Theorem 3.3.4 is apparently not yet dominant at this point. (The 
number, M, of random vectors used in the simulation was M = 80,000 for p = 4, 
M = 60,000 for p = 6, and M = 40,000 for p = 12. Note, therefore, that the 
standard deviation of the entry for p = 12 and (8'2-'8)~ = 8 is aj -
[(.895)(. 105)/40,000]f - .0015.) 

3.4 Comparison with other confidence procedures. As mentioned at the begin- 
ning of Section 3, several other multivariate confidence procedures have been 
proposed. For the most part they have been presented and studied only in the 
symmetric situation (Q, 2 ,  and A multiples of I), so the comparisons in this section 

TABLE5 

Probabilities of cowrage of C8(X). 
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will be restricted to that case. Along with c'(x) and C*(X), we will consider 

c ~ - ~ ( x )= { B  : 10 - 6*(x)I2 < k(a)), 

and 

c M ( x )  = { B  : [ B  - s*(x)ltm,l[e - s*(x)] < k(a)}, 

where Z,(X) consists of the diagonal elements of Z*(X). CB-J(X) is simply the 
usual confidence region centered at the improved estimator 6* (in the spirit of the 
Brown (1966) and Joshi (1967) confidence sets). cM(x)  is related to the region 
suggested by Morris (1977) in the symmetric situation. One difference is that his 
choice of C in the prior g,, was always C = I ,  not C = p*(Z + A) as proposed 
here. (Some comments about both choices will be made.) The major difference is 
that confidence intervals, not confidence ellipsoids, are considered in Moms 
(1977). Hence overall probability of coverage is not the goal he pursues. To make 
meaningful comparisons, therefore, an ellipsoid using the variances in Moms 
(1 977) is considered. 

The other major proposed confidence regions, those of Stein (1962) and (1974) 
and Faith (1976), will not be discussed. Stein's regions are developed heuristically 
for largep and without modification are probably not suitable for small p. Faith's 
regions will not be considered for two reasons. First, as they are developed in a 
Bayesian fashion (though in the symmetric case), their performance is quite likely 
very similar to C*(X). On the other hand, they have a complicated shape and are 
hard to work with or evaluate. The relative simplicity of the other procedures 
makes them attractive. 

In comparing sizes, only volume will be discussed, though similar conclusions 
hold for other measures of size. Since c'(x) and c ~ - ~ ( x )  have the same size, the 
results of Section 3.2 hold for both. (See in particular Corollary 3.2.5 and Table 2.) 
C*(X) clearly achieves a very significant reduction in size over c'(x) or CB-J(X). 

Since Z,(X) consists of the diagonal elements of Z*(X), and Z*(X) is positive 
definite, it follows that det[Z*(X)] < det[Z,(X)]. Hence C*(X) has smaller 
volume than cM(X) also. The difference in volume between C*(X) and c M ( x )  is, 
however, much less than that between C*(X) and c'(x). Indeed if X lies along an 
axis, it can be shown that C*(X) and CM(x) have the same volume. The volume 
ratio of C*(X) to CM(X) along the diagonals is given in Table 6 for various values 
of X, p, and C, when L:= I. Moms always chooses C = I ,  while C = 21 is more 
typical of C = p*(Z + A) as suggested here. 

TABLE6 

Volume ratio of C8(X)  and C M ( X )  (along diagonals). 
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To compare probabilities of coverage, numerical studies were conducted. Tables 
7, 8 and 9 give results for I:= I, C = 21, and p equal 4, 6, and 12 respectively. 
Both C* and c ~ - ~have probabilities of coverage which depend only on 181. CM, 
on the other hand, does not. Hence results for CM are given for 8 along the axes 
(c;) and for 8 along the diagonals ( ~ 7 ) .  (Table 7 was done with M = 80,000, 
Table 8 with M = 60,000, and Table 9 with M = 40,000.) 

Except for small 181, CB-" has better probability of coverage than C*. On the 
other hand, C* has significantly smaller volume than c ~ - ~(Table 2). In looking at 
the tradeoffs involved, the smaller sue seems to more than offset the smaller 
probability of coverage. From an applications viewpoint, the confidence procedure 
C* seems more appropriate also. It can be reported as a (1 - a) confidence region 
and will have a definitely reportable smaller size than CO(x). c ~ - ~ ( x ) ,  on the 
other hand, has the same sue as CO(x) and can alsd only be reported as a (1 - a) 
confidence region. The gains in probability of coverage if the true 8 happens to be 
small are hard to report. c ~ - ~would, in a conservative sense, be more competitive 
in nonsymmetric situations, since its probability of coverage would be less likely to 
drop below (1 - a) than would the probability of coverage of C*. 

C* and CM have very similar probabilities of coverage. (Note that both are 
calculated at C = 21 for comparison purposes. The choice C = I gives less 
attractive results for both regions.) CM is better along the axes, while C* is better 
along the diagonals. The smaller size of C*(X) and its greater simplicity in 

TABLE7 
Probabilities of cmrage ( p = 4). 

TABLE8 
Probabilities of cmrage ( p  = 6). 

TABLE9 
Probabilities of cooerage ( p  = 12). 

181 0 1 2 3 4 5 6 8 10 15 

C* 1.000 .999 .998 .988 .958 .921 .900 .895 .898 .900 
CB-' .999 .999 .999 .997 .995 .990 .978 .952 .936 .917 
cf .995 .994 .991 .980 .961 .942 .933 .922 .912 .903 
cd" .995 .994 .991 .979 .951 .916 .893 .888 .894 .898 
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nonsymmetric situations make it attractive. Both procedures, however, should do 
quite well. 

4. Incorporation of prior information. As mentioned in Section 1, prior input 
in the form of a prior mean vector p and a prior covariance matrix A is envisaged. 
The use of A in the development of 6* and C* has already been discussed. To use 
p, the estimator and confidence region should be centered at y. Thus 

is the recommended estimator. The definition of 2*(X) is unchanged, except that 
X should be replaced by X - p in all expressions. This shift changes none of the 
properties or results established in Sections 2 and 3. 

It is sometimes desirable to choose C- '  to be singular. The only change which 
should then be made in the definitions of 6" and C" is to choose n = ([rank C-'1 
- 2)/2 instead of n = (p  - 2)/2. The rank of C -' is the effective dimensionality 
of the problem. This can be seen by diagonalizing Z and C, and then noting that 6" 
and 2, are the generalized Bayes estimator and posterior covariance matrix for a 
subproblem of rank C - I .  Thus all the results of Section 2 and 3 (with the exception 
of the admissibility of 6") hold with p replaced by [rank C - 'I. 

The reason for choosing C -' singular would be that in some directions there is 
no prior information whatsoever (or alternatively, that A has infinite characteristic 
roots in these directions). The corresponding coordinates are then effectively 
excluded from the correction terms of the estimator 6" and the posterior covariance 
matrix 2,. 

An example of the use of singular C - '  is when shrinkage towards the common 
mean X = ZP, ,Xi/p is desired. Defining (1) as the matrix of all ones, i as the 
column vector of ones, and letting C -' = I - (l/p)(l), it is easy to check that (for 
Z = I )  

an estimator which shrinks towards the common mean. Note that C- '  has rank 
(p  - l), so n = (p  - 3)/2 is the appropriate choice of n. Choosing C- '  as above 
is essentially a statement that the Oi are felt to be similar (or their priors have a 
common mean or their prior is exchangeable), but that the common value that the 
ei are thought to be near is totally unknown. This last assumption seems somewhat 
extreme intuitively, and the following Bayesian considerations suggest a reasonable 
alternative. 

Assume that the 8, are thought to be a random sample from a normal distribu- 
tion with mean 8, and variance 02.(It is convenient to develop y and A through the 
assumption of normal priors due to the resulting ease in manipulation.) It is often 
assumed that 8, also has a normal distribution with mean p, and variance a:. (This 
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problem is discussed in Lindley and Smith (1972), where earlier works on the 
model are also referenced.) As pointed out in Lindley and Smith (1972), this two 
stage prior is equivalent to assuming that 8 has a p-variate normal distribution with 
mean p = and covariance matrix A = (0'1 + ai(1)). The common Bayesian 
technique is to use the linear Bayes estimator, letting a: + oo. (The prior informa- 
tion at the second stage is deemed vague, so taking a: to infinity results in a more 
robust estimator.) Due to the fact that 6* is already quite robust, however, the best 
guesses p and A can safely be used directly in a*. There is no need to let a: +a. 
Note that at the two extremes, letting a: + oo in 6* would result in (4.2) (providing 
Z = I and n = (p  - 3)/2 were used), while choosing a: = 0 would simply result in 
an estimator shrinking towards the believed mean p,,i. 

As another example of the use of prior information, assume that the linear 
restriction 

H(8 - 8,) = 0 

is thought to hold, where 8, is a p vector and H is a (k X p) matrix (k < p) of 
rank k(k > 3). Suppose a (k x k) positive definite matrix A is also determined, 
where A reflects the accuracy with which the linear restrictions are believed to 
hold. (A can be thought of as the estimated covariance matrix of the prior 
distribution of H(8 - 8,).) 

The appropriate version of 6* for this situation is 

where n = (k - 2)/2 and 

For C*, the confidence region, Z* should be chosen to be 2, with X replaced by 
[X - 8,] and n and C as above. 

The rationale for the above choices arises from an analysis in which the null 
space of H (i.e., N = ( 8  : H8 = 0)) is given a prior distribution in which the 
variances are sent to infinity. This is a mathematical way of saying that there is no 
prior information about N (since no restrictions were specified for this space). The 
projection of X upon N should thus not be used in the correction terms of 6* and 
Z* (and indeed it is not). The details of the analysis will be omitted. Note that k is 
used in place of p in the above estimator, since this is really the dimensionality of 
the prior information. It should also be emphasized that due to the robustness of 6* 
and C*, even quite uncertain linear restrictions can be usefully incorporated. 

5. Unknown variance. In applications, it is important to consider the situation 
in which the covariance matrix of X is unknown. Attention will be restricted to the 
case where the covariance matrix is of the form a2Z, Z known but a2 unknown. 
(This is the common situation in regression problems.) 
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There are two possible approaches to dealing with this problem. The first is 
simply to replace a2 by an estimate in 6* and C* (with appropriate changes to k(a) 
in C*). The second is to place a prior distribution upon a2 (in addition to e), and to 
develop 6* and C* in terms of the combined prior information. 

The second approach was used by Strawderman (1973) for the case Z = I (in 
g,). (M. E. Bock (personal communication) has been able to explicitly evaluate the 
resulting estimator.) Unfortunately, the resulting estimator is extremely complex, 
even in this simple setting. The problems of constructing such an estimator for the 
nonsymmetric setting, and then of meaningfully analyzing it, seem considerable. 
Indeed the priors placed on a2 are rather unintuitive, and whether or not they have 
a beneficial effect on the estimator is unclear. It should be emphasized that 6* and 
C* were developed in a Bayesian fashion mainly because it appeared necessary to 
use prior information in the choice of a competitor to aO(x) = X. There is no such 
compelling reason to use prior information on a2 in constructing a*. The approach 
that will be adopted is thus the first approach, merely replacing 02 by an estimate 
in a* and C*. (Of course, if significant prior information about a2 were available, it 
would be reasonable to use this in the estimation of 02, but this could be left up to 
individual taste. Note that the effect upon 6* would probably be slight, in the sense 
that 6* would still probably be very robust, but the effect of wrong prior informa- 
tion about 02 on C* could be considerable.) 

When a2 is unknown, assume a random variable s2is observable (independent 
of X), where s 2 / a 2  has a chi-square distribution with m degrees of freedom. A 
suitable estimate of 02 for use in 6* and C* is s2/(m + 2). Thus [s2/(m + 2)]2 
and C = p*{[~2/(m+ 2)IC + A) should be used in 6* and C* in place of the 
previous Z and C. A reason for choosing s2/(m + 2) as the estimator of a2 is that 
it is the natural estimator for certain minimax results. The following theorem is an 
example. For convenience, define 

Note that if A is nonsingular, then G(Q, Z, A) = tr(ZQ2A - ')/C&,(~QZA -'). 

THEOREM Assume Q ', Z, and A are simuItaneousIy diagonalizable, with 5.1. -

resulting diagonal elements { q ~'), (4.1, and {Ai), satisfying for 1 < i,j < p 

Let C = 2/(m + 2)]Z + A), where p is nondecreasing in s 2 .  Then p ( ~ 2 ) ( [ ~  

has smaller risk than aO(x) = X, providing n < G(Q, 2 ,  A) - 2. 
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PROOF. Integrating by parts as in Theorem 3.2.10 gives 

Efron and Morris (1976) proved the identity 

(5.4) Em,[ =g ( ~ 2 ) ~ 2 ]  a2mE,1[ g ( s 2 ) ]  + ~ u ~ E ~ [ s ~ ~ ~ ( s ~ ) ] ,  

for any differentiable function g for which the expectations exist. Defining 

h ( s 2 ) = ( x ' C - ' Z Q Z C - ' X ) / ~ ~ X ~ ~ ~ ,  

(recall C is a function of S 2 )and setting 

it follows from (5.4) that 

From the definition of C and the assumption that p is nondecreasing in s2,it is 
clear that 1 1 x 1 1 2  = X'C - 'X is nonincreasing in s2.Hence 

Defining Y = TX, where T is a (p  X p) matrix such that TQ - I T ' ,  TZT' ,  and 
TAT' are all diagonal matrices. It is easy to check that 
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Defining bi = [s2/(m + 2)] + [Ai/d.], a calculation gives that 

Using the definition of bi, a calculation gives that 

The first term on the right-hand side of (5.7) is nonnegative by (5.2). The second 
term is nonnegative since (5.2) implies that the two factors of the second term have 
the same sign (or one is zero). It can thus be concluded that h'(s2) < 0. Together 
with (5.5) and (5.6), this implies that 

Using (5.3), (5.8) and the facts that r;(l(xll2) > 0, r,(11~11~)< 2n, and 
( X ' C - ' Z Q ~ C - ' X > / ~ ~ X ~ ~ ~  it follows that < c&,(ZQZC-I), 

Clearly 
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where k is the coordinate at which the maximum is attained. But if dkqk/bk > 
4qi/bi for i # k, then for (5.2) to hold it must be true that bk < b,, or equivalently 
that Ak/dk < A,/d,. Hence 

is nondecreasing in s2.It follows that (5.10) is minimized at s2= 0, attaining the 
value G(Q, 2 ,  A). Together with (5.9), this establishes that 

By the condition on n, the argument of the expectation is positive and the 
conclusion follows. 0 

Two special cases of interest are given in the following corollaries. 

COROLLARY If Q then 6 "  (chosen as in Theorem 5.1) has smaller 5.2. = r2- ' ,  
risk than S o  if n < G(Q, 2 ,  A) - 2. (If A is nonsingular, G(Q, 2 ,  A) = 
tr(2A - ')/c&,(ZA - I).) 

PROOF. Clearly Q -' = ~ - ' 2 ,  2 ,  and A are simultaneously diagonalizable. 
Also, 4qi = r for all i ,  so that (5.2) is satisfied. The conclusion follows from 
Theorem 5.1. 

Note that Q = 2-' is an often considered choice of Q, as it gives rise to a loss 
which is invariant and, more importantly, is the natural loss for the prediction 
problem of linear regression. (Predict the value of a future observation arising from 
the same design matrix.) 

COROLLARY5.3. If A = 72, then S n  (chosen as in Theorem 5.1) has smaller risk 
than S o  if n < [tr(Z Q)/ch,,(Z Q)] - 2. 

PROOF. Q -',2 ,  and A = r2 are all simultaneously diagonalizable and A,/& = 

T for all i. Hence (5.2) is satisfied and Theorem 5.1 can be applied to give the 
desired result. 0 

The estimator 6 "  is undoubtedly uniformly better than S o  in situations where 
(5.2) is not satisfied, but a more general proof was not found Note, in any case, 
from the statement of Theorem 5.1, that m (the degrees of freedom of s 2 )  is not 
part of the condition of the theorem. This is why s2/(m + 2) seemed the natural 
estimator of a2 to use in S* .  

COROLLARY If Q -',2 ,  and A are simultaneously diagonalizable and satisfy 5.4. 
(5.1), then S* has smaller risk than 6' ifp < 2G(Q, X, A)  - 2. 
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PROOF. Obvious from Theorem 5.1. 0 
The estimation of a2 does not affect the robust Bayesian properties of S* 

appreciably, so numerical studies (such as Table 1) will not be presented for this 
case. 

When estimating a2 by S2/(m + 2), the appropriate definition of the confidence 
region Cn is now 

where Sn and Zn are defined as earlier with Z replaced by [S2/(m + 2)]Z and 
k(a) = (m + 2)pF,, ,(I - a)/m, F,, ,(I - a) being the 100(1 - a)th percentile of 
the F distribution withp and m degrees of freedom. Note that the usual confidence 
ellipsoid when u2 is unknown is 

s2c O ( x ,  s 2 )  = ( 0  : (0 - x)'2-'(0 - X) < (,)PF,,,(l - a)) .  

In considering the size of Cn(X, s2), the results in Section 3.2 all hold with Z 
replaced by [s2/(m + 2)]2. The conditions of the theorems then depend on s 2 ,  
however, at least for C*(X, s 2 )  which chooses C = p*([S2/(m + 2)]Z + A). 
Global theorems can be developed, if desired, an example of which is the following. 

THEOREM C*(X, s 2 )  has smaller volume than c'(x, if5.5. s 2 )  for all X and s2 
G(Z-', Z, A) 2 2. (G is defned in (5.1).) 

PROOF. By Corollary 3.2.6, it is only necessary to show that for all s2> 0, 

Letting {b,)denote the roots of Z-~AZ-; ,  it is clear that (5.11) can be rewritten 

The expression on the left-hand side of (5.12) is clearly minimized as s2+0. But 
the limit as s2+0 is nothing but G(Z-', Z, A), and the conclusion follows. 0 

Tables 2 and 3 still give typical volume ratios of C*(X, s 2 )  to c'(x, s 2 )  (when 
s2= m + 2 for example). 

Numerical studies were performed to investigate P,(0 E C*(X, s2)). The results 
turned out to be very similar to those in Section 3.3 and so will not be presented. 
The general tendency was for C*(X, s 2 )  to have (for all 0) probability of coverage 
closer to (1 - a)  than in the corresponding situation with known variance. (Essen- 
tially, the additional randomization over s2smooths out the more extreme proba- 
bilities of coverage for the known variance case.) 

In conclusion, it appears that estimation of u2 does not reduce the benefits of 
using S* and C*. 
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6. Generalizations and comments. 
1 .  An interesting feature of 6" can be observed using Lemma 2.1.1 (v), namely 

that 

Hence if C = (Z + A), the limiting estimator is the optimal linear Bayes estimator. 
Larger than recommended values of n may, therefore, be useful when accurate 
information about the tail of the prior is available. For example, if it is thought that 
the prior has a normal tail, so that ( I  - Z(Z + A)-')x is being considered for use, 
it might pay instead to use Sn with a large value of n. The resulting estimator will 
behave similarly to the linear estimator except that it will be more robust with 
respect to inaccurate prior information. Of course, the larger n is, the less robust 6" 
will be. 

2. More general classes of priors can be considered. Indeed it can be checked 
that g,(8) and rn(v) in Section 2 can be replaced by 

where B(A) = [C/h(A)] - Z and 0 < h(A) < 1 for 0 < A < 1. For a wide variety of 
h and p, rn*(v) can be explicitly evaluated. For example, choosing h(A) = A and 
dp(A) = I(,, l,(A)A(n-'-p/2) dA results in a calculable estimator which behaves like 
Sn(X) for small and moderate values of I I X I ( ~  but(the region depending on e), 

behaves like a linear Bayes estimator for large values of 1 1  X 1 1 2 .  As another example, 
if p is chosen to put unit mass at a particular point, the resulting prior is simply a 
normal prior. The general class is clearly very rich. (See Efron and Moms (1973a) 
and Faith (1976) for related classes of estimators in the symmetric situation.) Of the 
various estimators we considered which arose from priors in this class, Sn seemed 
the most attractive. Hence attention was restricted to 6". 

3. Unfortunately, a problem does arise with S* (and with other estimators of 
the form (1.1)). The estimator definitely performs best when all coordinates are 
similar or can be transformed so they are similar. (More precisely, this occurs when 
[ZQZ(Z + A)-'] is close to a multiple of the identity.) Thus if, for example, there 
were two groups of similar coordinates, the groups being quite different from each 
other, it would probably pay to separately estimate each group. In terms of a prior, 
this could be interpreted as saying the Bi's should not be forced to act dependently 
(as in g,), but should be separated into similar groups, with independent prior 
distributions on each group. The question is-when and how should this separa- 
tion take place? (Efron and Morris (1973b) give an interesting discussion of the 
problem in the symmetric situation.) 

4. All results in the paper have been for quadratic loss, due to the relative ease 
of calculation. Numerical studies (such as in Berger (1976b)) have indicated 
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however, that estimators like S* tend to have risks which are quite robust with 
respect to the functional form (or more precisely the tail) of the loss. See Berger 
(1976b) for further discussion. 

5. The well-known relationship between confidence sets and testing of hypothe- 
ses, indicates that in some sense the usual multivariate tests of a point null 
hypothesis can be improved upon by using as an acceptance region A(@) = {x :8 
E C*(x)). Of course the usual multivariate tests are admissible when error proba- 
bilities are the criteria of evaluation, so no uniform improvement is possible. The 
improvement that could be obtained would thus be with respect to Bayesian 
criteria. The point is that the use of acceptance regions based on C*(X) could 
result in robust Bayesian tests. A complete discussion of this is outside the scope of 
this paper. 

6. The procedures 6" and Cn can also be used in one and two dimensions. 
Though their classical (frequentist) properties will not be as appealing in such low 
dimensional settings, their performance as robust Bayes procedures will still be 
extremely satisfactory. Since n = (p - 2)/2 can no longer be chosen, n =4 seems 
appropriate. The procedures S* and C* are recommended, with this change, for 
situations in which significant prior information is available. 

APPENDIX 

3.3.1. 
(1966) of the inadmissibility of the usual confidence sets. 

For simplicity, assume that Z = I. (This can be assumed without loss of 
generality, as is seen by considering the linearly transformed problem Z = 2-?iX, 

= r-$, and C' = ~ - ? i c x - t . )  

Define 


PROOFOF THEOREM The proof is related to the theoretical proof in Brown 

Go = {x E RP : 9 E Cn(x)) = {x : [ B  - S"(X)] 'Z~(X)- '[~- Sn(x)] < k(a)}, 
Using Lemmas 2.1.1,3.1.1, and 3.1.2, a fairly lengthy Taylors series argument shows 
that if x E a,, then 

(A.1) 2,,(x)-;(! - Sn(x)) = (8 - x) + 2nl1911-2~-16- nl1811-2~-'(8 - x) 

+2nl1811-4[8t~-'(8 - x ) ] c - ~ ~+ 0(18)-~). 

Define 

( A 4  Y = (8 - X) + 2nl1911-2~-'8 - n l l 6 1 1 - ~ ~ - ' ( 8X)-

+2n11011-~[0'~-~(8- x ) ] c - ~ ~ .  

Letting J denote the Jacobian of this transformation from X to Y, a calculation 
shows that 

(A.3) JdetJJ-'= 1 + n11811-2tr(~-') + 2n11811-49t~-28+ 0()81-~). 
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Observe from (A. 1) and (A.2) that if x E Q,,then 

(A.4) [ e  - sn(x)]tz,(x)-l[e - an(x)] = l y j 2  + o ( ~ e l - ~ )  

and 

(A.5) 	 ( 8 - X )  = y - 2n11811-~~- '8 

+ n ~ ~ @ ~ ~ - ~ c - l y  + 0(18I-~).- 2 n 1 1 8 1 1 - ~ ( 8 ' ~ - ! ~ ) ~ - ' 8  

From (A.5) it follows that if x E a,, then 

Defining S(k) = {y  E RP : JyI2< k(a)), it follows from (A.3), (A.4) and (A.6) 
that a change of variables from X to Y gives 

Define 

(A.8) 	 h(a) = (2n)-P/2/s(k3.'? exp{ - I Y  1 2 / 2 )  dy 

= (2n)-P'2/S(kp- '~~~2ex~{l ~ 1 ~ / dy }- ~ 

It is easy to check that 

jS(k)exp{- I Y  12/2}(~'C -I8) dy = O, 

lS(k)(2n)-P/2ex~{-l ~ 1 ~ / 1 ~1 } 1 1 ~ = h(a)tr(C-'),~ dy 

and 

/s(k,(2n)-P/2exp{-	 dy h(a)@'C-3.( y ( 2 / 2 } ( y ~ - ' 8 ) 2  = 

It follows from (A.7) that 
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This gives the desired result except that the error term is qlfll-') instead of 
0(18)-4).It can be checked, however, that due to the symmetry of the problem, the 
terms which are O()el-") for m odd must always integrate to zero (as did the term 
[2nJJO))-5'C-'01). Hence the next nonzero term of the expansion of PB(OE 

Cn(X))will be 0()81-4). 

PROOFOF THEOREM A very laborious calculation exactly paralleling the 3.3.4. 
proof of Theorem 3.3.1 (but including all terms up to o(lel-4)) gives in place of 

(A.9) 

P,(B E cn(x))= (1 - a) + [(p - 2) /81 (8~2-~8) -~  

x {4p(p - 2)(1 - a) - 2(p - 2)(3p + 4)'h(a) 
(A.10) + [p3+ 3p2- 30p + 16]l(a)/3 - (p - l)[p2+ 2p - 321 g(a)) 

where h(a) is given in (A@, 

and 

Inserting these expressions in (A. 10) and collecting terms gives the desired result. 0 
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