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ROBUST BAYES AND EMPIRICAL BAYES ANALYSIS 

WITH E-CONTAMINATED PRIORS 


Purdue University and Ohio State University 

For Bayesian analysis, an attractive method of modelling uncertainty in 
the prior distribution is through use of E-contamination classes, i.e., classes of 
distributions which have the form li = (1- E)$ + ~ q ,110 being the base 
elicited prior, q being a "contamination," and E reflecting the amount of error 
in T,, that  is deemed possible. Classes of contaminations that are considered 
include (i) all possible contaminations, (ii) all symmetric, unimodal con-
taminations, and (iii) all contaminations such that li is unimodal. 

Two issues in robust Bayesian analysis are studied.The first is that of 
determining the range of posterior probabilities of a set as li ranges over the 
E-contamination class. The second, more extensively studied, issue is that of 
selecting, in a data dependent fashion, a "good" prior distribution (the 
Type-I1 maximum likelihood prior) from the E-contamination class, and using 
this prior in the subsequent analysis. Relationships and applications to 
empirical Bayes analysis are also discussed. 

1. Introduction. The most frequent criticism of subjective Bayesian analy- 
sis is that it supposedly presumes an ability to completely and accurately 
quantify subjective information in terms of a single prior distribution. However, 
there has long existed [at least since Good (1950)l a robust Bayesian viewpoint 
which assumes only that subjective information can be quantified in terms of a 
class I' of possible distributions. The goal is then to make inferences or decisions 
which are robust over I', i.e., which are relatively insensitive (or at  least are 
satisfactory) to deviations as the prior distribution varies over I'. We will not 
consider the philosophical or pragmatic reasons for adopting this viewpoint. Such 
a discussion, along with a review of the area, may be found in Berger (1984). (We 
also do not mean to imply that the single prior Bayesian approach is necessarily 
bad; i t  usually works very well.) Related to this are various forms of empirical 
Bayes analysis [cf. Morris (1983) for discussion and review], in which the prior 
distribution is also assumed to belong to some class I' of distributions. Indeed, 
Section 5 considers some familiar empirical Bayes problem from our perspective. 
Also, see Berger and Berliner (1984). 

Before discussing'implementation of the robust Bayesian viewpoint, some 
notation is helpful. Let .Xdenote the observable random variable (or vector), 
which will (for simplicity) be assumed to have a density f (x l0)  (w.r.t. some 
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AO.is an unknown parameter lying in a parameter space 6' measure), where 
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prior distribution on O will be denoted by n (later, in examples, n will be used to 
denote either a prior or its corresponding density), and the resulting marginal 
density of X is given by 

The,posterior distribution of 6' given x (assuming i t  exists) will be denoted by 
n ( .  Ix) and, in nice situations, is defined by 

Finally, let 9 denote the space of all probability distributions on O. 
The class, T, of prior distributions to be considired in this paper, is the 

&-contamination class; namely, 

(1.1) r = {n:  n = (1 &)no+ ~ q ,- q €21, 

where 0 I E I1 is given, no is a particular prior distribution, and 9 is some 
subset of .P. There are several reasons for consideration of this class. First, and 
foremost, i t  is a sensible class to consider in light of the prior elicitation process. 
The  extensive and rapidly developing methodology on prior elicitation [cf. 
Kadane et al. (1980)l makes specification of an initial believable prior, q,,an 
attractive starting point. However, in determining n,, sensibly, one will make 
probability judgements about subsets of O, judgements which could be in error 
by some amount E. Stated another way, further reflection might lead to alter- 
ations of probability judgements by an amount E. Hence, possible priors involving 
such alterations should be included in T. 

Many classes of priors which have been considered are not sensible from the 
above viewpoint. For instance, classes of priors involving restrictions on moments 
force severe restrictions on the allowable prior tails. This makes little sense from 
the  elicitation viewpoint, since the tails of a prior involve very small probabilities 
and are, therefore, nearly impossible t o  determine. Similarly, classes of conjugate 
priors are too limited, particularly in their inflexible tail behavior [cf. Berger 
(1985)l. 

Two other major reasons for choosing r as in (1.1) are (i) such r are (as we 
shall see) surprisingly easy to work with; and (ii) such r are very flexible through 
choice of 9. In this paper we will restrict consideration to four interesting choices 
of 9. First, in Section 2 the choice 9 = B (all distributions) will be considered. 
This choice is easy to work with and is, in some sense, conservative. In Section 3 
we consider the class, 2, of all contaminations which are symmetric and uni- 
modal. This is again very easy to work with. In Section 4 we consider the class of 
all contaminations such that the resulting n is unimodal (assuming that  q,is 
unimodal). I t  came as a great surprise to us that  such a complicated class could 
be worked with and provide reasonably simple answers. Finally, in Section 5 we 
consider 3 that  are mixtures of various classes. The purpose of the section is to 
show how easily mixed contaminations can be dealt with and also to apply the 
methodology in some typical empirical Bayes situations. 
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Other articles that have used &-contamination classes of priors include 
Schneeweiss (1964), Blum and Rosenblatt (1967), Huber (1973), Marazzi (1985), 
Bickel (1984), and Berger (1982,1984). Except for Huber (1973), these articles 
work within the frequentist Bayesian framework, whereas our approach will be 
almost entirely conditional Bayesian. Huber (1973) is discussed below and in 
Section 2.4. There is a substantial literature working with other types of classes 
of priors [cf. Leamer (1978) and DeRobertis and Hartigan (1981)], and with the 
very related idea of "upper" and "lower" probabilities. Berger (1984) contains 
considerable review and discussion of this literature. We strongly prefer the class 
in (1.1) for intuitive content and ease of analysis. 

The ideal analysis, to a robust Bayesian, is one in which it  can be shown that 
the inference or decision to be made is essentially the same for any prior in r. 
[Indeed, i t  can be argued-see Berger (1984,1985)-that this is the only way in 
which a statistical conclusion can claim to be ultimately sound.] What is needed, 
to provide such conclusions, is essentially the ability to find minimums and 
maximums of criterion functions as 71 ranges over I'. We illustrate this approach 
in Section 2.4, where, for 2 = {all distributions), the range of posterior probabili- 
ties of a (fixed) set C is given [essentially following Huber (1973)l. This allows 
finding the range of posterior probabilities of confidence sets and the range of 
posterior probabilities of hypotheses, for such I'. 

Unfortunately, there are certain inadequacies in assuming that 2 = {all distri- 
butions} (see Section 2.3), and attempting the above program with more reasona- 
ble r (such as that in Section 4) becomes more difficult. A number of alternative 
approaches to  the problem of dealing with classes of priors have thus been 
proposed, essentially leading to the choice of a single "robust" prior, decision, or 
inference. Berger (1984,1985) discusses various of these methods, including the 
appealing technique of putting a prior distribution on I?. [Such a prior is called a 
hyperprior or a Type I1 probability distribution by Good (1965,1980) and a 
second-stage prior in certain situations by Lindley and Smith (1972).] Of course, 
this corresponds to using a certain single prior (the "average" over r ) ,  but one 
would suspect that the resulting Bayes rule would be quite robust with respect to 
I'. The difficulty in doing this is mainly technical: i t  is essentially impossible to 
put a reasonable prior on complicated T, such as those in Sections 2-4, and carry 
out the Bayesian calculations. Note also that, ideally, most of the prior informa- 
tion available .will have been exhausted in constructing T. Hence, any prior 
distribution placed on I' will to a large extent, be arbitrary. 

Instead, we will consider the simplest and most commonly used method of 
selecting a hopefully robust prior in r, namely choice of that prior 71 which 
maximizes the marginal m(xl7i) over T. This process is called Type I1 maximum 
likelihood by Good (1965). For 71 = (1 - E ) I ~  q E 2, maximizing m(xl.rr) =+ ~ q ,  
(1- E ) ~ ( X ~ I % )+ ~ m ( x l q )over 71 is clearly done by maximizing m(x1q) over q. 
Assuming that  the maximum of m(x1q) is attained a t  (a unique) 4 E 9, we will 
then suggest formally using the estimated prior 6,  given by 

(1.2) 7i = (1 - E ) ?  + EQ. 

(Of course, 7j thus depends on x.) Throughout the paper, 7j will be called the 
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ML-I1 prior. Also, any quantities derived from 7i will appear with the modifier 
"ML-11" for clarity. 

Choosing a prior with the help of the data always engenders controversy. 
Several justifications for doing so can be given, however. First, if m(xlm) is 
"small," i t  is simply unlikely that  such a 71 could be "true," and hence worrying 
about such m is counterproductive. Recall that  (supposedly) all m E r are deemed 
to be reasonable representations of priors beliefs, so 6 is simply the prior which is 
most plausible, in light of prior opinions and the data. A more formal way of 
saying this is that,  if all m E r are roughly equally likely a priori, then 6 is the 
"posterior mode" of the "uniform" distribution on r, and might often be 
expected to  yield a posterior distribution that  is close to the true posterior 
distribution for such a "uniform" distribution on I?. , 

The preceding argument for 7i is, of course, nonrigorous, and the ultimate 
justification for proceeding in this way is simply that  it can give reasonable 
answers. Of course, there is already substantial evidence in the literature attest- 
ing to the success of the method, both in the Bayesian literature [cf. Jeffreys 
(1961), Good (1965,1980), Box and Tiao (1973), Bishop, Fienberg, and Holland 
(1975), and Zellner (1985)], and in the empirical Bayesian literature [cf. Maritz 
(1970) and Morris (1983)l. Indeed, note that  the "standard" empirical Bayes 
methodology is to choose r to be a class of conjugate priors and then to estimate 
the "hyperparameters" of the prior by maximizing m(xlm), yielding 6.Also the 
related use of the marginal in Bayesian model robustness investigations is well 
established [cf. Box and Tiao (1973), Dempster (1975), and Box (1980)l. When all 
is said and done, however, we recognize that  the ML-I1 technique is not foolproof 
and can produce bad answers, particularly when r includes unreasonable distri- 
butions. (The basic problem with the ML-I1 technique is that  ensuing calcula- 
tions of variability do not take into account the "error" of the ML-I1 estimation; 
see Section 2.3 for an extreme example of this problem.) In Section 6 we give a 
general discussion of the success of the method for the situations discussed in the 
paper. 

We conclude this section with useful formulas and notation. For priors of the 
form 

(1.3) n (d8 )  = (1- &)%(do)+ eq(d8) ,  

computations give [assuming the existence of the posterior distributions 7~,(dBIx) 
and q(d8lx)l  

and 

(1.5) ~ ( d o l x )  + (1 - A(x))q(d8lx),= X ( X ) ~ T O ( ~ ~ ~ X )  

where h(x)  E [ O , l ]  is given by 

Furthermore, the posterior mean, a", and posterior variance, V", can be written 



(assuming they exist) as 

(1.7) Gn(x) = X(x)Gnll(x)+ (1- X(x))GQ(x) 

and 

+X(x)( l  - X(x))(GVi1(x)- G'J(X))~.  

Part of the appeal of the &-contamination class, I', is the simplicity of these 
formulas. 

2. Analysis for arbitrary contaminations. A natural suggestion for a 
class of contaminations of a fixed, elicited prior T(, is' the class of all possible 
contaminations. In this section we will examine inferences, including point 
estimation, testing, and credible regions, for such a class, i.e., for 

In a number of respects this is too large a class of priors, including many priors 
that  are unreasonable. And it will be seen that this can lead to serious difficulties 
in some situations (although for certain purposes no problems are encountered). 
We give a fairly detailed analysis of this situation because its relative simplicity 
allows easy comprehension of important concepts (including the difficulties of 
using too large a I'), and because some useful robustness results do emerge. All 
proofs are easy and are omitted. 

2.1. The ML-IIprior andposterior. For r defined as in (2.1), the ML-I1 prior 
and corresponding posterior are as follows. 

THEOREM Assume X has density f(xl8) w.r.t. some dominating2.1. a 
measure on the sample space of X. Assume that the usual maximum likelihood 
estimator for  8, say &x), exists and is unique. For I' defined as in (2.1), the 
ML-I1 prior is given by 

(2.2) +(.) = (1- E ) T ~ ( . )+ EB,(.), 

where 4, assigns probability one to the point 8 = &x). The ML-I1 posterior is 
given by 

(2.3) +(.Ix) = ̂ A ( X ) ~ ~ ( . I X )  "hx))4,(.),+ (1 -
where 

(2.4) X(x) = (1 - &)m(xl.rr,,)/[(l- &)m(xl.rr,,)+ &f(xlJ(x))l  

2.2. The ML-I1 posterior mean. Under the assumptions of Theorem 2.1, the 
ML-I1 posterior mean of 8 is given by [see (1.7)] 

(2.5) P ( x )  = + (1- X ( X ) ) ~ ( X ) .~ X ) G ~ ~ , ( X )  

As an estimator of 8, 6'' is intuitively appealing, in that it  is a reasonable data 
dependent mixture of G"o and 8. When the data are consistent with q,,m(xlq,) 

http:&)m(xl.rr,,)
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will be reasonably large and A(x) close to one (for small E), so that 6" will 
essentially equal 6"0. When the data and T,, are not compatible, however, 
rn(xln-,,) will be small and X(x) near zero; 6" will then be approximately equal to 
the m.1.e. 8. 

The following example presents 6"n an important situation. Some properties 
of the estimator are discussed which give a degree of "outside validation" to the 
estimator. 

EXAMPLE1. Let X = (X,, . . ., Xp)t - Np(O, a21p), where 0 = (O,,. . . ,O,,)t is 
unknown and a 2  is known. Suppose the elicited prior, TO, for 0 is 4 , ( p ,  ~ ~ 1 , ) .  
(Thus p and T~ are specified.) Since the usual maximum likelihood estimator of 0 
is 8 (x )  = w, and 6"0(x) = w - [a2/(a2 + T ~ ) ] ( x- p), formula (2.5) reduces to 

6'(x) = (1- ~ ( w ) a 2 / ( a 2+ T ~ ) ) ( x :- p) + p, 

where 

Note that  X goes to 0 exponentially fast in Ix - pi2, so that 6"(x) + x quite 
rapidly as Ix - pi2 gets large. Because of this, one might conjecture that the 
estimator is minimax, in a frequentist decision-theoretic sense under, say, 
quadratic loss. Unfortunately, this turns out not to be the case, although the 
deviation from niinimaxity is usually fairly slight. I t  is also interesting to note 
tha t  6" happens to coincide with the generalized Bayes estimator corresponding 
to the formal prior 

p(dQ) = (1 - E)%(dQ) + EPO(~Q), 

where p,,(dd) = ( 2 ~ a ~ ) p / ~do. Note that priors of a similar form were considered 
by, for instance, Leonard (1974). The development here can be viewed as 
proposing a reasonable method for choosing the relative weights of q,and (do). 

2.3. The ML-11 posterior variance. To determine the estimation error in 
using 6 5  it  is natural to look a t  the posterior variance, V". From (1.8) it  follows 
tha t  

~ " ( x= X ( X ) [ V ~ O ( X )  X(X))(S"~(I)-+ (1 - B ( x ) ) ~ ] .  

I t  will typically be the case (as in Example 1) that, as Qw) + 0, V6(x) will also 
go to zero. Indeed, 7i will usually "converge" to a point mass a t  8(x). This is 
clearly inappropriate; although data incompatible with .rr, can be cause for 
preference of 8(x) to 6""(x), it  does not cause one to think that d equals 8(x) 
exactly. 

The trouble here is caused by the fact that r contains unrealistic distributions. 
We may feel that TO could be in error, but surely a point mass a t  8(x) (when far 
from the center of 710)  is not usually a reasonable contamination to expect 
a priori. Working with r as in Sections 3 and 4, which do not allow such 
implausible contaminations, substantially alleviates this problem. (See also Sec- 
tion 6.) 
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2.4. Robustness as .rr ranges over T. As mentioned in the introduction, the 
ideal goal for a robustness study would be to show that a decision or inference 
being contemplated is satisfactory for all 7 E T. When 2 is the class of all 
distributions, i t  often becomes feasible to check this. The basic tool is the 
following result of Huber (1973), concerning the range of posterior probabilities of 
a set. 

THEOREM2.2 [Huber (1973)l. Suppose 2 = 8.Let C be a measurable subset 
of 0, and  define pOto be the posterior probability of C under q,,i.e., 

p0 = P ~ l ( 0E CIX = x ) .  

Then 

inf P"(0 	E CIX = x)  = PO 
7€l-


a n d  

(1- + ESUPBE( ;~(XI~)& ) m ( x l ~ ) ) @ o
(2.7) 	 sup P"(0 E CIX = x )  = 


T E ~  - + E ~ U P B E C ~ ( X I ~ ) 
&.)m(x~ao) 	 ' 

EXAMPLE2. Assume that X - N ( 0 ,  a", a 2  known, and that TO is N ( p ,  r2 ) .  
I t  is well known that .rr,(dOlx) is N(6(x) ,  V2), where 

6 ( x )  = x - ( a2 / (a2  + T ~ ) ) ( x- p),  V2 = + r 2 ) .  

The usual 100(1 - a)% Bayes credible region for 0 is 

C = (8: 6(x)  - K < 0 < 6(x) + K } ,  

where K = z,/,V, z,/, being the 100 (1- a/2) upper percentile of the standard 
normal distribution. 

To investigate the robustness of C, we use (2.6) of Theorem 2.2. Note that 

Thus (2.6) becomes, for x P C, 

inf P"(0 E CIX = x )  = (1- a )
V E T '  	 e x p [ 2 : ~-a 2  + r 2 )]I- I ,  

and, for x E C, 
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As a concrete example, suppose that a2  = 1, 7" 2, y = 0, and E = 0.2. First, 
suppose x = 0.5 is observed. Then the usual 95% Bayes credible interval for 6' is 
( - 1.27,1.93). Calculation gives 

inf Pn( -  1.27 < 6' < 1.931X = 0.5) = 0.817, 
n € T  

sup Pn(  -1.27 < 6' < 1.931X = 0.5) = 0.966. 
n € T  

Hence, the standard credible set is reasonably robust. On the other hand, suppose 
x = 4 is observed. [Note that, since m(xlnO) is M(0,3), this is not an "outra- 
geous" observation.] Then the usual 95% credible set is (1.07,4.27). However, in 
this case we have that 

inf Pn(1.07 < 6' < 4.271X = 4) = 0.1355, 
n E T 

sup Pn(l.07 < 6' < 4.271X = 4) = 0.99. 
n € T  

Since the posterior probability can get as low as 0.1355 for x = 4, robustness is 
not present. 

Two interesting general points emerge from the previous example. First, 
robustness with respect to r will usually depend significantly on the x observed. 
Second, a lack of robustness may be due to the fact that is "too large." When 
x = 4, for instance, the low probability of coverage (0.1355) is achieved when the 
contamination, q, is a point mass a t  4.27. The resulting prior would probably not 
have been deemed to be reasonable a priori. Using a more reasonable y might 
result in robustness. Also, more robust credible sets can be found-indeed Berger 
and Berliner (1983) determine the optimal 1- a robust credible set, optimal in 
the sense of having smallest size (Lebesgue measure) subject to its posterior 
probability being a t  least 1 - a for all n in T. In any case, the use of 9= 9and 
Theorem 2.2 is conservative, in that, if robustness of a credible set is achieved 
for such r ,  one knows that robustness is also present for the more reasonable, 
smaller I'. 

Theorem 2.2 can also be used for hypothesis testing. Thus suppose we desire to 
test the hypothesis H,,: 9 E OO versus the alternative H I :  6' E O - Oo. For a 
fixed prior T, the usual Bayesian test is based on the posterior odds ratio O,(x), 
defined by 

O,(x) = Pn(6'E O,,IX = x ) / [ l  - Pn(6' E O0lX = x ) ] .  

Letting C = Oo, Theorem 2.2 immediately yields the following: 

COROLLARY For I' as in (2.1),2.1. 

inf On(x) = Onl,(x)
n € T  

and 

where Po = Pn11(6' E OoIX = x). 
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In testing, i t  will usually be much easier to achieve robustness using this "too 
large" r, since extreme x [i.e., x for which m(xlq,) is small], which lead to the 
unrealistic point mass contaminations, will usually provide extreme evidence for, 
or against, 0,,.(The difference between the inf and sup of 0, may be substantial, 
but they will both be substantially less than one or substantially greater than 
one.) Together with the simplicity of the results in Corollary 2.1, this makes the 
use of 2 = 9 very attractive for robustness investigations in testing. 

I t  should be clear that Theorem 2.2 is also immediately applicable to the 
testing of several hypotheses and to classification problems. Lower and upper 
bounds on the posterior probabilities of all hypotheses can be obtained. 

3. Symmetric unimodal contaminations. A natujal, yet remarkably trac-
table, class of priors to consider when 0 5 R', is the &-contaminationclass 
defined (for fixed 8,))by 

(3.1) 2 = {densities of the form q(l8 - 8,,J),q nonincreasing) . 
This class is particularly reasonable when a,, itself is unimodal and symmetric 
about 8,).Note that under such circumstances, the resulting contaminated priors 
a display the desirable properties that (i) values of 8 far from 8,)cannot be given 
overwhelming weight (unlike the possibilities observed in Section 2), but (ii) 
priors with tails larger than a,, are considered. 

The considerable simplicity of working with (3.1) accrues from the fact that in 
much of the analysis, (3.1) can be replaced by 

(3.2) 9'= {Uniform (8,)- a ,  B,, + a )  densities, a 2 0},  

where the "density" when a = 0 is a point mass a t  8,).Required optimizations 
thus involve only the variable a .  Preliminary analyses of the type discussed in 
Section 2.4 have been carried out in this manner, but are a bit involved and will 
be reported elsewhere. However, the ML-I1 prior is quite simple to present: 

THEOREM3.1. For the E-contaminationclass with 2 as  in (3.1), a n  ML-II 
prior is 

7 j  = (1 - &)aO+ EB, 
where 4 is Uniform (8,)- ci, 8,)+ ci), & being the value of a which maximizes 

PROOF. The proof follows trivially after noting that (i) any prior in (3.1) is a 
mixture of priors in (3.2), and (ii) m(x1a) is a linear functional of T. 

Theorem 3.1 is an adaptation of a result in Berger and Sellke (1984), who 
utilized the fact that m(xl&)is an upper bound on m(xlq), q in 2 given by (3.1), 
to establish startling lower bounds on posterior probabilities of point null 
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hypotheses that are an order of magnitude larger than classical significance levels 
or P-values. Here we utilize the theorem to calculate the ML-I1 posterior mean 
and variance in an illustrative example: 

EXAMPLE:ESTIMATING A NORMAL MEAN. Suppose X - M(8, a 2), a known, 
and q,is N(8,, T ~ ) ,  8, and r 2  given. Let 2 be as in (3.1) and define z = (x -
B,,)/o. Following Berger and Sellke (1984) [see also Berger (1985)], ti of Theorem 
3.1 is 

where a *  satisfies the equation 

@ and $I denoting the standard normal c.d.f. and density, respectively. Equation 
(3.5) can be solved (usually very quickly) by standard fixed point iteration, 
starting on the right-hand side with initial value a *  = 121. 

CASE1: ti > 0. I t  can be shown that the ML-I1 posterior mean and variance 
corresponding to the Uniform (8, - ti, 6, + ti) prior are, respectively, 

S@(x)= x - (a/a*)tanh(za*) 

and 

VB(x)= a 2  [ z  - (a2/a*)tanh(za*)] [ a * l t a n h ( z a * ) ] .  

Furthermore, 

X(x) = [l + (0.5r(l + r2/02)1/2/(1 - r ) ) ( l  + exp(-2za*)) 

so that  the ML-I1 posterior mean and variance are [see (1.7) and (1.8)] 

(3.6) S"(X) = X ( X ) ( X  - (a2/(a2 + r2 ) ) (x  - 8,)) + (1 - I(x))s'(x) 

and 

CASE2: ti = 0. If ti = 0, then S@(x) = 8, and V@(x) = 0. The formulas for ^X, 
S", and V' are then easily obtained and omitted here. In this case, however, 
though x is close to 8,, i t  is probably undesirable to allow 7i to be more 
concentrated a t  8, then T,. The natural "fix-up" is to simply replace (a", V") by 
(6"1), V"0). In fact we generally recommend this modification whenever V' < V"o. 
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TABLE1 

ML-II  results for unimodal, symmetric contaminations 


As a specific example, suppose a 2  = 1, 8, = 0, r 2= 2, and E = 0.2. Values of 
ML-I1 quantities and 6"0(x) = 2x/3 for various x are given in Table 1. Further 
numerical results are given in Section 6. 

4. Unimodality preserving contaminations. 

4.1. Introduction. Despite the simplicity of the analyses in Sections 2 and 3, 
there are some objections. In Section 2 we saw that choosing I = 9= {all 
distributions) can cause serious problems, due to the unrealistic nature of some of 
the resultant priors in I?. On the other hand, the restriction to symmetric 
unimodal contaminations in Section 3 could be criticized for not allowing certain 
plausible contaminations, particularly when .rr, is not symmetric. When O c R1 
and T, is unimodal, as will be assumed throughout this section, perhaps the most 
appealing I is that which contains those contaminations which preserve the 
unimodality of T = (1 - E)T, + +q (note that q need not be unimodal). Any such 
a would typically be plausible a priori, and virtually all a deemed reasonable 
a priori are in this class. Successfully working with such "minimally complete" I? 
is a very desirable goal in Bayesian robustness. 

The main goals of this section are to indicate that such complex classes can, 
surprisingly, be analyzed and to provide some basic mathematical techniques 
likely to be encountered in such analyses. The presentation here is restricted to 
the determination of the ML-I1 prior and the ML-I1 posterior mean and 
variance, a detailed example concerning the mean of a normal distribution, plus 
some discussion of results later in Section 6. We are currently investigating the 
more fundamental question of determining ranges of posterior measures as a 
varies over r. 

The exact class I? that will be considered is (where 8, denotes the mode of T,,, 

which we assume to be unique) 

l7 = {a = (1 - E)T,, + ~ q :  q E I, the set of all probability 
densities for which T is unimodal with (not necessarily 
unique) mode 8,, and a(0,) I (1 + ~')a,(0,)). 

The final inequality in the definition of I? specifies the reasonable constraint that 
q not be allowed to concentrate too sharply near 8,. (Usually it would be 
reasonable to select E' = E, but this is not necessary. Indeed the choice E' = 0 



might sometimes be desired, i t  having the attractive property of ensuring that  
the ML-I1 posterior variance never drops much below that  of 77, because of 
excessive prior concentration near 8,,.) We will also assume that  the likelihood 
function f (xl6) is unimodal (as a function of 8, of course) with unique mode 8. 
[Of course, x is fixed, so f(xl8) need only be unimodal for the observed x,  not for 
all x.] I t  will also be technically convenient to restrict consideration to 71,, and f 
which are nonzero and are strictly monotonic on each side of the modes. More 
general cases could be handled, but the results get messier. We also assume, 
without loss of generality, that  8 2 8,). 

4.2. The form of the ML-11 prior and  posterior. The formal calculation, in 
Sections 4.4 and 4.5, of the ML-I1 prior, 7j, is complicated by the need to consider 
several different cases. The result, however, is always oi the quite simple form 

= (K 
1 

for 8 E B ,
6(8 )  

- ) a 0 ( )  for 8 P B,  

i.e., 7j is uniform over B (which will be an interval about 81, and equals 
(1- ~ ) % ( 8 )outside of B. (Note that  K is implicitly defined by the constraint 
t ha t  7j have mass one.) Thus the ML-I1 posterior will be 

(4.2) 7j(8Ix) = 1(x)a0(8lx)+ (1  - 1(x))4(8 lx) ,  

where [letting I,(8) denote the usual indicator function on B]  

The interesting case (Case 1 in Section 4.5) is that  in which 18- 8,,1 is 
moderately large (i.e., where prior and likelihood are not in close agreement), 
since i t  is only in this case that  the choice of a E r will have a substantial effect. 
As 18- 8,,l - m, i t  can typically be shown that  the uniform piece of 7j dominates, 
in the sense that  

which would be the posterior for the noninformative uniform prior. This kind of 
behavior can be labelled "robust" from a number of viewpoints [cf. Berger 
(1984)], and is certainly more pleasing than the limiting behavior of fi(6lx) in 
Section 2, which collapsed to a point a t  8 in the limit. Discussion of the degree of 
"robustness" which is attained by 7j is delayed until Section 6. 

4.3. The normal distribution. We present here an example of the overall 
theory, using the formulas from Sections 4.4 and 4.5. The example considered is 
tha t  in which X is N ( 8 , l )  and q,is N ( 0 ,  r2 ) .  [The more general case where 
X - N ( 8 ,  a') and T,, is N (  y, r '), u 2 ,  r 2,  and y all known, can be reduced to 



this case by a linear transformation.] Only Case 1 will be considered (which here 
means that  1x1 is larger than a certain constant depending on e and r ) and we 
assume that  x > 0. Let @ denote the standard normal c.d.f., and + the standard 
normal density function. 

The set B in (4.1) is the interval [0*,  w(O*)], the endpoints being implicitly 
defined by the equations [noting 0* < x < w(0 * ) ]  

These equations can be easily solved by iteration. Calculation then gives that the 
ML-I1 posterior is 

where 

r O ( 0 ~ x )  S = -
r2x  v" -r 

is N ( 6 ,  V 2 ) ,  1  + r 2 '  1  + r 2  

(this notation is more convenient here than the previous 6"0, V"") ,  

X ( X )  = [ I  - B,, + c,,+(w(o*) - x ) ( w ( ~ * )- e * ) ]- I ,  

( 1 + ~ - " ) " ~ + ( o * / r )  ~ ( e * )- s * - s  
CO= + ( x [ l + 7 2 ] - 1 " ' )  , and B o = @ (  )-@(%I. 


The ML-I1 posterior mean and variance are given, respectively, by 

=^x(x)S+ [ l- 64V X ) ]  
and 

v" X ( x ) v 2+ [l- X ( x ) ]vo + X ( x ) [ l- X ( x ) ][ S  - s q 2 ,  
where 

and 

8" 
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TABLE2 

ML-II  quantities for various x 


As a specific example, suppose r2= 2 and c = 0.2. Then one can show [using 
(4.6)] that Case 1 occurs providing 1x1 2 1.75. Table 2 gves the relevant quanti- 
ties above for various x. 

The behavior alluded to earlier clearly obtains: as 1x1 gets large, ^h -, 0, and 
the uniform part of the prior (on B) dominates. Also, 6"(x) - x and V"(x) - 1. 
Indeed, the following theorem gives large x approximations to the key quantities, 
approximations which are accurate, in the above example, for x 2 7 and which 
show that the domination of the uniform portion occurs a t  an exponential rate. 
(The proof of the theorem is routine and will be omitted.) 

4.1.THEOREM As x -, co (log denotes natural logarithm), 

O* = [2r210gx]'"" +(I) ,  w(O*) = x + [2 log(x/ f i ) ]  + 0(1), 

X(x) = ( E '  - l ) x [ ( l  + r2)2~]-1'2exp{-x2/[2(1 + r " ] } ( ~  + o( l ) ) ,  

6@(x)= x - x x l ( l  + o( l ) ) ,  and V@(x)= 1- xx1[2logx]""1 + o(1)). 

4.4. Preliminaries and notation for the general theory. For -E' I p I E, 

define v(p) 2 O,, implicitly, by 

and define 

For 0, I 0, define w(0) 2 0, implicitly, by 

(4.7) (1 - - 6 )  - (1 - E ) ~ w ' 8 ' T o ( ~ )  &,E ) ~ ( o ) ( w ( o )  dt = 

and define 

(4.8) W(0) = f(xIw(O))(w(O) - 0) - jw(8 ' f (x l t )  d t .  
8 

LEMMA 4.1. (a) The quantities v(p) and w(0) are well defined, unique, 
continuous, and strictly increasing for -E' I p I E and 0 2 0,. 
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(b)  If v( p ) > 8, then V( p) is decreasing in p. Furthermore, V( p) = 0 has a t  
most one solution. 

(c) If O0 I 8 I 8 and w(8) > 8, then W(8) is decreasing a t  8. Furthermore, if 
V( E ) 2 0, then W( 8)  = 0 has a unique solution 8, I 6* < 8. 

PROOF.(a) At v = do, the left-hand side of (4.5) is zero. As v -, oo, the 
left-hand side of (4.5) goes to m. Finally, since is decreasing for 6 > do, the 
derivative, with respect to o, of the left-hand side of (4.5) is easily seen to be 
strictly positive. A solution to (4.5) thus exists and is unique. 

T o  show that  v(p) is strictly increasing, one can differentiate both sides of 
(4.5) with respect to p and solve for v'(p) [i.e., d/dp v(p)], obtaining 

E ' ( P )  = ~ O ( 6 0 ) ( u ( ~ )- 8 0 ) / [ d 8 0 ) ( 1- P)  - (1- E ) ~ T ~ ( ~ ( P ) ) I .  
Since u( p ) > do, p < E,and T,, is decreasing for 8 > do, i t  is clear that  v'( p ) > 0. 
The  verification for w(8) is very similar. 

(b) Letting f '(xld) = d/d8 f(x18), calculation gives 

Since f is decreasing for 6 > 8, the monotonicity result follows from part (a). If 
V(p) = 0, the unimodality of f ensures that  u(p) > 8 [for otherwise the right-
hand side of (4.6) is positive]. The strict monotonicity of V for such p ensures 
t ha t  any solution to V(p) = 0 must be unique. 

(c) Letting w'(8) = d/d8 w(8), calculation gives 

The  monotonicity of f and part (a) show that  this is negative. Using this, to show 
tha t  W(8) = 0 has a unique solution, i t  is only necessary to show that W(8,))2 0 
and ~ ( 8 )< 0. Since U(E)= w(O0),i t  follows that  W(8,,) = V(E)2 0 (by assump-
tion). That  ~ ( 8 )< 0 follows from (4.8) and an easy application of the mean 
value theorem [since f(xl8) decreases for 8 > 81. 

LEMMA4.2. Suppose V(E)2 0, and  let 8, I O* I 8 be the solution to 
W( 8 )  = 0. Then 

(a, f(xl8) < f(xlw(8*)) for  8 @ LO*, w(8*>l. 
(b) For any nonincreasing integrable function g such that Jg(8) d 8  = 0, it 

follows that 

(4.9) ~ ~ ( ' * ! g ( 8 )f ( ~ ~ 8 )d 8  5 0. 

PROOF.(a) Clearly f(xlO*) < f(xlw(d*)),for otherwise the integrand in (4.8) 
would be everywhere larger than f(xlw(d*)) and W(8*) would be nonzero, a 
contradiction. The unimodality of f thus gives the result for 6 < 8*. Now 
W(8 * ) > 8, for otherwise (4.8) could again be used to contradict W(8* ) = 0. The 
unimodality of f thus also gives the result for 6 > w(d*). 



(b)  Note first that it suffices to prove the result for differentiable g. Letting 
Iz(0)  = -d /dOg(O)  (note h 2 0 )  and writing g ( 0 )  = K - / & h ( t ) d t ,where 

1 ( ( , ( a * )  'I 
K =  

[w(O*)- o*]  I* I*h ( 0  d i  d?l 

(4.10) 
-

1 I ( ' (  a* ) 
-

[ w ( S * )- O*, L* ( w ( O * )  - t ) h ( t )d t ,  

we obtain from Fubini's theorem 

Next we show that, for O* < < < w(d* ) ,  

(4 .12)  ~ ' ( 6 )= / i ( ' ( o * ) f ( x l d )dd 2 ( ~ ( d * )- [ ) f ( x l ~ ( d * ) ) .  
E 

For $ 2 8 this is a trivial consequence of the monotonicity of f .  For O* < < 8, 
note that +(t )is concave [ f ( x i< )is increasing here] and that 

I ( ' (  O* )
( 4 . 1 )  $ ( d * )  = / f(x1O) dB = ( w ( d * )- O * ) f ( x 1 w ( d * ) )

o* 

[since W ( d *) = 01. Hence, #([) must lie above the line (w(O*)- 6 )f(xI w(O*)),  
establishing (4.12).Using (4.12)in (4.11)we get that 

the right-hand side of which is zero by (4.10) and (4.13). 

4.5. The  ML-IIprior. Define 7i as follows: 

CASE1. If V ( E )2 0,  and 0* E [00,81is the solution to W ( 6 )= 0,  let 

( 1  - E ) T ~ ) ( O * )for 0* I O I w(O*) ,
6 ( O )  = 

1 - E )  ( O )  otherwise. 

CASE2. If V ( E )< 0 but V(- E ' )  2 0,  find p* E [ - E' ,  E ]  so that V(p* )= 0,  
and let 

q e )  = 
( 1  - P * O (  for00 5 0 5 v ( P * ) ,  
( 1  - E ) ~ , ( O )  otherwise. 

CASE3. If V ( - E ' )  < 0 and f(xlOO)r f (x lu(- E ' ) ) ,  let 7i be as in Case 2 with 
p - 1E .  
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CASE4. If V(-E') < 0 and f(xl8,) > f(xlu(-ef)), let 

E')T,(O,) for 8' I0 I 8",
G(8) = 

(1 - ~ ) q , ( 8 )  otherwise, 

where 8' and 8" are the (unique) solutions to the equations 

f (xlef>= f(xlO"), 

Lemma 4.1 establishes that all quantities involved in the definition of 7i are 
well defined and unique. (The existence and uniqueness of O f  and 8" in Case 4 is 
easy to establish.) Observe that, in all cases, 7i has a very simple and easy to work 
with form of being uniform in a certain interval, and otherwise being equal to 
(1 - E)%.Case 1correspondsto the situation where the elicited prior, T,, and the 
likelihood function, f(xlO), are moderately separated, Case 2 to the situation 
where they are fairly close, and Cases 3 and 4 to situations where they are very 
close. 

THEOREM4.2. The ii defined in (4.14)-(4.16) is the ML-IIprior in T. 

PROOF. We only present the argument for Case 1, the other cases being very 
similar. The goal is to show that 

for all T E T.Letting g(8) = ~ ( 8 )- 7i(8), note that 

(i) g(0) 2 0 for 8 P [0*, w(8*)], since t ( 8 )  = (1 - e).rr,(B)here and ~ ( 8 )2 
(1 - &)To(@; 

(ii) g(0) is nonincreasing on [8*, w(0*)I, since t ( 8 )  is uniform on this interval 
and so ~ ( 0 )= g(0) + ii(8) would have a secondary mode were g(0) 
somewhere increasing; 

(iii) K = je2'(e*)g(8)d0 = - j[,,, ,,,,],g(O)do. 

Lemma 4.2(a) and (i) show that 

Lemma 4.2(b) and (ii) imply that 

Thus 

Since W(8*) = 0, the right-hand side of (4.19) is zero, and (4.18) follows. 
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COMMENTS.1. The key step in the proof of Theorem 4.2 is really Lemma 
4.2(b), which shows that one cannot improve on a uniform fi on [d*, w(d*)]. 
2. The problem might be susceptible to attack through calculus of variations, 
since one is trying to maximize an expression involving an integral of m over a 
class of m. The difficulty is that the m E satisfy a large number of inequality 
and differential inequality constraints. Calculus of variations with such side 
constraints is quite difficult. 

5. Hierarchical classes of priors. 

5.1. Introduction. Hierarchical priors are typically employed when 8 is a 
vector (dl ,  O,, . . .,O,), and the 0, are thought to be independent realizations from 
a common prior distribution g. Typically g is assumed to lie in some class 
rl = {gw:o E a )  of distributions, often the class of conjugate priors, and a 
"second stage" prior h, is placed on this class, i.e., on o.Such a hierarchical prior 
can, of course, be written as a single prior, namely 

(We restrict ourselves to densities in this section, for convenience, and also will 
not consider hierarchical priors with more than two stages.) Development of and 
references for this approach can be found in Good (1980), Lindley and Smith 
(1972), Morris (1983), and Berger (1985). 

There are three possible robustness concerns in working with (5.1). One could 
question the assumptions (i) that the dl are i.i.d.; (ii) that the prior g belongs to 
r , ;  and (iii) that hO is specified correctly. Each of these concerns deserves careful 
consideration separately but in the following we will simply deal with uncer- 
tainty in the second stage (i.e., h,), or in both the first and second stages 
together. 

Simultaneous uncertainty in different stages or aspects of a prior can often be 
expressed most simply by allowing more than one contamination in the ~-con- 
tamination model. For instance, one could consider 

(5.2) r = {a:  m = (1 - E, - &,)m, + qql  + E2q2, q l  E 21 ,  92 €221, 

where 2, and 9,are appropriate possible classes of contaminations. Such an 
extension of the &-contamination model vastly increases its flexibility while 
causing no real hardship in many applications, because the important formulas 
(1.4), (1.7), and (1.8) become simply 

where X,(x) = ~~m(xlq') /rn(xla)  = 1,2. Thus one can find the ML-I1 prior for i 
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by separately maximizing m(xlq,) and m(xlq2) in (5.3) (unless 22, and 22, are 
related in some fashion) and then easily calculate the resultant ML-I1 posterior 
mean and variance. 

Before proceeding, it is worthwhile to note that T of the form (5.2) might be of 
interest in other than hierarchical prior situations. Indeed, whenever one has 
several possible models in mind for the contamination, or even for mO itself, the 
uncertainty can be reasonably represented by such a T. 

5.2. Second stage uncertainty. Suppose, in the situation of Section 5.1, that 
only h,, is deemed uncertain. (Knowledge a t  higher levels of hierarchical priors 
will often be more vague than a t  lower levels.) An &-contamination model for h 
would be 

(5.6) h ( o )  = (1 - &)h0(u)+ ES(W), s €9. 

The resulting prior for 0 is 

where 

Letting 2 = {q: s E 9 1 ,  i t  follows that the uncertainty in m can be expressed by 
l- = {m: m = (1- &)mO + ~ q ,q E 22). 

In determining the ML-I1 prior for this situation, it will be convenient to 
define 

which is clearly the marginal distribution of X under the assumption that the 
prior for 0 is [Ilf=lg,(Oi)]. Note that 

(5.8) m(x1n) = (1 - e)m(xln,) + r+/"m(xlw)s(u)d o .  

When .Y= 9= {all distributions), it is clear from (5.8) that 

sup m(xlm) = (1- &)m(xlmO)+ ~supm(xlw) 
7i E r, W 

Assuming that m(xlo) has a maximum at  &, it follows that the ML-I1 prior is 

for which analysis is usually quite straightforward. 

EXAMPLE3. Suppose that X = (XI ,...,X,) - Np(O,021,,),u 2  known, and 
that  the first-stage prior information is that the Bi are independent with a 
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common Jtp(p,r 2 ) distribution, to be denoted g,, with o = (p,  r 2 ) unknown. 
Note that  m(xlo)  is NP(pl ,  ( 0 2  + T~)I,,), where 1 = (1,. . . , I ) .  I t  is easy to check 
that  m(xlw ) is maximized a t  

L = ( f i ,F 2 )  = 2,max 0, -
1 Cp 

(x ,  - x ) ~- u 2  .[ [ 11p i = ~ 

Hence, with contaminated second-stage prior as in (5.6) and Y =9,the ML-I1 
prior is 6 (0 )  = (1 - &)7r0(0)+ ~ 4 ( 0 ) ,where 4 is Np(fil, f21,,). 

As a very special case, suppose ho is a point mass a t  (pO,  r,;), so that  q,is 
simply Jt;)(p,,l, T:I,,). Then the ML-I1 posterior is 

where 7r,,(01x) is J$,(SVil(x), uOI,,), G(81x) is T J ( S 4 ,  CI,,), vO= u2~ , f / (u2+ r,;), 
p = o L f "  / ( o L  + F 2 ) ,  

and 

where 

if C ( x ,  - 2)" < p o i ,  

1 = 1  


otherwise. 

Note that  S"" is the usual conjugate prior estimate of 6 ,  while o4  is the usual 
empirical Bayes estimate of 6. The overall posterior mean [see (1.7)] is thus 

s" ^ h ( x ) s n ~ ~ ( x )  -+ (1 ^h(x))64(x), 

which will be close to 6"" if the x,  are close to p,,, and close to 64' if the x,  are 
similar but far from p,,. 

Of course, only rarely will i t  be appropriate to choose h,, to be a point mass. 
More natural would be a choice such as h,,(p, r 2 )  = w ( ~ ) c ( T ' ) ,where w(p) is 
J i r (po ,A )  and v is, say, a gamma distribution. Although the ML-I1 posterior, is 
no longer expressible in closed form for such a situation, the posterior mean and 
variance can be written in a form involving a single numerical integral over T~ 

[see, e.g., Lindley (1971)l. 
Several features of the above example are worth noting. First, the strong 

relationship of the ML-I1 theory with standard empirical Bayes analysis is 
apparent. Indeed, if one were to choose E = 1, the standard empirical Bayes 
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situation would result. As mentioned in the introduction, we much prefer the 
analysis with reasonably small E, the choice E = 1 resulting (typically) in there 
being a large number of unrealistic priors in I?. Of course, the choice 2 = B also 
suffers somewhat from this deficiency, as discussed in Section 2.3. An appealing 
possibility in the above example is, therefore, to attempt to apply the ideas of 
Section 3 (or possibly Section 4) and work with more reasonable 2. For instance, 
if independence of I*, and can be assumed, so that h(y, 7,) one= w ( y ) v ( ~ ~ ) ,  
could elicit wo and v,, consider 

W =  {w = (1 - e1)wO+ qqw:  q w  is unimodal, symmetric about the 
mode (or perhaps median) of wo} 

V= { u  = (1- E ,  )vO+ &,qo: qo is unimodal, syrhmetric about the 
mode (or median) of 0,) , 

and apply the ideas of Section 3. We do not attempt the analysis here, because 
nothing new conceptually is involved and the argument would be moderately 
lengthy. 

5.3. First and second stage uncertainty. The simplest modification of (5.7) 
that  introduces uncertainty in the first stage of the prior is simply to add an 
arbitrary overall contamination. Thus we consider 

where q, E 2, = 9 ,  

and n,,, s ,  and 9 are as in (5.7). In other words, q, arises from possible second 
stage prior uncertainty, while q, allows for basic error in the empirical Bayes 
model. 

Allowing arbitrary q, is again, probably excessively crude. In particular, 
complete abandonment of the empirical Bayes structure may be unrealistic. For 
illustrative purposes, however, this is convenient. 

As mentioned in Section 5.1, the ML-I1 prior can be found (here, a t  least) by 
separately maximizing m(x 14,) and m(x 14,). Maximization of m(x14,) was 
discussed in the previous section. And m(xlq,) will simply by maximized when q, 
is a unit point mass a t  8, the maximum likelihood estimate. Thus the ML-I1 prior 
is [assuming 9=9 and letting 4 8 )  denote a unit point mass a t  81 

Formulas (5.3)-(5.5) can now easily be employed to give desired conclusions. In 
the situation of Example 3, for instance, all calculations can be carried out 
explicitly; indeed, the needed modifications to the formulae there are very minor 
and so will be omitted. The behavior of 6", the ML-I1 posterior mean, is worth 
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mentioning, however. If the data are compatible with a. (i.e., are near p o )  then 
the conjugate prior posterior mean So will dominate; if the data are similar but 
not near p,,, then 6" will be close to the natural empirical Bayes rule hq;  and if 
the data are not compatible with the empirical Bayes model, then 6" will be close 
to the maximum likelihood estimate, 8 = x. 

6. Discussion. We view this paper as a hopeful first step in the development 
of systematic robust Bayesian analyses for rich classes of priors. The original 
goals of the paper were (i) to demonstrate that i t  is possible to work with complex 
classes of priors (as in Section 4), and to indicate mathematical techniques for 
doing so; (ii) to point out the numerous intuitive and calculational reasons for 
approaching robustness through consideration of &-contamination classes; and 
(iii) to exhibit the value of the ML-I1 approach in' obtaining "robust priors." 
Through tenacious prodding from skeptical referees and the associate editor, we 
have become more cautious in our assessment of success in goal (iii). A brief 
discussion of this issue is in order. 

The key to obtaining a robust prior appears to be the selection of a prior with 
tails that are much flatter than the tails of the likelihood function [see Berger 
(1984,1985) for discussion and references]. Unfortunately, this observation does 
not provide a readily implementable "solution" to robustness questions. Basic 
difficulties include (i) the uncertainty as to the choice of robust prior tails and (ii) 
the calculational complexities that can result. In addition to the already estab- 
lished computational simplicity, our hope for the ML-I1 technique was that i t  
would automatically provide a "prior" robust against the type of deviations 
considered plausible. 

I t  is important to explain our reasons for believing that ML-I1 would succeed 
when applied to &-contamination classes. Suppose that E is fairly small and that 
r contains all plausible priors, but none that are terribly implausible. Consider 
first the case where m(xl.rr,) is large, i.e., the data is compatible with the 
nominally specified ao.This is a situation of nearly automatic robustness, in that, 
since the central portions of all n in r (and, hence, i i )  will be similar to that of 
a,,, the conclusions will be very similar for all a in I?. On the other hand, consider 
the case where x is such that m(xl.rr,) is small. This is precisely the situation in 
which the prior tail is highly influential and the use of a large prior tail is 
desirable. The ML-I1 technique will naturally select a prior with a large tail, since 
such priors' are those most compatible with the data. Opposing the above 
encouraging tendencies toward robustness, is the danger that data-selected priors 
will tend to over-concentrate about the likelihood function, thereby yielding error 
estimates that are too small. (Such dangers lurk in the shadows of much of 
empirical Bayesian analysis and for that matter the use of data-selected models.) 
When r contains unreasonable priors, as in Section 2, this problem can com- 
pletely dominate. However, the hope was that reasonable r, such as those in 
Sections 3 and 4, by limiting the possible concentration about the likelihood 
function, would not succumb to this danger to a serious extent. 

To examine the degree to which this hope was realized, we return to the 
example discussed in Sections 2-4: X - H ( 8 ,  l),  TO is H(0,2), and E = 0.2. The 

http:m(xl.rr,)
http:m(xl.rr,)
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four estimators of 6 presented were (changing notation for convenience): 

S,, the Bayes estimator with respect to a,,; 
S,, the ML-I1 posterior mean for 3, = {all distributions); 
S:,, the ML-I1 posterior mean for 9, = {all symmetric, unimodal distri-

butions}; 
S,, the ML-I1 posterior mean for 3, = ( q  such that a is unimodal). 

Let us add to this list a,, the posterior mean for a t-prior distribution with 4 
degrees of freedom, median zero, and quartiles equal to k0.96 (the quartiles of 
a,,);this corresponds to a scale factor of 1.3 for the t-distribution. The point of 
including the t-prior is that it is a reasonable robust prior (which happens to be in 
all the classes I? for S,, 9,, and 3,), and provides a.benchmark for judging the 
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performance of ML-11. Figure 1presents graphs of 6, through 6, for 2 Ix I 10 
(there is very little difference between the estimators for x < 2). Figure 2 presents 
the corresponding natural error estimates, namely, the posterior (ML-I1 versions 
for 6,, a:,, and 6,) standard deviations s,(x), s,(x), . . . , s,(x). 

The most obvious conclusion from Figure 1 is that the ML-I1 estimates are 
more conservative (closer to x )  than the Bayes estimates. Also, quite naturally, 
larger 9 result in more conservative estimates (note that 9, c 9, c 9,).  

Turning to Figure 2, note first that s,(x) is indeed fairly ridiculous for large x. 
Also, s,(x) is moderately smaller than s,(x). We had hoped that the attractive r 
of Section 4 would not be so large as to result in an excessively small ML-I1 error 
estimate, but when compared to s,, the behavior of s, is borderline. On the other 
hand, the behavior of s, is definitely satisfactory. Finally, note that for moderate 
x, both s:, and s, rise above the conditional standard deviation (1)of X. [The 
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behavior of s, is in fact quite general for robust priors; for example, see O'Hagan, 
(198l)l. 

To summarize, we proposed the ML-I1 technique as a possible automatic 
"robustifier" of standard (conjugate) priors. We have shown that the ML-I1 
technique is calculationally feasible, and that it  can successfully robustify n,, if 
the class is sensible (i.e., does not contain silly contaminations such as those in 
9,).Alternatively, in any given problem one could (should?) attempt to construct 
a robust prior, such as the t-prior in the above example. We are in no way 
opposed to such efforts, but there are numerous technical and theoretical issues 
involved in insuring that robustness is obtained; the process is far from auto- 
matic. While we are not strong proponents of "automation" in statistics (few 
Bayesians are), we recognize the forces driving statistics in that direction. Of 
course, nothing is completely automatic; our ML-I1 approach does require the 
imputation of E and 2. However, it  will often be reasonable to choose S in a 
standard or default fashion, say as in Section 3. The quantity E is reasonably 
accessible to intuition, relating in a fairly straightforward manner to one's 
confidence in the specification of n,,. 
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