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ABSTRACT

Bayesian inference is considered when both the likelihood and the prior distributions
are t-densities. (This scenario naturally arises in robust Bayesian inference for a normal
mean.) The behavior of the posterior density, the posterior mean, and the posterior variance
is studied, especially when the parameters of the t prior are chosen to be extreme. This
provides considerable insight into the robustness of the analysis. Of particular interest is the
study of bimodality of the posterior. A sufficient condition for the posterior density being

unimodal is also given.

KEY WORDS: Likelihood, prior distribution; posterior density; posterior mean; posterior

variance; marginal.



1 Introduction

Let X3, Xz,..., X, be independent observations from a N(f, 0?) distribution where # and o?
are unknown. The marginal likelihood function for 6, after integrating out o? with respect
to the noninformative prior 6=2do? (proper inverse gamma prior distributions for o2 could

also be used here) is of form

f@—6) =

(n—1)s?
where Z,s? are the usual sample mean and variance, and K; = ['[(i + 1)/2][V/ixD(¢/2)]7 .
Since (1) is a t-density, it is natural and desirable for robustness reasons to perform Bayesian

analysis with a t-prior, namely

(6= )“’“’2 |

g(ﬂ—ﬂ)=%(1+zm_—1)72 (2)

The parameter g in (2) represents the best prior guess for ¢ and the scale parameter 7

measures the accuracy of y. The posterior density is given by

r(0]%) = f(z—0)g(0 —p) (3)

m(x) ’

where

_ VK 1Ky
- s

—1)s2

The posterior mean becomes, after a change of variables,

_ VnKy 1 Kpa n
"(x) =z + / = dn, 5
) m(x) (1+ (n—’i’-{p)"/%(l + QLT';)_T)T)m/z (5)
and the posterior variance is
\/_Kn lI(m 1 ' 6? 2
Ve (x / - 8 — (" (X)%, (6)
= e

which can also be written as

T _ (m — 1)7-2 \/_K —le—l
Vv (X) - m(x) / ( M)n/%—(l + (é::—f)Lif)m/2_1 df

+ e

—(m = 1)7* = (n— 8"(x))". (7)
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Exact calculation of m(x),8™(x) and V™(x) is discussed in Fan and Berger (1989).

The behavior of 7(8|x),6™(x), and V7(x) is of interest when the prior parameters are
chosen to be extreme, since it provides considerable insight into the robustness of the analysis.
The situation where y and Z are far apart, in which case that the posterior becomes bimodal,
is of particular interest, since it is the case where the information from the data and the
prior clash.

Such situations have received considerable study in the literature. Dawid (1973) studied
the limiting behavior of a posterior distribution as in (2) with quite general f and g, as the
observation tends to infinity. He showed that, for certain forms of f and g, depending on
the thickness of their tails, either f or g will in the limit completely dominate the other. In
particular, he showed that if one of these components is a normal density and the other a
t-density then the normal component will dominate. O’Hagan (1979) proved that the normal
- density cannot be dominated by any other normal density. O’Hagan (1981) also proved that,
under certain circumstances, the posterior variance has a sharp peak before settling down to
its limiting value. Meeden and Isaacson (1979) showed that if f belongs to the one parameter
exponential family and ¢ has unbounded support, then, under certain flatness conditions
on the tail behavior of the prior, the posterior distribution of 6 is approximately normally
distributed about its mode for large values of the observation. They also showed that the rate
at which the posterior mean approaches infinity depends on the tail of the prior. O’Hagan
(1987) studied the tail behavior by defining the 'credence’ of a density. (For instance, a t
density has credence equal to its degrees of freedom plus one.) His results showed that when
the information sources between the prior and the datum conflict, whichever information
source has greater credence will dominate. He also extended the results to the general case
of many sources of information about a single parameter. Other related work in the area of
outlier rejection can be found in DeFinetti (1961), Hill (1974) and O’Hagan (1988).

In Section 3, a detailed study of 7(8|x) in (3) is undertaken, with regard to such behavior
at extremes. Because we restrict the study to the important situation of (1) and (2), results
that are considerably more detailed than the results in the above papers can be obtained.

First, we are able to investigate the behavior of m(0|x) as |u — Z| — oo for all n and m;



results such as Dawid (1973), being given for general f and g, require moment conditions
that here are satisfied only if [n —m| > 2. Included in the investigation are surprising results
for the posterior mean and variance, such as determination of situations in which either the
likelihood or the prior dominates the posterior, yet §7(x) and/or V™(x) do not arise solely
from the dominating likelihood or prior.

In analogy to O’Hagan (1981), precise bounds are obtained in section 3.2 on the size of
the posterior variance for large | — Z|. Of perhaps most interest is that, for large |u — Z|,
there exist choices of 7 in (2) such that V™(x) & (x — z)?/4. Thus conflict between the
likelihood and prior can cause great uncertainty in the posterior, in contrast to the situation
with conjugate priors. This result is also important for Bayesian robustness, where ranges
of p and 7 in (2) are typically considered. The indication is that overly large ranges will not
yield useful answers.

Section 2 considefs the question of bimodality of 7(8]x). A useful sufficient condition for
unimodality is given in Section 2.1, while Section 2.2 discusses bimodality as |p — Z| — oo.
In this latter situation, a key lemma demonstrating the concentration of mass near the two

modes is given.

2 Unimodality and Bimodality of the Posterior

2.1 A Sufficient Condition for Unimodality

The following theorem gives conditions on g and 7 such that the posterior density, =(8|x),

is unimodal.

Theorem 2.1 a) For n > m, the posterior is unimodal if

2 _ 2n*(m—1)

lp—2| 2 R , e
2 —i(m— 6mn — 0.95m? — 0.4n — 0.2 :
S 5im ) M < ylm = D+ 0.6mn —0.95m” —0.4n — 0.2m)}

b) For n < m, the posterior is unimodal if

72 2m(n — 1) -z 2 (n—-1)
— < d ~{+——(m? + 0.6mn — 0.95n> — 0.4m — 0.2n)}'/2.
s?2 ~ 5.1n%(n+ m) o PR n{ n (m” +0.6mn " ™ n}



Proof: a) A change of variable yields

—-nf2 »
£ 2\ ~m/2
7r(0|x)oc(1+n_1 (1+o+02)7,
where
s? Vn(z — 1)
v = n(m — 1)7_2 and 1= ——‘S— (8)
The derivative of the log posterior is proportional to
p(€) = £+ 2a€” + b€ + 2c, (9)

where a = t(n+m/2)/(n+m),b= (mn—m+nv'+nt?)/(n+m), and c = T(n—-1)t/(n+m).
The posterior is unimodal if the equation p(£) = 0 has only one real root, which (for a cubic)

is the case if

[8a® — 9ab + 27¢]* + [3b — (24)*]* > 0. (10)
Algebra reduces (10) to
R o A" 4P o 2p(2p+1)
s L e A RS A
2o =Dnt+4p)p  n 5 3p° . 2(n—1)p
N s e i U L e
T 2p)v]2} k>0, (1)

where the k; are all positive and p = m/2.

The condition on s?/72 ensures that the coefficient of a? is positive, so that (11) is satisfied
if
g (A2 {
(n+p)* (n+p)
Algebra yields that this is satisfied if

- 4p? ]_2p(2p+1)
(n + p)? n+ 2p

ot 2p)0 }>0.

4
2 < W[Tﬂ +mn — i—)m2 —m(m+1)(n + -7;1)2%],

which, using the condition on j—z, will be true if

o 3a Umt D(n+m/2)?

2
< 1 5.1(n + m)

!

nt?4(m-1) ,
RV



This yields the conclusion.

b) By another change of variables,

62 —m/2 2 —nf2
7(0]x) (1+m_1) (1+v1(§+t1) ) ;
where v; = n72/[(n — 1)s?], and ¢; = (u — Z)/7. Following the proof of a) but switching the

roles of n and m, and replacing v by v1, ¢ by #; gives the result. O

Corollary 2.1 Form = 2 (the Cauchy prior), 7 > s and |u—Z|/s < 7, the posterior density

is unimodal if n > 7.

Proof: For > s, the posterior is unimodal if

n? v — 2|
————>1 and — 24 0.8n — 4.2,
ity 2L " - <Vn?+0.8n —4.2

The first inequality holds if n > 7. Since

the condition on |y — Z|/7 is also satistied for n > 7. O

2.2 Bimodality as |p— Z| — oo
2.2.1 Bimodality of the posterior as |u — Z| — oo

Theorem 2.2 For large enough |p — Z|, the posterior w(6|x) is bimodal, with modes at
T+ (s/v/n)&;, fori = 1,2, where & and & are the smallest and largest solutions to p(§) =
0,respectively, where p(€) is defined by (9).

Proof: Using the notation in the proof of Theorem 2.1, 7(8|x) is bimodal if
(8a® — 9ab + 27¢)* + (3b — 4a*)® < 0. (12)
Algebra reduces the left hand side of (12) to

pl(t) = a6t6 + a5t5 + a4t4 + a3t3 + a2t2 + alt + ao,

)



where t is defined in (8), ag = —m?/[4(n + m)?] and the a;’s are suitable constants for
i =0,1,...,5. Since ag < 0, it is clear that p;(¢) < 0 for large enough |¢|. This proves the
bimodality of 7(6|x) for large | — Z|. When (9) has three different roots with ¢ and &; being
the smallest and largest roots, respectively, the modes of 7(8|x) are then at z + (s/v/n)&;,

for 7 = 1,2, by the transformation from ¢ to 6. m]

2.2.2 Modal Concentration of Mass as |p — Z| — o0

With conjugate priors, the bulk of the mass of the posterior tends to concentrate between the
likelihood and the prior. The situation with t-distributions can be quite different when |y —Z|
is large; indeed, virtually all of the mass of the posterior then concentrates near Z (i.e., at
the likelihood) or near p (i.e. at the prior) or both. The following lemma demonstrates this,
showing that the mass concentrates in two regions, R; and R,, near Z and pu, respectively.
The lemma is stated in a general form usable for the study of moments in Section 3. The
question of concentration of probability mass is answered by setting ¢ = 0 in the lemma.

For use in the lemma and Section 3, define

nle ifpn >3 m=lr?  ifm >3
Vi=q "o0 and V,=¢ ™7 (13)

0o ifn=3, 0o ifm=3.

These would be the variances of f (if n > 3) and g (if m > 3) alone, considered as densities

for 6. The variances of f and g do not exist when n = 2, m = 2, respectively.

Definition 2.1 (i) é(z) = O*(z) if Fc#0, and c < oo such that lim $(2) =c.

T— 00 T

(i1) (z) = O(z) if Je < oo such that lim 9(2) <e¢

—r00 T

Lemma 2.1 Define

5/6 if max(n,m) < 3
"= min(n,m)+ 2.5
n4+m-—1

Let Ry ={0:10 —z|<|p—%|"}, Ro={0:10 — p| < |p—Z|"}, Rs =R — (R UR,), and

if max(n,m) > 3.

4 = [ (6-2)f@—0)9(0 - w)d,

1
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Bi = [ (0—u)f(z=0)9(0 - p)do,

¢ = [ 025G - 000 - was,
D = [T (0—u)f(E - 0)g(0— w)db,
p+u—z["

p—|p—z|" .
Bo= [0 (0 2) f(z - 0)9(0 - )b,
Z+|p—z|"
fori=0,1,2. Then, as |p — Z| — oo, forn > 2 and m > 2,
i) A;=g(p—T)a;, Bi= f(p—2Z)b;, fori=0,1,2, where
' 14 O*(|lp—z[7D) + O*(|lp — 27%) ifn >3
ag =
14 0*(|p — 2|~ *"Y) ifn <3,

; { 1+ O (ju— 2| + O (| — 2[?) ifm>3
0 =

14 0*(|p — z[~"tm) ifm <3,
O*(|lp — =™ ifn>3 O*(lp — z|™) ifm >3
aa=9 O(|p—z|In|g—2z|) ifn=3 b=9 O0(p—2z " 'ln|g—2|) ifm=3
| O*(lp—z™™) ifn =2, | O*(le—z"™) ifm=2,
Vi + O*(lu—2|7") ifn>3 Vo+ O*(lu—2[7™9) ifm >3
az =1 O*(ln|p — &|) ifn=3 by=4 O*lnlu—3|) ifm=3
| O*(lp —z]") ifn =2, | O*(lp—z[") ifm=2,

i) C; and D; are = O(|p — z|~"("+™=1=9) for 1 = 0,1,2; and

B O(|pu — z|~rin+m—1)) fori=0
" ol = a1y fori = 1,2,
Proof: See Appendix A. o

3 Extreme Behavior of the Posterior

3.1 Behavior as 7 — oo, and 7 — 0

For completeness, we first record the behavior of the posterior when the scale parameter, 7,

of the prior is chosen large or small. When T is chosen to be extremely large, the prior tends
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to a constant noninformative prior and almost all the available information about 6 comes
from the likelihood f(Z — 0). Intuitively, the posterior density will then tend to f(z — 0),
the posterior mean to Z and the posterior variance to V; (defined in (13)). (That & results,

even for n = 2, is somewhat of a surprise, since f(Z — 0) has no mean when n = 2.)

Theorem 3.1 a) lim grg(—X) =1.
b) lim 7(0|x) = f(z —9).
¢) lim §"(x) = .
d) lim V™(x)=V; forn >3,

lim V7(x) =00 forn=2or3.

Proof: See Appendix B. |
On the other hand, when 7 tends to 0 the prior concentrates about y, so the posterior

density then tends to a point mass at g, the posterior mean to x and the posterior variance

to 0.

Theorem 3.2 a) lﬂm(x) = f(z — p)
b) l%w(&[x) = §(p), where §(u) denotes a point mass at p.
¢) lim 6™(x) = p
d) im V"(x) = 0.

Proof: See Appendix B. | ]

3.2 . Behavior of the Posterior as |y — Z| — oo

The most interesting and unusual behavior of 7(0|x) arises when |x — Z| is large, and the
posterior is bimodal. In Section 3.2.1, the behavior of m(x) and = (8}x) themselves is dis-
cussed, with the effect of mass concentration near one or both modes being evidenced. In -
Section 3.2.2, the behavior of §™(x) and V™(x) is considered, and it is shown that, when
In — m| < 2, the posterior probabilistic concentration at the modes does not result in an
analogous posterior moment concentration. In Section 3.2.3, the analog of O’Hagan (1981)

is developed: an asymptotically attainable upper bound on the magnitude of V" (x) is given.
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For use in this section, define

_ Kua(n—1)"2(s/y/m)"™

= TR (m — Lymf2pm-1

and
w(p —Z) = glp—2)/[f(p — ) + g(p — 7)].

The following lemma will be frequently used.

Lemma 3.1 As |p—Z| — oo, fori,j,k >0 and i+ 37 #0,

[w(p — @)L — w(p —2)V (s - 2)°
W1+ 70) | — 2[*[sgn(p — B)H(1 + O*(|u — 2I2))
= 1 Rlu—z===i[sgn(p — 2)F[L + O*(lp — 2|~ + jO*(Ju — 27%)]
o i — (i [sgn(u — 2)F[1 + O*(|p — 2|7 ) + 0% (|u — 2] 7%)]
Proof: Clearly

[w(p — 2)]'[1 — w(p — z)) (s — 2)*
[ 1 i fp—2)/g(p — %)
1+ f(p—2)/g(p—%) "1+ f(p—2)/9(p — Z)
[f(e—2)/g(p — ) (p — B)*
[+ f(n—2)/g(p — )]+
_ _ Ble =g+ O*(lk — 372))
[+ volp = 2|~ (1 4+ O*(|p — 7|72))]

[(u— )"

itj [sgn(u - i)]k

ifn=m
ifn>m

ifn<m.

The result for n > m is immediate, and follows for n < m by multiplying numerator and

denominator by 7o (+3) | — Z|(n=m) ),

3.2.1 The Marginal and Posterior Densities

a

As |p — Z| — oo, the marginal density m(x) and posterior density =(#|x) are precisely what

one would expect given that the posterior mass concentrates near Z and/or p. The marginal

density is essentially the sum of the likelihood, f, evaluated at p and the prior, g, evaluated

at Z, while the posterior density converges to either f or g, whichever has sharper tail. This

is consistent with Dawid’s and O’Hagan’s results. When f and g have the same degrees of

freedom, the posterior converges to a mixture of f and g.
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Theorem 3.3 As |p — Z| — oo, m(x) = (f(gp —Z) + g(p — 2))(1 + o(1)).

Proof:

Lemma 2.1,

Assume n > m without loss of generality. Following the notation defined in

m(x) = Ao+ Bo + Co + Do + Ej.

The results of Lemma 2.1 yield

Note that

Thus,

Co+ Do+ Eo 0 (|ﬂ - 5|"T(”+m_1))
Ao+Bo (9(/‘_5)+f(:“_5))(1+0(1)).

gp—2)+ f(p—2) = 0*(Ju —z|7™) + O*(ju — z|™™).

Co+ Do+ Eo 0 (lﬂ - -'fl_(r(n-l-m_l)_m)) = o(1)
4ot B o) 10 (aarem) -

This shows that

where

m(x) = (Ao+ Bo)(1+0(1))
= (f(u—Z)ao+ g(p — Z)bo)(1 + o(1))
= (f(g—2)) +g(p— )1 +05(1)),

vy = ] O =) £ O =) i m >3
[s) =
O*(|u — Z|~7(m1) if m < 3,

and lim o0*(1) = 0. The proof is completed.

|p—Z|—o00

Note also that , due to definition 3.1 and (14),

m(x) = O*(|lu — 2[7™) + O*(Ip — &|™).

Theorem 3.4 a) If n > m, 7(8|x) — f(Z — 0) in distribution, as |p — Z| — oo.

b) If n < m, w(8|x) — g(6 — p) in distribution, as |p — Z| — oo.
¢) If n =m, for any set Qz, = Az UT,, where

Ay = {(Z—a,z+az):a; >0 for :=1,2 and az+ ay < o0},

Y, = {(u=b,p+b):b:>0 for i=1,2 and by+ by < oo},

10
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lim P™™(Q,,) = (1 4+ 70)™" P(Ao) + (1 + %) " Po(Yo),

Ju—z}—rco

where fo = f(0) and go = g(0) with f, g being defined by (1) and (2) respectively.

Proof: See Appendix C. O

3.2.2 The Posterior Mean and Variance

We first present the two key theorems concerning the posterior mean and variance, respec-

tively. Then we discuss the different cases that arise depending on |n — m].

Theorem 3.5 Let 3”(x) = zw(p — %)+ p(l —w(p — z)). Then, for n,m > 2 an.d as
|ﬂ — .’I_,'l — 00,

[87(x) — 87(x)| = o1).

Proof: See Appendix D. |

The behavior of V™(x) is given by the following theorem.

Theorem 3.6 Define

P(lu—zl) = wlp — 2)az + (1 — wp — 2))bz + w(p — 2)(1 — w(p — 2))(p - 2)°,
where ay, by are defined in Lemma 2.1. Then for n,m > 2 and as |p — Z| — oo,

V™ (x) - ¥(lp —z])| = o(1) if n # m and max(n,m) > 3
V) —W(lu—a)l = O(1) in=m>3
Vr(x)/¥(lp—2]) = 140() otherwise.

If n = m =2, it is furthermore true that

V() - (lj—"%)z(u ~ )% = 0(1).

Proof: See Appendix D. a
The behavior of §"(x) and V"(x) depend dramatically on |n —m|. We now specialize the

above theorems to the four basic cases. The proofs of the corollaries are given in Appendix

D.
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Case 1: |n — m| > 2.

Here the difference between the tail-thickness of f and g is large enough so that not
only the posterior density, but also the first two moments of the posterior converge to the
analogous features of the density with sharper tail as |4 — Z| — oco. These results are thus

similar to those given by Dawid (1973) and O’Hagan (1979).
Corollary 3.1 i) Ifn > m + 2, then, as |u — T| — oo,
67(x) — 2l = o(1) and [V"(x) — Vil = o(2).
i) Ifn < m — 2, then, as |p — Z| — oo,
[67(x) — sl = o(1) and |V7(x) - V| = o(1).

Case 2: n=m.

When n = m, we saw in Theorem 3.4 c) that the posterior does not concentrate about
one of the modes as |y — #| — oo, and can indeed be thought of as a mixture of posteriors
corresponding to f and g, separately. One would, therefore, expect §7(x) to be a nondegen-
erate weighted average of Z and p, and V™(x) to be of magnitude |u — Z|? (since the mean
67(x) will differ from the concentrations of mass of the posterior by distances of magnitude

|l — Z|). The following corollary establishes these facts.

Corollary 3.2 If |y — Z| — oo and n =m,

[67(x) = [(1 +70) 2+ (L +757) 7 ]l = o(1),

and
V(x) - (Tf‘iwlu —z| = O(1) fn=m#3
VT(x)/ [H—Jﬁy—o)zlu - 5;]2] = 140(l) ifn=m=3.

Case 3: |n —m| = 2.

Here the posterior density converges to the density with sharper tail and the posterior

mean tends to the mean of the limiting distribution, but the posterior is not concentrated

12



enough for the posterior variance to converge to the correponding V; or V,. Indeed, the

posterior variance converges to the variance of the limiting distribution plus a constant.
Corollary 3.3 i) If n =m + 2, then, as |p — Z| — oo,
187(x) = 3] = o(1) and [V™(x) — (V; +%0)| = o(L).
i) If n =m — 2, then, as |p — T| — oo,
[67(x) — pl = o(1) and [V7(x) = (Vo +%")| = o(1).

Case 4: |[n —m| = 1.

Here the posterior concentrates so slowly near a mode that the posterior mean is shifted
towards the other mode by a constant, while the posterior variance actually goes to infinity

at order O*(|p — Z|).
Corollary 3.4 i) Ifn = m + 1, then, as |p — Z| — oo,
67(x) — [Z + Yosgn(u — 2)]| = o(1);

and Vo) = (Vi +vlu—3)| = OQ1) ifn>3

Vi) /[wlu—2l] = (L+o(1)) ifn=3.

i) If n =m — 1, then, as |p — Z| — oo,

67(%) — [ — 25 sgn(n — B = o(1);
and V(%) = (Vy + 2l — ) = O(Q) if m>3

Vi®)/[n'lk—zl] = (1+0(1)) ifm=3.

3.2.3 The Supremum of the Posterior Variance

Following O’Hagan (1981), it is of particular interest to observe how large V™(x) can be.

The surprising answer is that it can be as large as X(u — ). Intuitively, as |p — Z| — oo,

V7™(x) reaches its maximum when the posterior mass is equally divided around p and Z.

13



Thus choosing 7 in such a way that w — 1/2 will result in 6"(x) — (¢ + Z)/2 and V™(x) =
2(6™(x) — )* + (6™(x) — p)? = Y(u — 7). Thus clashing data and prior information can

ressult in very large posterior uncertainty.
Theorem 3.7 For m > 2,
V7 (x) :
1) lim sup ———=——=1, ifn>3;
)Iu Z|—o0 Tp ([,L—.’ZI)Z/‘]: f
1) sup V7(x) = lim V™(x) = oo, ifn <3.

Proof: Case i) n > 3: The following gives the outline of the proof. See Appendix E for
the details.
Without loss of generality, assume £ = 0 and p > 0.

: Vrx)
I. Proof that Iﬂll1_1}r1oo sup (2 /4)
Choose

_1\ym/2
where Ko = [Km_ y(m = 1)

vn

n=1]1/(=m) Tt can be shown that
Koa(n = )n/Z(S) ] can be shown that, as |u| — oo,

V309 2 B+ o)

by the following steps.

Step 1) Define e = 1/3 whenm —n < 2,e = (1 —n)/(1 — m) when m —n > 2. Then
7 < Kopul~

Step 2) For:z=0,1,2, let

A o'f K, 1K
o E (14 ) (L + )
B — 91\/_K —1 K1 20
" le-usnt T (1 + = 1) )1+ _(m61)‘?—:*)z)m/2 .
Then
1 2=0
A;=koKp1p7"(bi+0(1)), where b; =4 0 i=1
v i=2,

14



and

B; = koK,_q (1 4 0(1)), for i =0,1,2,

with kg = (n — 1)"?(s//n)"* L.
Step 3) " Fori=0,1,2,

‘/S(l-l- Oy Kn1 Koo d8 = (A + Bi)(1 + o(1)). (18)

ng2 )”/27':(14—( 6—u)? 2)771./2

(n—1)s2 (m—-1)(7})

Step 4) Combining Steps 2 and 3 yields, for 7 = 7},

m(x) = [koKn1p""(1+0(1)) + koKn1p™™(1 +o(1))] (1 + o(1))

= 2koKn1p7"(1 + o(1)),
[koKn-1p""0(1) + koKn_1p7~"(1 + o(1))] (1 + o(1))

) = ko Kn_1p~"(L + o(1))
= L(1+0(1)),
and
1 / 0%\ /nK 1 K1 d8
m(x) 1+ n02)“/27"’;(1 + (%ﬁ)?)mﬂ

(koK o1 (52 + 0(1)) + koK1 (1 + 0(1))] (1 + 0(1)
2ko K1 p™(1 4 0(1))

2

- %(1 + o(1)).

Using these yields

w2 p2 P
V=54 o1)) — E(1 4+ 0(1)) = (1 4 0(1)).
Hence )
. VW(X) . VTI’; X
1 > —4—— =1.
oo 1" pi/a lulvoo pr/4
II. Proof that lim sup Vz(x) <1:
llsoo 7 p?[4

Step 1) I/ Oir(0|x)dl | < k;p "+ for i =1,2; and 0 < 67(x) < p.
Ic

15



Step 2) | /16027r(0|x)d0 | < ka|p|?; and
I /I O (0]x)d8]2 — (67(x))?| < p|ul®, where l; <2, fori=1,2.

Step 3)  Define ¢ = [f; 7(8|x)d6]~! and

er(fx) ifdel

7*(0|x) = .
0 if §d e I°.

Then, defining V™" (x) = [ 627*(0|x)d0 — (f 6?7*(6|x)d0)?,
V-V

li = 0.
Jul oo 2
Step 4) Any distribution on an interval [0, v] has variance less than or equal to v2/4.
Step 5) Combining the above results, we have, for any 7,
¥ 1 r\2
Vo) < g(u+207)"
Therefore,
lim su V" () < l,
le|—=o0 7 p? 4
which yields
lim sup Vi(x) <1
llsoo 1+ p?/4
Case ii) n < 3: From Theorem 3.1 d), lim,_,.c V™(x) = oo for n < 3. Therefore, sup V"(x) =
00, for n < 3. ]
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Appendices

Appendix A. Proof of Lemma 2.1.
Without loss of generality assume g > Z, and n > m. For |§ — z| < |p — Z|", and some

z* between 8 and z,

06—z, . |
o0 - ) = 9@ — )+ (0 -2 — ) + LD g — ), (19)
7 7 . . e — |
But (p—2)—|u—z" < (p—2*) < (p—2)+ | — z[". Hence,I llfn W:l so that

p—Z|—o00 —

|p — z*] = O*(|pp —Z|) uniformly for § € R;. Note that, for k = [(m — 1)72]™1,

g@—p)=9g(z- u)ljr—nl,:%:—%)?

and, uniformly for § € Ry,

* _nk[l — (n + 1)](7([1 — z*)Z] _ = * =1-2

*

gll(w

17



Therefore, as |p — Z| — oo, (19) implies that, uniformly for 6 € Ry,

_ .\ nk(p—=z 2y L
(0= = s(a =) (1= 0~ )T (0 2p0r (a1
Note that
re O*(Jp — 2|77} ifl <n —1, and [ is even
/ (G—i)lf(a—a":)cw: < O*(In |p — z|) ifl=n—1, and [ is even
B O*(|p — z|"(-n+1)) if ] > n, and [ is even
Lo if 1 is odd,

where ¢ = [ (0 — Z)! f(0 — z)db (so that c = V; if =2 and ¢ =1 if I = 0). Also for some

constant d < oo,

d—O*(|p—z|""2-2) f2A4+1<n—1
/R 16 — 22+ £(6 — 2)d8 = { O*(In | — 2|) ifo4+1=n—1
O*(|u — z|r(#+2-m) if 204+ 1> n.

Thus
Ao = [ F0-2)g(0~ )0
_ B _ nk(p — ) _ _
= g(p— -’L‘)[/é1 f(0 —z)do — m/&(a —z)f(0 — z)do

+ [ 0=y 0%(u— )16 - 2)do)

= g('u - "E)ao’

4= [ (0-2)f0-2)g0 - p)io
= ou= [ (0 D)0z~ ZEE=D

+ [ (0 - 270" (lu—al*)f(0 - 3)do)

= g(# - "z')ah

/Rl(a — 2)2f(0 — 7)d6

and
4 = [ (0-277(0-5)9(0 - )it

18



= g(u—z 50 —m)do— FB=T) g averg g
= gu=-a)[ (0-270-)d0 - = b 2 o, O~ B0~ )0
6 —2)*0*(|p — |7 (6 — z)db
+ [ (0= 2'0"(lu—3™)f(0 — 7)o
= g(p — Z)as.
This proves the result for A;. The result for B; can similarly be established by switching the

roles of f and g¢.
ii) Note that

|Ci

'/:'”—E'rw — ) f(z - 0)g(6 — p)db)|
= [, wmn+ (= 2)an

o0 i—n—m
< a n dn
fu—2|"

O* (|ﬂ _ il—(’r(n+m—1—i))) )

Similarly, D; < O*(|u — z|~"(r+m—1-9),
For r <1 and |u— Z| > 2/(="), we have p— | — Z|" > Z + | — Z|". Therefore, for large
lu—2|, n>2,and 1 =1,2,

p—|p—z|" .
1B = I/_ _(0—2)'f(z - 0)g(0 — p)dd|
4 |u—3|"
p—z=|pu-z|" B
= [ et - et o)y
p—T—|p—Zz|" .
< ¢ —zlI7 =7 .
< aglp—aP) [ " .77
< O*(lu—z|7™)0*(|u — &) |u — |
— O*(I,“ _ :EI—[r(n+m—i)-—1]);
and
p—2—|u—z[" ~
Eq :.Lﬂr f(n)g(n — p+ z)dn
* oy [EE T o
< Oln -3l )Ahw n~"dn
= O*(|p — z|7"(mtm-D), -
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Appendix B: Proof of Theorems 3.1 and 3.2
Proof of Theorem 3.1

(z—p)® \m
a) lim ——— / \/_K aliey (n_{;,,z) :2 do
N2 1 (5 \2\m/2
. \FK R S
T—00 3(1 +

do
)2 (m— )72 + (6 + & — p)?)m/2
=1,

by the dominated convergence theorem, since the integrand is bounded by M -v/nK,_1 /[s(
7(17-(19__—1?2;)” ?] which is an ‘integrable function

n(6—z) -n/ _n2 \—m/
b)  lim 7(6]x) = lim (143520 (14 &)™

(m—1)72
T 500 n(6—7) —-nf2 (6—p)? —m/2
/ 1+ (n— 1)32) (]' + (m— 1)7'2) : df
Ak,

n(0=%)2\p /2 ?
3(1+é€:i75)7) /2

by applying the dominated convergence theorem to the denominator (since the integrand is

bounded by the integrable function (1 + %10__—1?6);)“”/ ).
c)

e =
67r(x) 09— —n/2 2 \—-m/2 :
J (0 5™ (1 )™ o

For n > 2, the integrand of the numerator is bounded by |6|(1 +

AE=E)~"/2 and that of
the denominator is bounded by (1 + M

1) ~)~™?; both are integrable with respect to 6.
Therefore, the dominated convergence theorem can be applied and gives

VK, 4 0 _
lim 6™ (x / df = z.
T—00 ( ) S (1 + _(_)_?ne 1‘;’32 )’n/2
Ifn=2,

(x)—z| = !
76 = 5] =

/ \/ﬁKn—-lK —177 d?]
sT(1+ mnz)(l + (HL)_)mﬂ

(m—-1)r2
0 _ 1 / \/ﬁKn—le—ln d’l7
m(x) 37-(1 + ﬁﬁﬁ)(l + Fﬁw)m/Z

By symmetry,
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Hence,

' = \/;Z—K —1Km—1 I"]I 1 -1
6o —al < S | T GEei) s~ (14 Byl |
' m (n_1)32n (1 + (m=1)7 ) (1 + (m—l)‘r"’)
— \/ﬁKn—le—l / |T]|
sTm(x) (1+ Wrﬁ)(l + (m_l) 1 ym/2
1
. - — 1| dn.
( 2n(Z—p)+(z—p)2 )
(m—1)72+n2
Now, for some constant K,
= _ = _ 2
1 _ EQn@E =l + @ =17 g 1arge 72,
( MMML)"‘/ (m—1)1% + 9?2
(m—1)72+4n2
so, for suitable constants K*, K’ and K",
. . K* 1 20*|E — p| + |n|(Z — p)*
67(x) — | < 1 2/ n__. 2 (n )/21
Tm(x) (m — 1)7 (1+ oyl 1+ )7 5) ™2
K’ 1 / 1 4
Tm(x) (m — 1)1 J 7 (1 4 ymiz 7
K"
- rm(x)(m —1)7 — 0 asT oo,
since
. m(X) Km—l
lim 7m(x lim — = K1, 20
Pl = I = ity e o

by Theorem 3.1 a).
d) Note that

JICEE) (1+gg§§)‘"’2 (1+(4m)g) m2

Following an argument similar to that of c), we get

Vi(x) =

. VK, (0 — z)? _n—1 s2
Jim V() = Y /(1+’(‘—5f:—1)%)n/2d0_n—3?

To prove lim, o, V™ (x) = oo for n < 3, it is sufficient to show that

lim E™)(9?) =

T—00
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Fore=z+ % < T, and suitable constants K; and K*,

02 T 6?
o > R
/( n("_x)z)”/z(l-k((,,t—f)%)mﬂ = /c (1+ ﬂe_z)_)n/2(1+(jnf:_f)%)m/z

1)s2 1)s2
T 02
> K / — do
(L4 rﬁgl—)i;)”’ i
> K* /
— as T — o00,ifn < 3.
Together with (20), this implies that
1 0’K,_1Km_1+/n/s
lim E™®®(6%) = lim / pl m-l df = oo. 0
7500 T—00 7-‘-7-m(x) ( 2(0—_1)%) /2(1 + (_(ln‘z:_i")%)m/2
Proof of Theorem 3.2
a) Write, by a change of variable,
\/_K —_ Km—l

m(x) = 3(1 n E(M)_)”ﬂ (1 + ﬁ%)m/zdn,

(n—1)s2
and note that the integrand is bounded by the integrable function /nK, 1 Kp-15~(1 +

f1 )~™/2, Hence the dominated convergence theorem can be applied to give

VKo Kms VKo

limm(x) = o dn = —— .
750 s(1+ _(u_l));)n/z (1+ m__n_jl)m/z s(1 éuTz?)n/z

b) Let ©, be the random variable with density x(6|x). To prove that =(8|x) converges
to a point mass at p, we need to prove that ©, — p in probability. Therefore consider, for
any € > 0, - |
P(|©; — u| > €)
= m() [ (@ 0)g(0 - )0
[6—ul>e

Kn_ Km_ =32 -nf2 2 -m/2
_ VnKn_y 1/ (1+n(7'77+,“ 37)) (1+ n ) dn
|6—p|>e m

s m(x) (n —1)s? -1
_ \/_K —le 1 / (TT) +p—z)? —n/2 n? —m/?
= e \1+ =0Ty I+ —— dn,

22



where Iy is the indicator function. The integrand has limit 0 as 7 — 0, and is bounded

by (1 + ;7’3—1)‘7”/ 2 which is integrable. Applying a) and the dominated convergence theorem

gives
lir%P(IGT —p| >¢€) =0, foranye>0.
c) An argument similar to that of the proof of a) gives
. . \/’I’_ZK ._1K -1 nT +;L
lim6™(x) = 1 / . d
'rl—rvrtl) (X) Tl—rv% m(x)s (1 + %ﬁ)n/Z(l + m_’Lil)m/Z 1

7
K [ —
gy

= /j,.

d)  Note that a change of variable rewrites (7) as

(m —1)7?K g / VK,
™ — . d
V(%) m(x) s(1+ 2R yn/a(] 4 22 ym/2-1 "
—(m—1)r" = (u = 6"(x))?, (21)
which together with ¢) and a) gives the result directly. 0

Appendix C: Prqof of Theorem 3.4.
a) For any Borel set A C R,

Jireds =me7i [+ [+ [ 35— 0)9(0 — p)do),

where the R; are defined in Lemma 2.1. Then

sp—a+lu—al) [ fe-o@ < [ 5@ 00wt
< gu—a—lu—zl) [ fz- o),

S £@ =090 - w)dt = g(u =)L +0(1)) [ 1@~ 0)do.

NR;

Similarly,
S, £E = 0900 = b = Fu =21 +0(V) [ a(z—0O)db.
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Also,
Lo FE =090 =8 < [ G~ 0)9(0 —p)do
= Co+ Do+ Ep
= (Ao+ Bo)- O(l)

= (f(p—2)+g(p—2))-o(1),

by (15) and Lemma 2.1. Combining these results together with Theorem 3.3, we have

/A (0]x)d0

ou=o)f  f@E—=00d0+f(u=2)[  alu—0)do
- flp—2)+9(p—12) (L+o()
= (ww-a) [ 1@G-0)d0+Q—wu-2) [ ou—0)ds)(1+o01).

Note that w(u — z) — 1 by Lemma 3.1, [4np, <1and AN R; — A as p — co. Therefore

NR,

/A 7(8]%)d8 — /A £(z — 0)dd.

b)  Analogous to a).
c)  Assume y > Z without loss of generality. Since |Az| < 0o and |T,| < oo, there

exists an Ny > 0 such that for | — Z| > N1, Az N T, = ¢. Therefore, for | — z| > Ny,
PO0(Q,,) = mx)7[ f(@—0)g(0-wdo+ [ f(z—0)g(0— p)do]

Z+az p+ba
= mE) " A@ - 090 - wdo + [ 7 f(z - 0)9(0 - wao). (22)

Note that
Ztao 3 _ Ztas ~
/j_a f(z—0)g(0 —p)dd = g(Z—p—a) /ﬁ_a f(z — 0)ds;
ztas 3 _ Ztao _
[ 10090 -nio < g@—pta) [ f@—0)ib.
Hence

/.@ ”i+ F(@—0)g(0 —p)dd = g(p—3z)(1+0(1)) /; F(9)dé
= g(u—E)PP(Ag)(1 + o(1)).
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Similarly,
[ 55— 0)9(0 — 10 = s~ 2)PH(To)(1 + o(1)).

—by

Combining these and (22) together with Theorem 3.3 yields
PO (,.,) = [1o(s — 3)PP(Ao) + (1 — (s — 7)) PH(Yo)](1 + o(1)).
Applying the result of Lemma 3.1 completes the proof. O

Appendix D. Proof of Section 3.2.2 Results.
Proof of Theorem 3.5

For notational simplicity, w(g — Z) will be written as w, and, without loss of generality,
assume n > m and y > Z.

i)n>2: Note first that

67(0) — ()| = B0 —wz — (1 - w)u)
= m(x)7 [(6—ws — (1 —w)u)f(z — 0)g(0 — n)do).

This integral can be broken into three integrals, denoted A*, B* and C* respectively, over

Rl, Rz and R3. Then

IC*| = m(x)7Y|CL+ D1+ Ey — (p— 2)((1 — w)Co — wDp + (1 — w) Eo)|
= T T () e

By Lemma 2.1, (17) and Lemma 3.1,

|C*I — Io(llu' _ i,l—['r(n+-m—2)—m]) + O(l/" _ il—['r(n+m—1)—1—m])
+O(llll _ :El—[r(n+m—1)—1+n—2m]) + O(I,u _ f|—[r(n+m—1)_1_m])!
[0*(1) + O*(|u — &~

O(I/‘L _ jl—['r(n+m—1)—(1+m)])

VAN

= o(l).
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Also,
|A*+ B*| = m(x)7A1+ Br — (p — 2)(1 — w) Ao + (1 — T)wBy|
= m(x) 7 |g(p — Z)ar + f(u — 2)bs
—(p = 2)[(1 — w)g(p — T)ao — wf(p — 7)bo]|
= |way + (1 —w)bs + (1 — 7)(1 — w)w(bo ~ ao)|(1 + 0*(1)),
where 0*(1) is defined by (16). By Lemma 3.1 and the definition of a; and b;, for i = 0,1,

O*(|lu — z|™') = o(1) ifn>3
way; =
O(lp~ 2| Infp - 2[) = o(1) ifn=3,

O*(|u — z|~(=m-1) = o(1) if m >3
(I—w)by =9 O*(u— 2|~ ™Iy —Z|) =o(l) ifm=3
O*(|p — z|~(—m)-1+7) = (1) ifm=2,

and

(b — Z)w(l — w)(bo — ao)
_ ) O(lp =z O* (|l — 27 + O*(lp — 2|72)] ifm >3
o { O*(|p — 5|l—(n—m)) -O*(|p — 5[—7("1—1)) ifm <3.
Thus, if n > 2, |A* + B*| = o(1). This completes the proof for max(n,m) > 2.
ii)n=m=2:
By Fan and Berger (1989), an exact formula for §"(x) is
57(x) = 7 + sgn(z) s [ 227 /s(1 — V27 /5)z — |2|(2* — 27%/s% 4+ 1) ] ,
V2 (1 +V27/s)22 + (V2r/]s)? — 272/s% — /21 /s + 1
where z = v/2(% — p)/s. Calculation yields, for ¢, ¢ independent of (Z — ©),

™ = ZT—(Z— Az —pf /st
M(x) = (z—p) [(1 +V27/8)2(F — p)?/s? + C']
= z—(Z-p)[(1 +v2r/s)™ + O(Ip — 27)]

1 1
= (1-——=) a4 p— + Ol — 3|
( 1+701) P (e —27)
1 _ Yo
T+
14+v% 1+7%

¢+ o(1).
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Proof of Theorem 3.6
For notational simplicity, w(g — z) will be written as w, and, without loss of generality,

assume n > m and y > Z. Note that
VT(x) = ETOM(9 — §7(x))? — [67(x) — §"(x)]%. (23)

By Theorem 3.5, [§™(x)—67(x)| = o(1). Hence the proof reduces to determining the behavior,

as I//,—:1_:|-—)OO, of
E™OM (9 — §7(x))? = m(x)™" / (0 — wz — (1 —w)u)*f(Z — 0)g(6 — p)db.

This integral can be broken up into integrals over Ry, Ry and Rs, defined in Lemma 2.1, to

be denoted by A, B and C, respectively. Note first that

€1 = mG [T 02~ (4= )1 - w)) (@ ~ )0 - )0
Ot = B f(E — 0)g(0 - )
4 [ 02— (s =91 — )@~ 0900 - )0
= m(x)"Cy+ D2 + E; — 2(pu — Z)((1 —w)Cy —wDy + (1 — w)Ey)

+(p — 2)*((1 = w)*Co + w* Do + (1 — w)* Ey)|.
Combining the results of Lemmas 2.1, 3.1 and (17) gives
|C| = |O(|'u _ il-—[r(n+m—3)—m]) + O(I,u _ a—:l—('r('n,+'m—2)—1—m))

—I-O(I,u _ ill—(n—m)—-[r(n+m—2)—m]) + O(I,U, _ :Ell-[r(n+m—2)—m])
+O(|/J' _ :E|1—(n—m)—[r(n+m—1)—1—m]) + 0(|” _ :EIZ—Z(n—m)—[r(n+m—1)—m])

- +O(|u — #P D= [0¥(1) + O%(Ju — &~™)]
= O(|p — g|lrintm-1)-m-21 (24)

Also,

A+B = m(x)7 [ (0-3—(u-2)(1 - w)}f(z— 0)g(6 — u)ds

1
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4m()7 [ (0= o+ (n = 2)w)F(@ = 0)g(0 — u)do
= m(x)" Az + B2 — 2(s — 7)((1 — w)A; — wBy)
(1 — (1 —w)* Ao + w”Bo))

Applying Lemma 2.1 and Theorem 3.3 gives

A+B = m(x)"{g(u—T)az + f(p — )bs
2 — B)[(1 — w)g(p — B)ar — wi (s — )b]
+(p = 2)[(1 — w)’g(p — Z)ao + w’ f(p — Z)bo]}
= {waz + (1 - w)by — 2(p — Z)(1 — w)w(ar — b1)
+(p = 2)*[(1 — w)*wao + w?(1 — w)bo] }(1 + 0*(1)), (25)
where o*(1) is defined in (16).

i) max(n,m) > 3:

a)m>3:
For r = ;2422 (' = o(1) from (24). Combining the definition of ¥, (25), Lemmas 2.1

and 3.1 yields
A+B = {¥(lu—z])—2(p - z)(1 — wywO*(lu — z|™)
+(u — @)*w(l — w)’[0*(|p — 2 ) + O*(Iu — &[7)]
+(p = 2)*w*(1 — w)[0*(|p — 27 D) + O*(le — 2]} + 0*(1))
= {U(lp - z|) + O* (|l — z|~"™) + O*(|u — &[>~ 2n—m)-r(n-1)y
+O*(|p — 2|72 + O*(|u — 2~ =rtm=1)) 4 O* (| — 7™}
(14 O0* (| — 2|77 D) + O* (| — 3[72)).
Since ¥(|u — z|) = O*(1) + O*(|p — Z[*~("~™) ( by Lemma 2.1 and Lemma 3.1 ),
A+B— { U(lu—2)+o(l) ifn#m
U(lp—z|)+0(1) ifn=m.
b) m < 3:

A+B = {U(|u—z|)—2p—2)(1 — w)wO*(|u—z|7*")
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+(u — 2)*w(1 — w)*[0*(|u — 2|77 V) + O*(|p — 7| 72)]
(1 — 8w (1 = w)O*(|u = 3| L+ O%(|u — 3|7 D)]

= {U(lp— &) + O*(ln — &7C™*7) + O*(|p — 2>~ 7 07Y))
HO* (I = 3727™) + O* (| — ™)1+ O%(| s — 2],

In this case, r = (m + 2.5)/(n + m — 1),
U(lp —2l) = [Vs + O*(lu — 2~ ™)bz + O*(lu — 2~ *"™)](1 + o(1)),
andn—m=1,ifn=4,m=3; and n — m > 2, otherwise. Therefore,
A+ B=¥%(p—Z|)+o(1).

Hence, for max(n,m) > 3,

U(lu—a)+o1) ifn#m

E"0M (9 _§"(x))*=A+B+C=
U(|lp—z)) +0(1) ifn=m.

The results then follow.
ii) max(n,m) < 3:
Since r = 5/6 and U(|u — z|) = O*(|p — Z|*~(*~™)) (using Lemmas 2.1 and 3.1), we have

m = o(1). And by (25),

A+B = {(jp—al)+ O%(lu — '~ 1) 4 Ox(|u — 2B
+O(|u = 5P 1 4 OX(|u — 3| D))

Vi)
Thus, e 1+ o(1).

i) n=m=2:
Note that, by (7), Theorem 3.5, and the exact results given by Fan and Berger (1989),

TS [ (22 +27%/s% — 1)? + 422
V2 | (14 v271/8)2% 4 (272/s2)3 — 272 /52 — /27 s + 1
—7* — (b — §"(x))’
_ 18 [ 2(22 +2(1 +7°/s%)e/2P)]
V2| (1+V21/8)2% + ¢

29

Vi(x) =




—(1+7)7*(u — )° + O(1) + o(1)
_ 15 2(p — 7)° _772)) — 72
= aaaTm gt ols =)

—(1+7)*(p—2)" +0Q)
= (14+7) (k-2 -1 +%) (-2 +0(Q)

Yo =\2
= m(y—x) + O(1). a

In the proofs of the following corollaries, we will consider the case n > m. For n < m,

the proofs are analogous.

Proof of Corollary 3.1

To prove the result for §”(x), Theorem 3.5 implies that

|(67(%) — 2) — (67(x) — 7)| = o(1).
By the definition of 3”(x) and Lemma 3.1,
67(%) ~ 2 = (1 = 2)(L — w(p — &) = %0* (I — &[C"M)(1 + o(1)).
The conclusion is immediate. To prove the result for V™(x), note that Theorem 3.6 yields
V(%) = Vi + Vs = ¥(lp — 2])| = o(1).
Now, by the definition of ¥ and Lemmas 2.1 and 3.1,
Vi = ¥(|p —zJ)
= Vi —[w(p—2)az + (1 — wp — 2))bs + w(p — 2)(1 — w(p ~ 7))(p — 7)?]
= Vi = [Vi +o(1) + 70" (In — 2 ~""™)bz + 0lp — 27" ™)1 + OX(|u — 2|7%))

= [o(1) + 20" (I — &|7""™)bs + ol — 2*""™](1 + o(1))

= o1),

since n —m > 2 and O*(|g — Z|~2)by = o(1). ]

Proof of Corollary 3.2
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Using Lemma 3.1,

§ (%)~ (L +70)7'2 — (L+% ") u

- (u—f)(lj—%—wm—z))

_ 1 -2
- (u—x)(lﬂ L 0(u—a)
= 0kl
= o(l).

The result for §"(x) then follows by Theorem 3.5.

For n = m = 2, the result for V™(x) follows from Lemma 3.2. For n = m > 3, consider
U(|lp— ) — —————,u—:l:
(1n = 21) — il — a1
= (et 2+ sl = aP) (14 O = 317) = Pl af
I+~ 1+ (1+’Y)2 (14 %)?
1 Yo Yo
= Vi + Vo + 7——0"(1) +o(1
1+,70f 1+709 (1+70)2 () ()"

by Lemmas 2.1 and 3.1. The conclusion then follows by Theorem 3.6 .

Forn =m =3,
U(lp—2l) = 1 py O*(lnlﬂ —z|) + —WO*GH =)
mhﬁ Z*(1+ 0*(|ln — 2|7%))
= (ﬁ_,y—o)zht — z[*(1 + o(1)).
Hence,

ezl

U(|p— z|)

The result follows immediately from Theorem 3.6.

Proof of Corollary 3.3

An argument similar to that of the proof of Corollary 3.1 yields the results.

Proof of Corollary 3.4

=1+ o(1).
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The result for §™(x) follows by an argument similar to that of the proof of Corollary 3.1.

To prove the results for V™(x), when n > 3(m > 2) and n — m = 1, note that

U(lu—2l) = [Vr—o(l) +O0*(ln—2[7)b2 + yolu — Z[](1 + O* (| — 2|7))
= Vi+lp— 2|+ o(1) + O1),

by Lemmas 2.1 and 3.1. Hence,
U(ln —2|) = (Vi + lp — 2[) = O(1).
The result then follows from Theorem 3.6. If n = 3,m = 2,

U(p—z) = [0*(n|p—2])+0*(lp—2[7)O0*(In— 2I") + vl — 2|(1 + O*(In = 2[™))

= 7ol —Z|(1 + o(1)).

Using Theorem 3.6 completes the proof. ]
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Appendix E. Proof of Case i) in Theorem 3.7.
Proof of Step 1) of I:

i)Ifm—n<0,then 222 <0< 2 507y < Kop'“if e

1
3"
i) If0 <m—n < 2forn>3(som>4), then 0 < 2= < 2, and again € = 1/3

works.
iii) If m —n > 2, then 7% = Kop'~¢, where 0 < € =
Proof of Step 2) of I :

1—n
y— < 1.

Note first that for : = 0,2, some constant ¢, and n > 3,

0< / 1 aiﬁKz = —df < cpl~EICH = o(1),
lo1>u"~ 2¢ 8(1 + (n7—u?l)s2)n/2
so that
/ 0'v/nKna d&:/ oi\/_K—l da/ 6'\/nKn 1
o<tk s(1+ (nnfiz) 5 )™/? s(1 + (n 1) 2)n/2 o]t~ % s(1+ (nnff)sz)nlz
= bi—o(l). (26)
Also,
Km 1 / 02\/_K -1
€ ngz n
(1 + S(’;i“i)'“‘l‘(% ym/2 JIe1SuT ¥ s(l+ G2e)?
< A I{m 1 / 0 \/_Kn 1
—_ % 7L02 n ?
(1 + I(TT))?)’”/Z olu =4 s(1 + G2
and
Koy _ Knaa(m)im =y
- - 1. mf2
(1 + (l::i)( *)2) ™/ I (%‘}‘ (L& p : )2)
()" m = 1)
B pm(140(1))
koK1
= 0# (1 +0(1)).

Together with (26), this yields

koK1 koK _
A= m(bi —o0(1)) = =—==(b; + o(1)).
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For:=1,

Ai=

/;ﬂ-%e Ov/nK 1K d0
0 8(1-[— ng2 )n/2T:(1+J‘9‘|'_”'L)m/2

(n—1)s? (m=1)(7)?

‘/'”'1_%€ 0\/EK _1K -1
n n, —u)? m,
o s(+ R0+ RS

do,

so that, for some constant ¢/,

0 < A;
< Kot s Kt )/ P A Ny -
= . 1- % 2 1-3€y2 : 1 nf2
(1 + (‘,:j’“l)(f*)z) m2 (1 s(%)g) s(1+ :257)
koK1 koK _ WTE 0 K,
- 14 o(1)) - 1+o(n) [
( n ( +O( )) ( +o ) 1+ (nz92)32)n/2
koKn—1 WE
< ————0(1)/ o™ dp
0
koK.,
= )
Hence A; = koKp1 7™ (b; + 0o(1)).
Note next that
Km 1 I{m—l
f& 1-%e db = / 1—Le (11 2 \m/2
[0—nl>p (1 + J_L(m 1)(7'*)2)M/2 lt>u'~2¢/mx (1 + L5)™/
Km—l
< 8wl g (1) 27
- /|1:|>K0“1u]2“€ 1+ mt—il)mﬂ o(1) (27)
Km 1
/ " do =1 — o(1); (28)
o=t~ E¢ (1 + ()2
0K,
/I : df = p, (by symmetry); (29)
]

—ulsutmEe (14 ()22
@

/ asz 1
lo-ul<ut=Ee TX(1 + (m— 1)(7*)2)

[ Kl e,
t<p T2k (1 + mtil)m/2
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Kom— tK e
2 m—1 * m—1

= dt 4+ 27 __me1
’ /'“S“I‘%E/nf (1+ 757)m/2 gt (11 2

Ky Koy
+(72)? / dt — — om0t
%) ( <t =Ee/my (14 JEg)m/2 <t~ ¥e (14 E)m/? )

K- K
_ 2 *\2 m—1 *\2 m—1
= W-mn TRt Y [ dt

(swt=Fe/m (1+ Ep)mi2 tuteym (L4 )/t

< 0= - o) + 2 H)
= (4 = ()1 + o(1)) + 2t

< l(l () )(l+o(1))+2K0,u‘%E]

= 21 +0(1 )). (30)
Also,
VK, / O Ko do < B;
(L + 2By JloouisutH (1 4 ymi
< VPEna / Ohns g
2 1-%e _(6=-p)2 ’
(1 4 Mzt 2P oy N0-sisul™E (1L 4 )
and
VKo RoKar oy
S(]. + gll«?;’ll- 1)3 lz)n/ 0u’

Combining this with (27), (28), (29) and (30) yields B; = koKn_1p'p™™(1 4 o(1)), for ¢ =
0,1,2.
Proof of Step 3) of I :

To prove this , we show that

Ny -1
/—ul 2 +/u—u1 2 N oo 0'vnKn 1 Km—g db
oo ui=he whit =50 ) 5(1+ 2 (1 + (%Tx#)m/z

D = o(1).

From Step 2) of I, we have A; > 0 and B; = koK—1pp™™(1 + o(1)). Hence

koK

Ai+Bi271—#(1+0( ))-
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Using n > 3, and letting ¢;, ¢o, and ¢3 denote general constants,

/—ul_%e 0'/nK, 1 Ky 20
e s i) (1+(—m(T><%) "
< /_#1 LE |0| \/ﬁKn—le 1
T e s+ )+ G )
Km—l - 1_% |9| \/_K -1
< Lai-ke2 m/2 (1_|_ ng? 2)n/2d0
u (1 + (l:n—#_Ll)(T*)z) (=15
Km— -1 mf2( x\m—1 o0 )
S l(m ’n)l (TM) /1_1_6 cla—n+zd0
H w2
= ¢ K§' ™ K (m — 1)/ 2=t 1‘15‘5)_"+i+1
(n—i—1)pm
_ c —n+i,,03
- 14 |
where oy = —n+ Ze+ 1 — %ei — %6 < 0. Similarly,
/u uim e Hi\/_Kn 1K m-1 20
it %‘e S(l + = 1) 2)77,/27-*(1 + (_m(%)m/2
< Koy /ﬂ-ﬂl Ay o
> mf2 | 1-Le 3(1 n (nzi2s )n/2

1-—le 2
(1 + e 1)(7*)2)

Km—l( _ 1)m/2( -k)m 1./ . ) L ]
< I—L 1-ey—nt+i+l _ 1=5ey—n+i+1
< C Sy [(w7>) (b —p %) ]
< =™l (RN 1) (=3 (=t i41)
= cuT"u,

where oz = —n + 3(n + m)e — %ei — %e-{- 1. Now, when m —n < 2, ¢ = 1/3, so that
a = —n+nf6+m/6+1—2/6—-1/6
< —n+n/6+(n+2)/6+1—-3/6—1/6
< 0;

Whenm~n>2,e=11_;:1, so that

1 1—
§(n-|—m)( — 5 5

oy = -—n-+
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1 1
< (1- =~
< (A=n)+5( -
1
= (1-m/2+n/2)(;—)
< 0.
Also,
/ ) I/ K do
phatwE s(1 4 2 )nM(H#%) m/2
< K oo 0i/nK,_
_ (1+-(m£'_11)%(-_)'—‘€r*2)2) R Sl = 2)"/2
Km—l(m _ 1)m/2(7.*)m—1cl —Lev—nti
: (n—i— 1)”_m+;:m/2 (ot w737
< c3'u’—m+me/2 (F==)(m— 1) —ntitl
= e ",

where a3 = —n +me/2+1 < az < 0. Therefore,

TR e
o w8 ) s(1+ G2 )"’ (L + )™ < S cjus
A+ B = Ly

i=1

which is o(1) since a; < 0 for j = 1,2,3. This proves (18).

Proof of Step 1) of II :

Note that - | )2\ —T/2
. 2 n 2 ol J
. @ﬁﬁwg+%@w2_
J (@4 25) ™" (2 4 )™ o
Now

/ 1 0> /1 ! do
(s + %)nﬂ(Tz + (i;__l:‘%.i)m/Z —Jo (32 + %)nﬂ('r? + gzn__flﬁ)mlz

1 ! 1 k
2 / Y > (31)
(724 =)/ Jo (824 25) (72 + 2=
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Also,

0
i - ———df
Ic (32 + _7711__1)71./2(7-2 + fmf% )m/2

U2 vt

Ve ] (52 4 2ysa(rn 4 Gyl

~ [ 9 | +
ur (32+%)n/2(72+%)m/2

IA

I ‘ df
whur (s2 4 %)n/2(7-2 + ﬁ%—f_%i)m/z

[(n = 1)/n]™? prC2) | [(n = 1)/n]™? (u+ pr)omH)
4 By a2 (g gy 02

G r(—n+2) '
- Iz 32
o ) ”

and

92
do
/Ic (5% + %)nﬂ(,,.z + %—_f_%i)m/z

2 e
= = whr | (32 + %)n/2(72 + (:__ulﬁ)m/z

[(n—=1)/n]"? = _ [(n—=1)/n]"? (= _
- 0~"+?do + 6-"+2dp

ptu”

C2 ’I‘(—n+3) 33

Combining (31), (32) and (33) yields

(7'2 + 7n"f—1)m/2

| /I 6i (8x)dd| < k; pEmHH)  for i1 9,

(™ + =)/
But ((7'2 + ;nﬂéf)/(Tz + -miLrl )M/Z < p™1=7) =y since g > 1 and r < 1. This proves that
| / Oin(8]x)d| < kip CTHHVHL for i —1 9.
Ic

And, by the fact that 0 < 6"(x) < p.
Proof of Step 2) of II :
By Step 1) of II,
/Ic 627 (0]x)d6 < k|,
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where I = r(—n+3)+ 1 < 1 since r > 0 and n > 3. Also,

|1 ox(0x)da)® - (57(x)*|

— | /1 6 (6]x)d0 — / O (8]x)do | | /I O7(8]x)d6 + / O (8]x)d8 |
= | /I or(0]x)d0| |2 / o (6]x)df — /1_607r(0|x)d0|

< | [ on(o1x)a0) [257(x) |+ [ ox(Olx)ds P

< 2k DALy g2 (o242 by Step 1) of II,
< plplt

where Iy = r(—n+2) +2 < 2 since r > 0 and n > 3.
Proof of Step 3) of I :

[ 28 (s )"

JACE ;)_m (v + C22)™" g
{/_: + :ﬂ,} (s 4 22) ™% (r2 4 Cc22) ™ g
[7 (s )T (4 )T
(2 e ™ s )™
I O

2 \m
(T2+7—n%1) /2 r(—n+1)

= Po (72 + 'n%)mﬂ

S pO:ul7

where | = r(—n + 1)+ 1. Forn > 3, note that I < (1 - L)(-3+1)+1=-1+2/m <0.

Hence,
Jre 7(0)1x(0)df !
< , wherel < 0.
I, 7 (0)ix(0)ds = PoF
This implies that, for any € > 0, there exists an M > 0 such that, when |p| > M,
S ©(0)1x(6)d0 <
J;m(0)1x(0)do )
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Thus, when |g| > M,

(1-¢ / 7(8)1x(8)d6 < /I 7(0)1(6)d8 < [ 7(6)1x(68)db.

But
[Or(0)1x(0)d0 [, °x(0)1x(0)d6
TR0 [ x(8)x(8)d8 "

/ 627 (6]x)dd — / 6%7*(6]%)d0 =
so that, for |g| > M,

[;0*7(0|x)do

/ O (0)(0)d0 — LT < / 821 (0)1x(8)d6 — /I 027*(0]x)d0

< 6°7(0)1x(6)d0 — | 9% (6]x)do
Since € was arbitrary, it follows that

lim_ / 6% (8]x)dd — / e*r(6lx)dé] = lim / 627 (6]x)d0 — / 627 (6])dd)|
|pl—oo

[a]

= Jim / 0% (0]x)dd|.

Similarly,

2 x 2 * 2 rron2 o L10m(0]x)do)? ™ 2
[, 6m(0bx)de] ~ (57(9)" < [ 0w (@)as — (5760)* < FE = — ()

so that
Jim ([ [ or*(0x)dsF ~ (57(x0)? | = lim |[ [ 0x(6lx)d0 ] — (5"(Y |
Therefore,
e LV - V)
|00 p?
o OR(0x)d8 — (5(x))? — [ 6P (01x)d0 + [J O (6]x)db?
|ul—00 p
< m (LR T PO, |for 00y 570N
|00 s ©
N (T T LA
| 4| ~ro0 'u,2 /1,2
= 0.

Proof of Step 4) of I :
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Let ¢ be any probability measure on [0,v], and note that [ (v — z)d¢(z) > 0. Hence
[ 2t de@) < v [ 2 dea),
0 0

and

Variance = /ov z? d¢(z) — (/Ovzvdf(a:)>2 < v/ovxd{'(x) — (/Ovscdf(x))2 = vy — y>,

where y = [§ £ d{(z). Clearly 0 <y < v, so that vy — y? is maximized at y = v/2, proving

the result. O
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