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ABSTRACT

An exact formula for the convolution of two t densities with odd degrees of freedom is
derived. Such convolutions are of great importance to statistics. For instance, for basic
normal inference problems concerning the mean when the variance is unknown, Bayesian
analyses tend to end up dealing with marginal likelihood functions for the mean that are
t-densities. For such marginal likelihoods, it is natural and desifable to perform Bayesian
analysis with t priors. Bayesian testing and posterior normalization then require calculation
of convolutions of t densities. This, as well as the posterior mean and variance, are evaluated
in closed form when the sample size is even and the prior has odd degrees of freedom.
Convolutions of t densities also arise in the Behrens-Fisher problem and in Bayesian inference
concerning the common mean of two samples. From the viewpoint of Bayesian robustness
in the basic normal inference problem, a Cauchy prior is of special interest. For this case, in
addition to the exact formulas for even sample size, interpolation formulas for the marginal,
posterior mean and posterior variance are derived when the sample size is odd. In comparison
with the IMSL numeriéal integration subroutine, our algorithms turn out to be substantially

more efficient and accurate.

KEY WORDS: Convolution; marginal likelihood function; posterior mean; posterior vari-

ance; Behrens-Fisher problem.




1 Introduction

The basic quantities that will be considered are integrals of the form

o _ 1
Lo (w, 2) = / Vol ¥ YA+ wiE 1 2P 2
and
1 _ §
L (w,2) = [ AT E R e T 2)

These integrals are typically evaluated by numerical integration, but this can be quite ex-
pensive when it must be done simultaneously for many w and z (cf. section 1.2). Thus we

consider closed form evaluation of (1) and (2) using residues.

1.1 Statistical Motivation

This section mentions several important statistical problems in which evaluation of (1)

and/or (2) is necessary.

1.1.1 Bayesian analysis : normal sample, t-prior

The data consists of ii.d. random variables Xi,Xa,..., X, from a N(0,0?) distribution,
both § and ¢? unknown. Letting x = (z1,23,...,2,) denote the observed data, the joint

likelihood function for @ and o2 is

(0, 0%) = ——L g nE-0/(2%) —~n-1)5% (20%)

- (27‘-)1;/2 or
where Z = Y z;/n and s* = ¥ (z; — 7)%/(n — 1) are the usual sample mean and variance
respectively.
In a Bayesian analysis, it will typically be the case that prior opinions about 6 and &2

are independent. Assuming this and letting 7**(¢?) denote the prior for 02 and 7 () denote




the prior for @, the marginal posterior density for # can be written as

[ Ix(9, 0?7 (0)7**(0?) do? _ &(0)=(9)
J1x(8, 0?)7w(8) 7 (02) do? df m(x) ’

(0]x) =
where
Ix(9) = / 1x(8, 0¥)x**(0?)do?, (3)

and

m(x) = / Le(6)7(0)db.




It is common to give o® the noninformative prior 0~2do?. When this is used in (3),

calculation yields (upon renormalization to obtain a density in 6)

Vil @
s(1+ L(‘T.Ef_';g’g.)n/zv

Ix(8) =

where

K = (2. %)

The common informative choice for 7**(0?) is the inverse gamma distribution with sub-

jectively specified parameters («, 3),

(6% = 1 ¢=1/(0°6)
)= T@pEn ©)

For this 7**, Ix(f) is of the same form as (4), with n and s? replaced, respectively, by
n* =n+2c M

and
(n+a)((n—1)s?8+2)
(n+2a—1np (®)

(3*)2 —-

In what follows we will explicitely consider only the noninformative prior scenario, but all
results can be applied to the general case, using (7) and (8) in place of n and s? in (4),
providing n* is an integer. '

In the above situations, the marginal likelihood function for the mean (i.e. Ix(6) ) is thus
a t-density. If a unimodal, symmetric prior distribution for 8 is desired, it is then natural to
choose 7(f) to also be a t-density. (Note that it may well be desirable to use a subjective
prior distribution for  even when a noninformative prior distribution for 2 is used.) Indeed,

robustness considerations suggest that the tail of the prior should typically be at least as




flat as the tail of the likelihood (cf. Berger (1985)). Thus we consider

Km—l

#(0) = = (9)
(1 + =)
so that the posterior density for 0 is
1 \/EK,,_1 Km—l
m(0|x) = . . 10
) e S A L iy "o

Note first that

\/ﬁKn—l Km—l
= . do.
m(x) / 8(1 + l".(i'_'fﬁ)n/Z T(]. + .}f(_;&_%)m/2

(n—1)s2

A linear transformation provides a more convenient form for m(x), namely

m(x) = Fn1 "K's“““’m =1 1 (w,2) (11)
(see (1)), where
w = n(m — 1)7%/[(n - 1)s7, (12)

2 = V(@ - w)/(Va—Ts). (19)
The posterior mean, §™(x), is then given by

57(x) = f O (0]x)d0

_ g
- +m(x)’

(14)

where

(%) = Kno1 Km-ay/(n — 1)(m — 1) I (w, 2). (15)

A third quantity of general interest is the posterior variance of 4,

1 Ky Koy 02 B .
V)= 0 | G e At - 0

4




It turns out, however (see section 4), that the posterior variance can be written in terms of

IS,m)L?,m-z and 67(x) as

vim — 172Ig,m—2(w, z)

L m(w; 2)

Vi(x) = = (m = 1)7* — (4 - 6"(x))’, (17)

so that evaluation of (11) and (14) suffices to also determine this quantity.

1.1.2 Bayesian analysis : two samples, noninformative prior for ¢

Let X3,X3,..., Xy be a random sample drawn from the N(,02) distribution where o2 is

unknown, and ¥3,Ys,...,Y,, be another random sample from the N (9, %) distribution with

0§ unknown. If both samples are independent and the noninformative prior 7**(0?) = o~?

is used (independently) for both ¢ and o2, the marginal likelihood for  is (see (4) )

1) = ViKa_ ViKom_1
sx(1+ %l(_z:_%)n/z sy(1 + 2= ym/2’

(m—l)szy

where 7, 7, s% and s? are the usual sample means and variances for the corresponding samples.
Informative gamma priors for the variances could also be used here, as in the previous section,
with versions of (7) and (8) replacing (r,s%) and (m, s3) in the above expression.

If the noninformative prior 7(#) = 1 is chosen for 8, the posterior density is thus given
by (10), letting x = (21,...,%;¥1,...,¥m) and replacing Z, s%, and g, 7? by Y zi/n,s2 and
¥ yi/m, s} /m respectively. Therefore, the equations in (11) through (17) also apply to the

problem of making inferences about a common mean 6 under a noninformative prior.

1.1.3 The Behrens-Fisher density

For a classical example in which the integrals in (1) and (2) are encountered, suppose that
two random samples are drawn from two normal populations, N (pi,0?), with unknown o?

i

for 2 = 1,2, ¢ indexing the two populations. Let n; denote the sample size, T; denote the




sample mean and s? denote the sample variance. It is well known that

£ = V(& — )

S

is distributed according to a central t-distribution with n; — 1 degrees of freedom. Moreover,

t; and t; are independent. Then

((L‘1—$2)—(\/.__ \/— )

yields the fiducial distribution of the difference between the population means as a linear
combination of two independent t distributions by treating Z; and s; as constants. The

Behrens-Fisher density is therefore the density of
Yoing = Un, — Vazs

where Uy, ~ T(ny — 1;%1,5}/n1) and V;,, ~ T(n; — 1;Z,,53/n3). Calculation yields the
density of Y;,, ,, to be

Jrama (y) = "’"‘I;"/”\“}_V"r I (w2, (18)

where

W= Yre—lsa/yre Y- (8:1-3)
Vi =Tsi/\m’ T V= L/

Fisher(1935) proposed a solution to the problems of estimating and testing the difference
between the means of two normal populations with unknown variances based on the Behrens-
Fisher distribution. A test equivalent to Fisher’s was given earlier for a special case by
Behrens (1929). Chapman (1950) reported a two-stage procedure for testing the difference
of the means. Fisher (1939), Fisher and Healy (1956), and Fisher and Cornish (1960) also
discussed certain features of the Behrens-Fisher distribution. Scheffé (1943,1944) and Welch
(1947) also offered solutions to the Behrens-Fisher problem. For the problem of estimating




the difference of the means, Jeffreys(1940) arrived at the same conclusion as Fisher, but
Jeffreys’ argument was based on a Bayesian argument with the usual noninformative prior
for the means and variances.

Fisher (1935) also described a fiducial interval for p; — pz which is based on the so-called

d-statistic (or Behrens-Fisher statistic)
g npe = (COs @)ty — (sin )iy,

for a specified o € [0,7/2]; the interval requires determination of percentage points of the

distribution of dy, n,,. Calculation gives the density of dp, ;o to be

K, 1K,, 1v/ny —1
fnx,nz,a(d)= ol mpolV 2 Ig'm(w",z”),

Cos &

where

i

w'= Y2 tana, 2= d
Vg —1 ’ (cosa)y/my — 1~

In frequentist statistics, dp, n,,« is used for testing hypothses about p; — po or for con-

structing a confidence interval for y; — p; (Fisher (1935), Chapman (1950), Ruben (1960)).

1.2 A Statistical Scenario Involving Many Integrals

A statistical scenario involving many integrals of form of (1) is given in Berger and De-
lampady (1987). Suppose one observes Xj,...,X,, distributed as i.i.d. N(f,0?) random
variables, # and o2 unknown. It is desired to test Hy : § = 6y versus H; : 8 # 6p. With the
noninformative prior for o2 and a Cauchy prior with parameters (p,72) for § under Hj, the
Bayes factor for testing Hy versus H, is given by

B(u,7%) = l;((;io)),

where m(x) and Ix(f) are given by (11) (for m = 2) and (4) respectively.




To perform a robustness study with respect to a particular choice of g and 72, or to
present the Bayesian inference to a range of consumers having different x4 and 72, it is useful
to present a contour graph of B(u,7?) as a function of the prior parameters. A method to
efficiently compute m(x) over a grid of (g, 7) is thus needed. The exact formula for m(x)
that we develop is easily adapted to inexpensively calculate m(x) over a grid. Figure 1 is
the resulting contour graph of B(y,7?) when 8 = 0,n = 15,% = 20.93 and s = 37.79. The
graph required 2501 integrations of the form of (1), but took only 17.8 cpu seconds on a
Vax11/780. | '

Other Bayesian analyses that require many integrations are discussed in Fan and Berger
(1989b). Note also that utilization of the Behrens-Fisher density often requires integration

over y in (18) and hence evaluation of (18) at many y.

1.3 History and Overview

Fisher (1941) proposed calculating (1) by using infinite series expansions of the two t-

distributions and integrating term by term in the ensuing double series. Such an approach

was also taken by Tiao and Zellner (1964) in the multivariate case. An alternate series

expansion was advocated by Dickey (1968), who also developed methods for dealing with

higher dimensions or products of more than two t-densities. Ruben (1960) obtained an in-
tegral form for the density of the d—statistic such that d can be interpreted as the ratio of
two independent random variables, namely a t-variable and a function of a Beta variable.

Some felated work about the cumulative distribution function of the Behrens-Fisher density

can be seen in James (1959), Patil (1965), Ghosh (1975) and Franck (1981).

Spiegelhalter (1985) gives exact expressions for the posterior distributions of the location
and scale parameters of a Cauchy distribution assuming vague prior information. For two
observations, his marginal likelihood for fixed scale parameter is essentially equivalent to our
result with n = m = 2.

In section 4, exact closed form expressions will be obtained for (1) and (2), when n and

m are even integers. (Unfortunately, calculation by residues can only be done when n and m
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are even.) Sections 2 and 3 concentrate on the case m = 2, corresponding to the important
Bayesian statistical application in section 1.1.1 when the often recommended Cauchy prior
is assumed. In section 2, closed form expressions for m(x), 6"(x) and the posterior variance
V7(x) are developed when n is an even integer, and accurate interpolation formulas are given
when n is an odd integer. In section 3, a comparison of the calculation time needed for the
exact formulas and the IMSL numerical integration subroutine will be given.

For the Bayesian applications discussed in sections 1.1.1 and 1.1.2, observe that choice of
a slightly different noninformative prior for the normal variance(s) can ensure that n ( and
m ) are even, so that the interpolation formulas can be avoided. Indeed, if n (or m in section
1.1.2) are odd, choose the noninformative prior to be of the form 7**(¢?) = o~ rather than
7*(0?) = 02, and (see (7)) replace n (or m) by n* = n—1 (or m* = m —1). There is some
support for use of 7(¢?)** = ¢! as a noninformative prior for o2 (essentially, an argument
for uniformity in log o rather than uniformity in log o?), and except for very small n (or m)
there will be little difference. In the same vein, when choosing an informative prior for o2

and/or 8, it is calculationally convenient if n* and m (or m*) are made to be even.

2 Calculation When m =2

The m = 2 situation is of particular interest in the scenario of section 1.1.1, since it corre-

sponds to choice of the Cauchy prior

1

"= T e (19)

Reasons for choosing a Cauchy prior include the following. We assume that a unimodal and
symmetric prior is desired.

1. Specification of a prior median and interquartile range for 8 is relatively simple, even
for nonstatisticians. The median of (19) is 4 and the interquartile range is 27, so the prior
parameters will have direct meaning for practitioners.

2. Cauchy priors have desirable robustness properties. By robustness here is roughly

9




meant that features of the prior which are not carefully considered will not have a great
effect on the analysis. The location and scale features of a prior, such as u and 7 above,
often are carefully considered, and in any case one can present conclusions for a range of u
and 7 as discussed in section 1.2. The functional form of 7 (), however, is often very difficult
to specify, beyond general shape features such as unimodality and/or symmetry. Evidence
has gradually accumulated to the effect that the functional form is nonobtrusive providing
the tails of the prior are less sharp than those of the likelihood function. Use of Cauchy
priors guarantees, in the problems we consider here, that this will be so.

3. Constructing graphs such as Figure 1 in section 1.2 is computationally onerous for
t-type likelihoods. Cauchy priors are among the easiest priors to handle computationally.

For a Cauchy prior for § and the noninformative prior 7*(6*) = o2 for o2, (11) and

(14) reduce to

mi) = T2V o 0, (20)

TS
- ., syn—1 I%,Z(w7z)
T = 3T T, )

(21)

where w and z are given by (12) and (13), respectively, with m = 2. The calculation of
m(x), 6"(x) and V7(x) will be considered in sections 2.1, 2.2, and 2.3, respectively. Note
that, for the general 7*(c?) in (6), all formulas below are valid if » and s? are replaced by

(7) and (8), respectively.

2.1 Calculation of the Marginal Distribution

The exact formula for m(x), for even n, will be given in section 2.1.1, and an interpolation

result for odd n will be given in section 2.1.2.

2.1.1 Exact Formula for Even n

When n is even, the integral in (20) can be evaluated in closed form. The formula is a special

case of the more general result in Theorem 4.1, but is recorded here for later development

10




of an interpolation formula and numerical study. Let

r= \/(w + 22 — 1)2 4 422, v = cos™((w+2>—1)/r) and o' = cos™}((2* —w+1)/r). (22)

Let (j) denote the largest integer less than or equal to j, and define

n=2(22%), n=2(222), k=(k/2). (29)

Theorem 2.1 If n is even and r # 0, then m(x) in (20) can be calculated as follows:

mx) = (V) Kns

) E ]
x {3 r~®+D[cos(k + 2)v — |2| sin(k + 2)v] Y wtEA; .0k, 5)
j=k1(n)

k=0
k
+ Z p(k+1) cos[(k + 1)v] E w1+""B1,n/2 k,j)+r —n/ cos(gv')}, (24)
k=0 J=k2(n)
where
k1(n) = max{0,k — n/2}, ka(n) = max{0,k — /2}, (25)

and Ainjz and Byyys are defined in Theorem 4.1. ( In any of the summations above, ¢
with s > 1 is to be defined as zero.)
When r = 0 (which happens when w =1 and z = 0),

n—11
n 7S

m(x) =

Proof: Follows directly from Theorem:4.1. ]

For example, if n = 6, then & = 2, n = 0,

A13(0,0) = —(3/4),  B14(0,0) = 3/8,
Bis(1,0) = —(3/4), Bys(2,1) = L.

11




Therefore,

m(x) - Ins 8 r 2 r r

8\/5-/_5- {§ cos v\/z_v 3 _3_cos(2v)\/a; + cos(3v) w/w
+ % [zIsinng) o+ cosgv')} . @)

Everything in (24) is easily calculable. Unfortunately, as r — 0, (24) becomes numerically

unstable. We have observed that this instability occurs in a region of the form
Ry ={(w,2) :7* = (w—1+2%)? + 427 < C~Y"}, (28)

where C is computer dependent. For example, if (24) is implemented in a double precision

FORTRAN program, C can be 102 on a CDC6000, but only 10** on a VAX11/780. Note

| fhat R, is a very small region, and would probably never occur for specific prior and data.

However, in graphical displays which present the Bayesian answers for a wide range of priors,
such as that discussed in section 1.2, consideration of R, is needed.

To deal with this instability, for moderate and large n, one can use the following approx-

imation to m(x) if r is small:

_ vn
7rs\/(n —Dw(l + 22/w)

(822w —1) 3(5z*/w? — 1022 /w + 1)
X {1 T el F 2w T (n=3)(n -5l + z2/w)4} - (29)

m(x)

(See Fan and Berger (1989a) for a derivation.) For small n, (26) suffices as an approximation.

Thus, for (w,2) € Ry, we suggest approximating m(x) by 7(x) defined as

() = { () o > 14 (30)

(Vn —=1//n)(xs)™t  ifn< 14

12




The relative error of /2 (x) is less than 0.8% on a Vax11/780 machine. Note that the distance
between the modes of Ix(f) and #(0) in R; is rather small, making numerical integration
simple and accurate in this region. If one requires accuracy higher than 0.8%, using numerical

integration in R; will not cost much because R; is such a small set.

2.1.2 Interpolation of m(x) for Odd n

Unfortunately, exact calculation of m(x) is not possible if n is odd. In this subsubsection, a
suitable linear interpolation of m(x) for odd n will be considered.

It is helpful to consider (20) as a function of 1/w and z, namely
Kn_
an(/,7) = Lo 10 (), @)

Theorem 2.1 gives an exact formula for m(x) (i.e. gn(v/w, 2)) when n is even. The rescaled

linear interpolation,

jn(\/aaz) = angn—l( M \/h‘:‘_"")

b (- eI, oL (32)

will be considered as an approximation to g,.(1/w, 2) for odd n, where o, is given by

0.28+4+0.18/(1+2) if/w<landz>15
O3 =
0.43 otherwise,

and for n > 5,

0.38 if /w < 10-®/% and 2 > 1.5
a, =
4\/%&% otherwise.

(The formula for c, was derived using the approximate formula (29).) If » is odd, calculate
v/w and z using (12) and (13) and then calculate gn_l(i/::%\/ﬁ, \/l%z) and g,,,.,.ﬂ%\/z_v,
%z) using Theorem 2.1. When (w, z) € Ry (see (28) ), gn—1 and g,1 should be replaced

13




by 7n(x) of (30).
For (vw,z) € Ry, where

Ry = {(Vw,2)[WVw <3 x10~"3 and 2 > 1.9+ (%) + vw}, (33)

the interpolation can have a relative error of 2.5 % or more, and numerical integration is
recommended. On };’{, g, differs from g, by at most 2.5 %, and is typically extremely
accurate as discussed below. Note that (v/w,2) € R, rarely occurs in practice. -

Table 1 shows, for various odd n, the maximum relative errors of g, at \/w = 0.1, 0.5, 1, 2,
and 3, respectively. The first number in each of the last 5 columns is the maximum relative
error and the second is where the maximum relative error occurs over 0 < z < 6 (to the
nearest 0.1). It was separately observed that, when n > 7, the relative error of g, increases
and then decreases as z varies from 0 to infinity for small \/w. Thus, in Table 1, the entries
for n > 7 appear to be global maxima. (For n = 25 and 27, the relative errors in g, were
so small - less than 10~° — that it was very difficult to determine the maximizing 2.) It was

also observed that for larger \/w the interpolation appears to be very accurate.

2.2 Calculation of the Posterior Mean

In this subsection, an exact formula for 67(x) will be given for even n, and an interpolation
will be given for odd n.

2.2.1 Exact Calculation of §™ for even n

Because of (14), we need only consider calculation of p(x) in the following theorem.

Theorem 2.2 Ifr # 0 and n > 2 is an even integer, an exact formula for p™(x) (cf. Eq.
(15) ) is |
P (x) = Kn1vn — 1 sgn(z) (I + I + L), (34)

14




where

L = —r[sin(Zv)Va + zlcos(3v')],

S b @k —5) +1) Avepa(k,g)
I, = r~*+[sin(k + 2)v + |2| cos(k + 2)v w’+5( Lin/2\5, ]
2 ’g [ ( ) l ( ) ]j_—_%(n) (n——2(k—])-——3) ]

{ S T~ [sin(k + 1)) Ty, (o witt (ATBE) ifn > 9

e (o
r~1(sinv)/wBy,1(0,0) ifn=2,

I =
with all quantities being defined in section 2.1.1. (Again, 3% is defined to be zero if s > t.)
Ifr=0, p"(x) = 0.

Proof: Apply Theorem 4.1 for m = 2. O

For example, if n = 6, then

"(x) = 8 [Jwsinv 9+ /wsin(2v) + 3w+/w sin(3v)
4 ~ 3ms 8r 4 r? r3
Vwsin(3v') |z cos(3v')
- r3 - 3 :

Note that §7(x) can be obtained by combining this with (14) and (27).
Analogously to the situation with m(x) in section 2.1.1, the calculation of p™(x) is un-

stable if (w, z) is inside the region
Ry = {(w,2) : (w—1)2+ 2%)? + 42 < D™/}, (35)

For instance, on a Vax11/780 computer, instability can occur when D equals 1005, If
(w, z) € Rs, we suggest approximating 6 by

57(x) = (36)

z ifn <12
b7(x)  ifn > 14,

15




where

Sl = 3 2szy/n — 1 3n2?/w — 322 /w — 5n + 13
67(x) = Vr(n — 3)w(l + 22/w) 1+ (n = 3)(n — 5)w(1 + 22/w)?
+ 1 [15(3z2/w — 1)(2%/w — 3) + (32%/w —1)?
wi(1 + 22/w)* (n=5)(n—T) (n — 3)?

3324 w? — 5422w+ 9
(n —3)(n - 5)

1}- (37)

(See Fan and Berger (1989a) for development of this approximation.) On a Vax 11/780, the
difference between 6™ and 87 was observed to be less than 1/200 of the posterior standard
deviation (see section 2.3) so that, in the context of statistical estimation, 8 is generally an
accurate enough approximation. Again, Ry is where the modes of the likelihood and the
prior are close to each other, in which case numerical integration is likely to be accurate and
fast, should greater accuracy be required.

An Alternative Expression

Express p™(x) in (15) as a function of /w and z, namely

Kn-—l \vn— 1
3

ka0, 2) = I 5w, 2). (38)

It is of interest that k,(1/w, z) can be given in terms of g,(v/w, z) ( see (31) ) and gn_2(v/w, 2).

Lemma 2.1 Forn > 2 and z # 0,

kn(\/E, Z) = %—% - \/g:—zign—2(\/{l;, Z) + (1 - w — 22)—:1/—5_:'['%911(\/57 z)) (39)

and ky(v/w,0) =0.

Proof: Follows directly from Theorem 4.3 with m = 2. O
Equation (39) looks much neater than the complicated formula of Theorem 2.2, and is
equally eflicient computationally. However, it is less stable for z close to zero, and is hence

not preferred.

16




2.2.2 Interpolation of §"(x) for Odd n

It is not possible to calculate 6™(x) exactly for odd n; thus we again consider an appro-
priate linear interpolation of values for surrounding even n. Actually, we will find a linear

interpolation for

ha(Vw,2) = &"(x) -2
kn(\/";, z)
gn(\/";’z), (40)

where g,(v/, z) and ky(+/, z) are defined by (31) and (38), respectively. When 7 is odd,

gn—1,gn+1 and k,_3, kny1 can all be calculated by the formulas for m(x) and §™(x) in Theo-

rems 2.1 and 2.2. The interpolation is then given by

vn—1 — +n—1
h (\/— 2) = ﬂn n—l(‘\/_\/_v\/_‘— )

+(1 - 6n)hn+1( \/— \/_7 \/— - (41)

An analysis based on the approximation (37) suggests choosing 3, to be

8 n—1 n n—2 n . (42)
Vn(n—3) Vrn+l(n-2))\Va—1(n—4) Vati(n—-2)) °
Based on numerical studies, we actually suggest choosing

0.15

14w

ﬂ3 = 0.225 +
and, for n > 5,

5 - {0.68+0.01(-$)—0.1z if (v, z) € R}

8. otherwise,

17




where

R = {(v@, 2)[vo < 107+ and 2 < 6.8+ 0.1(2) — 108.}.

~3

When (w, 2) falls in R, defined by (35), kn—y and hy41 should be replaced by the §7(x)—z
given by (36). When (1/w, 2) falls in

Ry = {(v/w, 2)|v/w < 1.53¢~™/2%% _ 0,027 and z > (2.25n — 5.25)v/w + 3 — 0.1n},  (43)

the standardized error of k., defined as |k, — hy|/v/V™ where V™ is the posterior 'va,riance,
can be 2.5 % or more. (On R the standardized error is no more than 2.5 %.) Thus numerical
integration should be used if (\/w, z) € R;. Again, however, R, will not frequently occur.
Table 2 shows, for various odd n, the maximum standardized error of A, for \/w =
0.1, 0.5, 1, 2, and 3, respectively. As in Table 1, the first number in each of the last 5
columns is the maximum error and the second is where the maximum error occurs over

0 < z < 6 (to the nearest 0.1). Clearly the interpolations are very accurate, especially when
Jw is large.

2.3 Calculation of the Posterior Variance
2.3.1 Representation in terms of m(x) and §"(x)

The posterior variance, V™(x), can be easily obtained from m(x) and §"(x) due to the

following lemma.

Lemma 2.2 The posterior variance is given by

Vi(x) = 7 — (b = 6"(x)). (44)

m(x)

Proof: Apply Theorem 4.2 with m = 2. o
The exact formulas for m(x) and §7(x), when n is even, of course yield an exact expression
for V7(x), through (44). However, when r is small, V™(x) may be inaccurate due to the

numerical instability of m(x) and §7(x). (See sections 2.1.1 and 2.2.1. ) We found that the
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unstable region for V7(x) is the same as R, defined in (35), where 67(x) is inaccurate. If

(w, 2) € Ry, we recommend that V" (x) be approximated by

. £/n  ifn<44

Vix) =1 . _ (45)
V*(x) ifn> 46,

where V7(x) is defined by (44) with m(x),6(x) replaced by r(x) and é7(x) of (29) and

(37), respectively. The resulting relative error of /¥7(x) compared with \/V7(x) is then

bounded by .9 %.

2.3.2 Imterpolation of V” for odd n

The posterior variance, V*, can also be viewed as a function of \/w and z for fixed Z and

s%. Indeed, (44) can be written as

Wl =1ws  (n—1)ws? Vn = 1sz ?
dn(\/'lj)-, z) = W\/ﬁgn(\/'t_l), z) - n - ( \/T_I, + hn(\/av z)) ’ (46)

where g, and h, are given, respectively, in (31) and (40). When n is even, this can be
calculated explicitely using the exact expressions for g, and h,. For odd n, the rescaled

interpolation,

(\/_,) = T n—l\/-—-‘—\/—\/nT')
+ (1 =m)npr(—F \/— \/— \/—- Z),

will be considered. We recommend choosing

73 = max(0.15,0.28 — 0.032y/w);

(2.4 + 0.5/%) if /5 < 0.2
Y5 =
0.33(1 4 0.2(z — 4)*)~! 4 0.001/w otherwise,
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where (z — 4)* = max(0,z — 4); and, for n > 7,

; _{ 0.31+0.01(n —7) if (V&,7) € R}

" otherwise,
with
; _(n=1)n-4)(n®*—n+2)
T = 2n(n — 3)(n? — 2n + 2) (48)
and

Ry = {(vw,2)|vVw < 0.7 x 4~/ 5nd 2 > %5 +1.8}.

If (w,2) € Ry, then use V"(x) of (45) for d,_; and dyy;. We recommend using numerical

integration if (1/w, 2) is in

{(V/w,z)|v/w <1 and z > 3.3; or for any /w > 6} ifn=3

By =1 {(v,2)lvo < 2+ 58)10-*5" and (49)
z>1.3+0.1n + 104/w} ifn>5,

since the relative error of \/d-:,: can then be 2.5 % or more. Note that, for n = 3, R; includes
a region with larger v/w; this is because V™(x), for n = 2, becomes large as 1/w becomes
large (cf. Fan and Berger (19892)), resulting in inaccurate interpolation when n = 3.

Table 3 shows, for various odd n, the maximum relative error of \/c_?; compared with
the posterior standard deviation, v/d,, for \/w = 0.1, 0.5, 1, 2 and 3, respectively. The
first number in each of the last 5 columns is the maximum error and the second is where
the maximum occurs over the range 0 < z < 6 (to the nearest 0.1) for large n. The error
increases for z > 6, since V"(x) tends to infinity as z goes to infinity (cf. Fan and Berger
(1989a)).

Another possible way to approximate d,, is to plug in §, and k,, given by (32) and (41),
respectively, into (46). However, this approximation is not as accurate as d,, especially for

small n.
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3 Comparison with Numerical Integration

Table 4 shows the cpu seconds used in computing m(x), 6™(x) — Z and V*(x) by the exact
(and interpolation) formulas and by the IMSL numerical integration subroutine with nomi-
nally specified accuracy of 2 % for m(x) and 6"(x) — #, using VAX11/780 double precision
programs. Columns /w and z indicate the range of \/w and z for which m(x),é"(x) — z
and V7" (x) were calculated. For each n, the calculations were performed first for /w = 0.1
and 2z = 4; then for 1 < v/w < 2 (by steps of 0.1) and 2z = 1.5; then for 0 < z < 2
(by steps of 0.1) and \/w = 1; and finally over the grid 0.1 < /w < 4,0 < z <4 (to
the nearest 0.1), respectively. Note that the interpolation formulas may cause as much as
2.5% relative error over some small set of (\/w,z). However, they are typically much more
accurate than the 2% nominal accuracy for the numerical integration, especially since the
nominal accuracy for IMSL is sometimes not even actually attained. (For instance, when
n = 14 and the nominal accuracy was specified as .1%, the actual accuracy for m(x) using
the IMSL routine is only 10% for (v/w,z) = (0.1,0.9).) Indeed, one must specify quite high
nominal accuracy for the IMSL numerical integration subroutine to have a reasonable degree
of assurance as to accuracy; hence, if anything, the comparison here is biased in favor of
numerical integration based on such consideration. (By numerical study, indeed, we found
that 10™* and 10~5 are appropriate nominal accuracies for the IMSL routine to compute
m(x) and 67(x), respectively, over the grid 0.1 < v/w < 4,0 < z < 4 for most n. However,
for 0.001 % nominal accuracy, it took about twice the cpu time compared with that using 2
% accuracy in calculating §"(x) — Z and V"(x) over the region 0.1 < yw < 4,0 < 2 < 4.)
The following observations can be made.

1. For a single value of (v/w, z), the exact and interpolation formulas are only one to
five times faster than the IMSL subroutine. However, when calculating over an interval of
v/w or z (or a lattice of points (y/w, z) ), the difference in cpu time between using the exact
formulas and using the IMSL subroutine becomes quite large. The reason is that the exact

formulas for m(x) and p™(x) have many common quantities depending on n or on w, so that
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the calculations over an interval or grid of values can be organized efficiently.

2. Recall that 6™(x) — Z = p"™(x)/m(x), and the essential difference between the exact
formulas for m(x) and p"(x) is that between the 7" and ¥}*" (see Theorem 4.1). Even
these expressions share many common terms, however, so that there is almost no additional
cost in calculating p™(x) past that in calculating m(x). On the other hand, the numerical
integration routine must be separately called to compute m(x) and p”(x) if 67 is needed.

3. As expected, the interpolation formulas for odd » needed twice the cpu time needed by
the exact formulas for surrounding even n. Of some surprise was that the IMSL subroutine
also was often slower for odd =.

A change of variables was made to transform the integral limits from (—o0,00) to (0,1)
when using the IMSL subroutine. The IMSL subroutine, dcadre, is a competitive quadrature
subroutine for performing one-dimensional numerical integration, since it breaks down the
integral into integrals over suitably chosen subintervals according to the shape of the function
( de Boor (1971) ). Therefore, it is a reasonably sophisticated target for comparison with

our exact and interpolation results.

4 Calculation of Ig,m and I,i,m

In this section, exact formulas for I?  (w,2) and I}, (w,z) are given for even n and m.

These results can be applied to all three situations mentioned in subsection 1.1.

4.1 Exact Formulas for Even n and m.

Using the notation defined in section 2 and Appendix A, we have

Theorem 4.1 Ifr # 0 and n and m are positive even integers, then

Ig,m(w, z) = r{z p=(kt+m/2) cos(% + kv 3" (w, k)

k=0

+ i r‘("+m/2+1)[¢os(—7;1 +k+1)v—|z| sin(% + k+ 1ol (w, k)
k=0
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and

where

Ji
J2
J3
Ju
Js

Je

with

E
¢;¢m,n(w,k) = w(m—l)/2 Z( wJAmlz,n/2(k7j)
J=ki(n)

+ Zr'(k"'"/z) cos( + k)’ 3™ (w, k)

k-—-O

+ Z?"(k+"/2+1)[wc08( + o+ 1)’ + [alvasin( + k+ Dolel™ (w, k),

k=0

Lm(w,2) = m sgn(2) {1 + o + Ja + Ju — |2|(Js + Jo)},

— Z p—(m/2+F) sin(m + k)v d’;m'n(w, k)’

=0

= Z p(m/2+k+1) [sm(— +k+1)v+ |2 cos(—-— + k4 1)v] 7™ (w, k),

k=0

= —Zr"("/z"'k)\/—sm( + k)v' 3™ (w, k),

k-—O

= Zr"(n/”k“)\/—[wsm( +k+ 1) — |z|\/—cos( +k+ 1) 1" (w, k),

k—O

= Zr“("/z"'k) cos( + k)v’ 3™ (w, k),

k——O

= Z p= /2R, cos( + k+ 1) + |z]v/w sm( + &+ 1)) 7™ (w, k),

k=0

E
@8 = w3 i)
J=k1(n)
E

¢gz,n(w,k) — w(m—-l)/2 Z ijm/z,n/2(k7j)7

g=ko ('n.)

E
or™(w, k) = wf 3 w™ A jansak, 5),
j=k1(n)
k

03" (w, k) = w* 3 W™ Bjansa(ky 5),

J=ko ('n.)

@2k —-j)+1)
(n—2(k - 5) - 3)’
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k
m,n Ty~ 2 k
37w, k) = wmD/2 > W B jgns2(k (k — J)

RO Nar-G-p-p ">
2" (w,0) = VwBppa(0,0),
*n,m w = wk k w (2(k J)+1)
( k) j=k21%m) An/2,m/2(k7]) ( z(k ]) 3) )
e () = wF : w (k—J) ifm ;
( 7k) - j=k22(m) Bn/2,m/2( ).7)( /2 (k ]) _ 1) f > 21

*n’z(w 0) = Bn/2,1(070)a
where ki(+),k and n,7 are defined by (25) and (23), and A,, and B,, are given in the
Appendiz A. Ifr =0, I} (w,2z)=T(22=)/x/T(*™) and I}, (w,z) =0.

Proof: See Appendix B. O

Another quantity of interest is 12, (w, z) defined as

2 _ ¢
In,m(w’ Z) - / \/E(l + £2)n/2(1 + w—l(é’ + z)2)m/2

dt.

- Lemma 4.1 IZ ,(w,2) = wly ,_o(w, 2) — (w+ 22)I3,,(w, 2) — 2212, (w, 2).
Proof:

2 _ wH(+2)P2 -2z —-22 —w
Lm(w,2) = / Vol + )21 + wi(¢ + z)2)m/2 d¢

= I y(,2) = (0 )0y (10,2) = 2213 (10,2) o

Thus Theorem 4.1 can also be used to calculate IZ, (w, z), and hence for instance the

posterior variance, V" (x), defined by (16) of subsection 1.1.1.

Theorem 4.2 The posterior variance defined by (16) can be expressed as

ST, o(,2)
Ig,m.(w’ z)

Vi(x) = = (m=1)7* — (u - §"(x))%,
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where w, z and §7(X) are given by (12), (13) and (14).
Note that I o(w, 2) = (v/n — 1Kn_1)™', where K; is defined by (5).

Proof: Changing variables in (16) yields

(&+ v/n—Ts//ng)? N

m(w z / Vw(l + £2)n/2(1 4 w-1(€ + z)Z)m/2 - (67(x))
Vn—T1s I, (w,2) | (n—1)s I m(w, 2) 2
S TN 3 B T o7 RO

V7(x)

Il

= z’+ 27

Applying Lemma 2.3 together with (12), (13) and (14) yields

Vi(x) = 3 +2(5— z‘/”n‘ Ls) \/nn— s .%ZEZ, 3 _(n ——nl)s2 2
(n = 1)s*w (I} _a(w, 2)
—(6™(x))? + - ( o w ) 1)

= U0 ~2) (- ) - TG0+ (- 1 (D)),

from which the result is immediate. o

Tl
4.2 Recursive Expressions for [ ;nm and I,

The following Theorem gives recursive formulas for I, ,, and I

Theorem 4.3 For z # 0,

. 1-2 1
) L) = S2EZDR 0y 4 200, w,2) — 12 (),
" 1
zz)IS'm(w,z) = (1+z2_w)n/2_1 2,m(w,z)
nf2
w 2k —m +2) 10
tmo 2)(1+z2—-w)kz:2(1+z2—-w)"/2 b lakm-a(10:2)

(-2 —wpw & 2%k .
+(m —2)(1+ 22 —w) ,;::2 (L4 22 — w)n/2-* Lok y2m—2(w, 2)
w? nf2 2% ,
+(m -2)(1+4 22 —w) kz=:2 (1 + 22 — w)n/2-k Dpram-a(w; 2).
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1
)21+ w (€ + 2)2)m/2

Proof: i) I,‘:'m(w,z)=/(1_H£2 d¢

_ 1+ (€ +2)° -2z -2
= / (1 +£2)n/2+1(1 +w‘1(§+z)2)m/2d€

1
(1- zz)/ (1 + £2)(m+2)/2(1 4 g2 (€ + z)2)m/2 d¢

1+w ({422 -1
+wf @+ )R+ w-1( 1 2y — 21 nt2,m (W0, 2)

=(1-22- w)-’3+2,m(w, z) + 'LUI72+2,m-2('w’ z) — 2217 n+2, m (W, 2).

This proves i).

. E+z—2
) Lontr?) = [ gty s wie
_ 2
2(m 2) / 1+ é’Z)n/2+l(1 + ’w"l(f + z)2)m/2 1d§ ('w Z)
Thus,
I} m(w,2) = —;,—z”—‘_”—zz;J,z,m_z(w, 2) = 2l (w, 2). (50)

Plugging the result of i) for I, and I},, ., into (50) yields

o _ 1 w(n — m + 2)
w.2) = o7 I3 m(w, Z)+( —) 1+ —w) I m—a(w, 2)
nw(l—22-—w)

- (m - 2)(1 + 22 — w) Iﬂ+2,m—2(wy Z)

nw

D+ 7 ) memeal2)

The result then follows by induction. ]
Although the above formulas for IY,, and I}, are considerably shorter than those in

Theorem 4.1, recursive calculation turned out to be much more expensive. It is also less

accurate for large n, due to round off error.
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and n = 15.




Table 1: The Relative Accuracy of gn.

[

N

n “ 0.1

0.5

1

2

3

3 || (0216, 2.0)"

(.0221, 6.0)

(.0250, 5.6)

(.0092, 6.0)

(:0052, 2.0)

5 “ (.0244, 4.3)°

(.0124, 4.9)

(.0057, 5.6)

(.0174, 3.0)

(.0012, 6.0)

7 || (0168, 4.1)

(.0021, 2.9)

(:0008, 3.4)

(.0003, 4.4)

(.0002, 0.1)

9 || (.0036, 1.9)

(.0006, 2.2)

(.0002, 2.7)

(0001, 0.1)

(.0000, 0.1)

11 | (.0015, 1.6)

(.0002, 1.8)

(:0001, 2.3)

(.0001, 0.1)

(.0000, 0.1)

13 || (.0007, 1.4)

(.0001, 1.6)

(0000, 2.0)

(.0000, 0.1)

(.0000, 0.1)

15 || (.0004, 1.2)

(.0000, 1.5)

(.0000, 1.9)

(.0000, 0.1)

(.0000, 0.1)

17 | (.0002, 1.0)

(.0000, 1.3)

(.0000, 0.1)

(.0000, 0.1)

(.0000, 0.1)

19 || (.0001, 1.0)

(:0000, 1.3)

(.0000, 0.1)

(:0000, 0.1)

(.0000, 0.1)

21 || (.0001, 0.9)

(.0000, 1.2)

(0000, 0.1)

(.0000, 0.1)

(.0000, 0.1)

23 || (.0001, 0.9)

(.0000, 1.1)

(-0000, 0.1)

(.0000, 0.1)

(.0000, 0.1)

25 || (.0000, 0.8)

(.0000, 1.1)

(.0000, 1.6)

(.0000, 2.7)

(:0000, 4.0)

27 || (.0000, 0.8)

(-0000, 1.0)

(.0000, 1.5)

(.0000, 2.7)

(.0000, 4.0)

29 | (.0000, 0.7)

(.0000, 0.1)

(.0001,0.1)t

(.0000, 0.1)

(:0000, 0.1)

31 {| (.0000, 0.1)

(.0000, 0.1)

(.0001,0.1)!

(.0000, 0.1)

(.0000, 0.1)

* for (Vw,z) ¢ I,

t for (Vw,2) € By




Table 2: Standardized Relative Accuracy of k,,.

Vo

n 0.1

0.5

1

2

3

3 || (.0248,2.7)*

(.0212, 3.6)

(.0191, 6.0)

(.0171, 6.0)

(-0134, 6.0)

5 | (o217,3.2)

(.0240, 2.4)

(.0178, 2.4)

(.0153, 2.8)

(0102, 3.3)

7 || (0246, 4.9)

(.0062, 1.1)

(:0036, 1.2)

(.0014, 1.6)

(.0008, 2.2)

(.0083, 2.7)

(-0018, 0.8)

(:0009, 0.9)

(:0003, 1.3)

(.0001, 1.6)

(.0035, 2.0)

(.0007, 0.6)

(.0003, 0.8)

(0001, 1.1)

(-0000, 1.4)

(:0017, 1.7)

(.0004, 0.6)

(-0001, 0.7)

(0000, 1.0)

(:0000, 1.3)

(:0010, 1.5)

(.0002, 0.5)

(.0001, 0.6)

(0000, 1.0)

(-0000, 1.3)

(-0006, 1.3)

(:0001, 0.5)

(-0000, 0.6)

(-0000, 0.9)

(-0000, 1.2)

(:0004, 1.2)

(.0001, 0.4)

(.0000, 0.6)

(0000, 0.9)

(0000, 1.2)

(.0002, 1.1)

(.0000, 0.4)

(.0000, 0.6)

(-0000, 0.9)

(.0000, 1.2)

(.0002, 1.0)

(.0000, 0.4)

(.0000, 0.5)

(.0000, 0.8)

(.0000, 1.2)

(.0001, 0.3)

(.0000, 0.4)

(.0000, 0.5)

(.0000, 0.8)

(-0000, 1.2)

(.0001, 0.3)

(:0000, 0.4)

(.6000,0.1)t

(:0000, 0.8)

(:0000, 1.2)

(-0001, 0.3)

(-0000, 0.4)

(.0000,0.1)t

(.0000, 0.8)

(0000, 1.2)

(-0001, 0.3)

(-0000, 0.3)

(.0000,0.1)t

(-0000, 0.8)

(:0000, 1.2)

* for (\/Jv z) ¢ I?,,

t for (vw,2) € R,




" Table 3: Relative Accuracy of \/c-f:

N

0.1

0.5

1

2

3

(.0236,4.6)°

(:0240,3.2)"

(.0208, 6.0)

(.0243, 6.0)

(0188, 6.0)

(.0196,4.5)*

(.0213, 4.0)

(.0230, 4.0)

(.0181, 4.1)

(.0218, 6.0)

(.0232,4.4)

(.0140, 3.3)

(.0136, 6.0)

(:0057, 6.0)

(.0029, 6.0)

(.0164, 2.5) -

(.0058, 3.3)

(.0026, 3.7)

(.0010, 4.8)

(-0006, 6.0)

(.0090, 2.4)

(.0019, 2.5)

(-0008, 2.9)

(.0003, 4.2)

(.0002, 6.0)

(:0040, 1.9)

(.0008, 2.1)

(0003, 2.5)

(.0002, 6.0)

(.0002, 6.0)

(.0021, 1.6)

(:0004, 1.8)

(:0002, 6.0)

(-0002, 6.0)

(.0002, 6.0)

(-0012, 1.4)

(.0002, 1.6)

(:0002, 6.0)

(.0002, 6.0)

(.0002, 6.0)

(-0007, 1.3)

(:0002, 6.0)

(.0002, 6.0)

(.0002, 6.0)

(-0002, 6.0)

(.0005, 1.2)

(-0002, 6.0)

(-0002, 6.0)

(.0002, 6.0)

(.0003, 6.0)

(-0003, 1.1)

(.0002, 6.0)

(:0002, 6.0)

(-0003, 6.0)

(0003, 6.0)

(.0018, 6.0)

(.0018, 6.0)

(.0018,.6.0)

(.0020, 6.0)

(.0023, 6.0)

(0016, 6.0)

(.0016, 6.0)

(.0016, 6.0)

(.0018, 6.0)

(.0020, 6.0)

(-0002, 6.0)

(:0002, 6.0)

(-0002, 6.0)

(.0002, 6.0)

(-0003, 6.0)

(.0004, 6.0)

(-0004, 6.0)

(.0004, 6.0)

(.0005, 6.0)

(0005, 6.0)

*for (v/w,2) not in R3 and 2 < 6




Table 4: Comparison of the IMSL subroutine and the exact (and interpolation) formulas.

m(x) §*(x) -z V*(x)
n| Jw z exact | IMSL || exact | IMSL | exact | IMSL
(0.1,0.1) | (4.0,40)| 01 | 03] 01 | o5 01| o5
5/(1.0,20)|(1.5,1.5)] 02 | 04 f 02 | 12] 02 | 13
(1.0,1.0) [ (01,20)| 02 | 12 o2 | 26| o2 | 26
(0.1,4.0) | (0.0,4.0) [ 120 | 965 [ 128 {2149 [135 |217.0
(0.1,01) [ (40,40)| 01 | o1 01| 03 01 | o3
10 | (1.0,2.0) | (1.5,1.5)| 01 | o5 o2 | 13 o2 | 13
(1.0,1.0) [ (01,200 | 01 | 10 o2 [ 21 02 | 22
(0.1,4.0) | (0.0,4.0) {12.2 | 67.4 [[12.0 [1705 [[121 |190.4
(0.1,01) | (40,40)| 01 | o2 01 | o2f 01 | o2
15{(1.0,20){ (15,15 | 02 | 10 03 | 16 02 | 17
(1.0,1.0) [(0.1,20) ] 03 | 19f 03 | 31| 03 | 33
(0.1, 4.0) | (0.0, 4.0) | 145 |144.2 [|16.0 |2322 {169 |244.8
(0.1,01) | (4¢0,40)} 01 | o1 01 | 03 01 | 03
20 {(1.0,2.0)| (15,15 | 02 | 06 f o2 | 1.4f o2 | 15
(1.0,1.0) | (01,20) | 02 | 11§ o2 | 27 03 | 28
(0.1,4.0) | (0.0, 4.0) [ 125 | 759 [[140 |202.3 [[ 144 [207.3
(0.1,01) | (4.0,40)| 01 | o1 f 01 | o2 01 | o2
25 | (1.0,2.0) | (1.5,1.5) | 03 | o05) 04 | 12 03 | 13
(1.0,1.0){(0.1,20) | 03 | 09l 04 | 21| 03 | 22
(0.1,4.0) | (0.0,4.0) | 16.8 | 68.7 || 19.3 [1741 [ 201 |179.0




Appendices

Appendix A. Notation for Theorem 4.1.
Letting p = m/2 and ¢ = n/2, define

’

-2 ifk=0
ap(k) =  (=2)(p+k)ay(k—1) ifk>0
| 0 otherwise,
[ 4@/240) /(7 4 1)1 if § = /2
Bali) = (“?(’;”1%)(!"“) fi=i-1,a#n
(2c'+3)(i+(1q)_(_q2::';)2()q(f;i2_i;)3)ﬁq(€+1) f0<i<n-—2
| 0 otherwise,
(1 if k=j=0, or,
if kiseven and j = &
k) = | TIE., (2p + 21 - 1) | ifk>1,7=0 )
ERG e a HF21,0<j<k-2
(G+1)(2p+2j +1) if kis odd, j =k
| 0 otherwise,
[ 9(q—i—1)(2i+1)/(q—2%—1) if0 <i < n/2
Mi) = { @i+1) if i = 7/2 £ n/2
{ 0 otherwise,

Apg(k,7) = 207 (B)By(k — 7)1 (%, 5),
Byo(k,j) = —Apo(k, §)Ag(k — 7)/[4 (k + p)]-

(51)

(52)

(53)

(54)

(55)
(56)

The formulas above have been written in a fashion amenable to easy iterative calculation.
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Appendix B. Proof of Theorem 4.1.
Let £&1(¢) = (w+ (¢ + 2)%)™™/2, and £&(¢) = (1 + ¢2)~2, where w and z are defined by
(12) and (13) respectively. Then

I3 (w,2) = 02 [ £(0)6(O)dk.
- Also let
$1(Q) = (¢ +i)™2, and ¢2(C) = (¢ + 2 + iv/w) ™2,

Note that & (() - £&2(¢) has poles at {; = ¢ of order n/2 and (3 = —z + i+/w of order m/2 on

the upper plane. The residue theorem gives

Iy n(w,z) = W™ /2 xthe real part of {2mi- (Res(¢1)+ Res(G))}, (57)
where
Rex) = g€~ " Ok |
_ %1),2(-;1)%——”,5;5«”@4 (58)
and
Res((z) = (—_,;_—i—mg(%;1_)%¢2(4)%&(4)k=@- (59)

Note next that

k n.n (B
dd—a,tﬁl(C)lc:a = (*1)'“2'('2' +1)--- (g' +k—1)(¢+ )G,

= (‘1)k§ 122’ +1)-- (-72i + k= 1)(2)"G R, (60)
djg,;%(f)l@cz = (—l)k%(—g—" +1)..- (% 4+ k— 1)(22'\/5)——("21+k). (61)
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Define
1, ., . .
Gjor = 5(=1)" a0 s(s + i)(s + 5, 4),

where ap(-),%,(-, ) are given by (51) and (53) respectively; then
i) if I = 2s,

3

a 18,2 w
3?{51(0’(=(1 = E (w+ (CJ_'_ Z)2)miTHati l¢=c:

=0

8
= Y ajem wir(m2Her) (cogy — jsiny) /e,

7=0
dl ] (2 bsd i . /2an
EE&(OIC#Z = Zaj,sr‘z‘ T (n/2+2+3) (COS v’ —¢sin v') /2+ +J,
Jj=0 .

) if 1 = 25 + 1,

d > Giop W (=2)(F +s+75)(( +2)
d_clé'l(C)]C=(1 = E (w+((+z2)2)m/2+-’+j+1 |C=C1

j—O

= gaj,s,g wl(— 2)(—-+s+1)(z+z)

xp= (/2o tith) (co5y — § gin p)™/2HeHiHT

l $
B Ol = Saso (<D 45+ i)V~

j==0
x = (/e +iH0) (cog ! — §gin o)L

where 7,v, and v’ are defined in (22). Combining (58), (60), and (62) yields

g-1 —_F =9 —1)i+1 . .
Res() = 3 7770 | g B
q a6

j=0 - 1 J:
) n —2s5 — (- 1)"’

_ (n—2s—1)

= X ( g—1 @y ;oa" .Y
,,.—(m/2+"+f)(cos(% +s+j)v— isin(% + s+ j)v)
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(62)

(63)

(64)

(65)




(45%) n—25—3 (-1)®
+ 2 (n=20=3) 3" oo W 5 s+
E( ¢-1 ) @s+1D) Z ine WG 049

= (m/2etitl) (4 z)(cos(% +s+5+1)v— z'si:n(-rzﬁ + 5437+ 1)v).

The real part of {2riRes((1)} becomes

(%) n—92s— s
Re {27iRes((1)} = 2n { Z ( 25 —2 ) L__& 9(n—2s-1)

5=0 q—l

Za“p wir(mi2+atd) cos(-—- +s+j)v

7=0

| (giz) n—2s5—3 ( 1)* o(n—2s-2)
s g—1 (23 + 1)!

Za’*"’vl’ w (_" +s+37)- p(m/2+etitl)
Jj=0

(cos(—z— +s+j+1)v—|z] sin(% +s+5+ l)v)} .

Rewriting it in terms of ) and Z yields

k—s+a J
Re {27iRes((1)} = {E p(m/2+k) cos(— + k)
k=0
; n—2(k—j) - 2 (=1)* —(n—2(k~3)—2)
. —e )T g F18,P
R ( - ) k7)) e
+ Z r'(”‘/z"'k"'l)(cos(-— +k+1)v— |z sm(— +k+1)v)
k=0
i n—2(k-j)—3 (—1)k-i+1
=k (n) g—1 (2(k —j) + 1)!

: 2—(n—2(k-j)—4)(_”1 +B)azep w:i}

k
= 7 {Z p=(m/2+F) cos(—— +Ekw Y wB,(k,5)
k=0 J=ka(n)
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+ Z r'(m/2+k+1)(cos(— +k+1)v— |z sm(— +k+1)v)

k=0
E .

) Z wJAP.q(k7j)} . (66)

J=ki(n)

A similar argument yields
' 3
Re {2miRes((3)} = ww (m-1/2 {Er"("/ 2+E) cos(— 2 " whIB, (k)
k=0 J-—-kg(m)
+ E p(r/2HEHL) (g cos( +Ek+1) + lzI\/_sm( + &+ 1)v")
k=0
E .
Y, wh A (k) } (67)

Using (57), together with (66) and (67), completes the proof for 1D . (w,2).

Now, consider

I m(w, 2) = 0™ [ ce(0)ea(0)dc.

Let

¢3(C) C(C + z)-n/Z, and ¢2((‘) ((( +2z4 i\/’l_.l;)_m/z;
then

s(() = (C+0)ClD —i(¢+i)™,

$a(C) = (¢ +2+iv/w) 2D _ (¢ 4 2 +ivw) ™2,
Therefore,

dC" ¢a(€)lc-¢1 = (—1)"(—722 - 1)(%) o (% + k — 2)(2i)~(G+-D
(-1 )G + 1) (5 + k- 1)(2i) @

= (- l)kn(n+1) (%+k_1)2_(§+k)z-—(g+k-1),
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k m m m m
3%7,'¢4(C)|¢=cz = (—1)k(? —1)(5) (G + k- 2)(2iv/w)~ B+
(= +iVB) (-GG + 1)+ (G + k= )(@iva)F
= (- )"—(— +1)e - (3 + b= 2)2 B iy )= (B He-D

—Z;Z—Cx%(C)l(:cz-

Following a similar argument to the proof of I, (w, z) yields

1 7 Z_1 )\ gnf2-i-1
ReS(C1) = _;77——1_)! Z ] d(n/2—J—l ¢3(C)d<’ El(c)lC =(1>

1 pn_j—2 (—=1)4 g—(n—j~1 &
"k ( ) G- agt Ol

(45%) ( n—22s—92 ) (_l)s 9—(n-2s-1) s

. J
(2s—1)(n—2s-2) Giep @

i=0

g—1
.r—(m/2+s+j)(003('122 +s+j)v— z'sin(z;l + s+ j)v)

+ (523-_:2) n—28—3 ) (_1)s+1z' 9—(n—2s-3)
pard -1 ) (2s)! (n—-25-3)
3 e (G +s+3)i +7)
J=0
-r“("‘/z""""'j“)(cos(—z- +s+j+1v— isin(% +s+j+1)v).
Then
('L;—l') 7n—92s —2 (_1)3 2—(71—23)
Re {27iRes(¢ = 2 m
{ Ok {EO( g—1 J@-DIE-s-1)
Za,,,p wip=(m/2+eti) sm(— +s4+j
j=0
() — 95 — _1}¢ 9—=(n-2s—3)
Yy n 31 (-1y 2
= g—1 (2s)! (n—2s-3)
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3 Giap WIS+ 8 )/
i= 2

'(sin(% +s+7+1)v+ |z cos(—rg- +s+7+ l)v)}

{Z" (m/2+k)81n(_+k)v z": (n—2(k——j)—2)

k=0 j=kz (n) g-—1
O ()
(2(k ~ING - (k-4)-1)

+ Z r'("‘lz"'k'*'l)(sm( +k+ v+ |2 cos(-— +k+1)v)
k=0

i n=2k-4)=-3) (D) @%k=j)+1)
-1 @k )+ D! (n - 2(k - j) - 3)

.g-(n—2(k—j)—4)(_’§ + E)aj0p wf}

2 m
= 7 {Z p=(m/2+k) sin(-§- + kv

k=0

g-(n=2(k=i)-1)g i

k k "'j
.S wiB, _
,._i?(n) P =)= D)

+ Z T_(m/2+k+1)(8111(— +k+1)v+ |2 cos(— +k+1)v)

k=0
RN 2k —4) +1)
2 A ) o - s)}
= 7w V(g 4 ). (68)

Also,

2

z- 1) gn/e-i-
ReS(Cg) = (..”.". — 1)| ( . ) dcm/z_]._.l ¢4(<) dCJ 62( )Ig—CZ

j=0 J

T m—i—2 ) () et
.5 ] ——w —Ez(C)lc-cz

= -1 il (m—-j-2) d(i

dm/2—_1—1

l I Cm/z_J_l (C)dCJEZ(C)IC~C2
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An analogous argument gives

m
Re {27iRes((3)} = ww (m-1/2 {E p=(n/2+k) sin(-g- + k)’

k=0
E .

. k—j+% . (k — .7)

I v By sy

+ i p(/24k41) (3 sin(-’3 +k+ 1) — Izh/&?cos(z +k+ 1))
k=0 ’ 2 2
LA o (@k—j)+1
D e e e R L
i=ki{m
= aw ™2 Js 4 J, — |2|(Js + J6)). (69)

Together with (68), this completes the proof.
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