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Abstract

The relationship of the frequentist viewpoint and the conditional viewpoint
in statistics is discussed. After an attempt to carefully define the frequentist
viewpoint, it is shown that Kiefer's conditional and estimated confidence
theories, particularly the latter, are very successful in dealing with many
of the conditional difficulties of standard frequentist theory, while maintaining
frequentist validity. Not all conflicts with the conditional viewpoint can
be avoided, however, as shown by the Tikelihood principle and the stopping rule
principle. These principles and the conflicts are briefly reviewed. Also, a
Jjustification for the stopping rule principle is given in terms of frequentist

admissibility.



1. Introduction

This paper is based on a talk given in the memorial session for Jack Kiefer

at the Berkeley Conference in honor of Kiefer and Neyman. The bulk of the talk

was devoted to a review of Kiefer's work on conditional confidence and estimated
confidence. The talk also touched on broader issues, such as what it means to

be a frequentist, and what the basic issues in conditioning are. This paper will
mainly be devoted to a discussion of these broader issues, partly because a review
of Kiefer's work on the subject will appear in the volume of his collected works,
partly because Kiefer's work can best be appreciated in a general discussion of

the issues, and partly because the broader issues themselves deserve more exposure
than they are commonly accorded.

Section 2 of the paper begins with a discussion of what it means to be a

frequentist, based on the original views of the developer of the frequentist

school, Jerzy Neyman. This issue deserves attention because Neyman's original
justification for the frequentist position (which strikes us as the best justifi-
cation that has been given) is not the justification most commonly taught.
Furthermore, the issue is important in determining the type of conditional
frequentist theory that is most justifiable. Kiefer and Brownie discussed, in a series of
papers (Kiefer (1975, 1976, 1977 ) and Brownie and Kiefer (1977)), two possible approaches
to such a conditional frequentist theory, the "conditional confidence" and "estimated
confidence" approaches. These are briefly reviewed in Section 2.2,followed, in
Section 2.3, by a discussion of the very interesting problem of selection of a
conditional frequentist procedure.

Section 3 turns to a discussion of conditioning from a more philosophical

viewpoint, concentrating on such issues as the 1ikelihood principle and the

stopping rule principle. Formal developments are eschewed, in preferencé for:more



intuitive presentation of the issues and discussion of conflicts and paradoxes.
For instance, a not widely known paradox between the frequentist notion of
admissibility and the idea that decisions should depend on the stopping rule
is discussed. Section 4 presents some conclusions.

This paper is, in no sense, meant to be a thorough review of any of the
topics discussed. Instead it is intended to serve as an introduction to a number
of interesting, and too often ignored, issues. Extensive references are not given,
and indeed no attempt has been made to trace back ideas to sources. More scholarly
reviews of, and references for, these topics can be found in (for example) Kiefer

(1977), Berger and Wolpert (1984), and Berger (1984a).

Before proceeding, some notation will be introduced. Also, a series of simple
examples will be presented to give a feeling for the conditioning issues and to
provide a background for later discussion.

It will be assumed that an "experiment" E is performed, which consists of
observing a random quantity X having distribution Pe on a sample space X, 6. € ®
being unknown. (For the most part o will be taken to be a parameter, so that
{Pe} is a parametric family, but this need not necessarily be the case; & could
Jjust index some nonparametric family.) When {Pe} is a dominated family with
respect to a measure v, we will denote the density of X by

(1.1) f(xje) = d'Pe(x)/dv(x)

Expectation over the distribution Pe will be denoted by Ee‘ Finally, the actual
data from the experiment (i.e., the realization of X) will be denoted by x.

The following examples are well known illustrations of the conditioning problem.
For historical references and other examples (many, of substantial practical importance)
sée. Kiefer (]977); Berger (1984a), and Berger and Wolpert (1984).
Example 1. Suppose X =(X],X2), where X] and X2 are independently distributed
according to the distribution



L]

Nf—

Pe(Xi = 6-1) = Pe(Xi = gt+l) =

where -=<g<w=, Consider the "confidence procedure" defined by

|
~N

. 1 .
the point (X +x,) if |X;-x,] =
C(x) = 2'"1 72 1 72

I
o

the point x,-1 if |x]-x21

Since (by an easy calculation)

Pe(C(X) contains o) = .75 for all o,

the confidence procedure C is a valid 75% frequentist confidence procedure, and
furthermore satisfies any number of frequentist optimality properties. It is
clearly misleading, however, to present C(x) and state "75% confidence" after

seeing the data x, since if |x1—x21 = 2 one is absolutely certain that o € C(x),

while if Ix]-x2| = 0 one is (more or less) equally uncertain as to whether 6 is

x]—1 or x1+1. Conditional on the data x, one should state either 100% or 50%
"confidence," depending on the value of ]x]—le.
Example 2a. Suppose X is 1, 2, or 3 and 6 is 1 or 2, with Pe(x) given in the

following table:

X
1 2 3
Po .009 .001 .99
P, 1.001 .989 .01

1

The test, which accepts PO when x = 3 and accepts P] otherwise, is a most powerful
test with both error probabilities equal to .0T. Hence, it would be valid to make

the frequentist statement, upon observing x = 1, "My test has rejected PO and

the error probability is .01." Again this seems misleading, since the likelihood
ratio is actually 9 to 1 in favor of PO’ which is being rejected.

Example 2b. One could object in Example 2a, that the .01 level test is inappropriate,
and that one should use the .001 level test, which rejects only when x = 2.

Consider, however, the following slightly changed version:



P 1005 | .005 | .99
0057 | .9849 | 0T

Again the test which rejects PO when x = 1 or 2 and accepts otherwise has error
probabilities equal to .01, and now it indeed seems sensible to take the indicated
actions. (Suppose an action must be taken.) It still seems unreasonable, however,
to report an error probability of ;O] upon rejecting PO when x = 1, since the

data provides very little evidence in favor of P].

Example 3(a). Suppose X is 7 (6,1), and that it is desired to test

Hp:8<-2 versus H_:6>2.

Consider the test: reject Hy if x>0. Clearly, for & <0,

Pe(Type I error) = P_e(Type II error) il{éaiﬁ) = ,0228.

If x = 0 is observed, however, it seems misleading to state that ”HO is rejected,
and the error probability is at most .0228."
Example 3(b). Suppose X is % (e,1), and that it is desired to test

Hp:6<0 versus H_:6>0.

Consider the test: reject Hy if x > 0. Clearly
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6=0 (Type I error) =

If x = 10 is observed, we are virtually certain that Ha is true, and yet (via
formal frequentist theory) all we can say is that we reject with error probability

1
Of‘z—

2. The Frequentist Approach to Conditioning

Before discussing how frequentists can deal with (at Teast many) conditioning
problems, it is necessary to define what a valid frequentist approach is. Any such
attempt is fraught with peril, since a large number of statsticians with quite con-
flicting beliefs call themselves "“frequentists." What follows is a quite restric-
tive definition of a frequentist, which, however, hopefully contains the essence of
what Neyman felt was the frequentist rationale. Some comments about other

"frequentist" views will be given at the end of Section 2.1.

2.1 Frequentist Rationale

Until recently, I thought a frequentist was someone with the following approach:
(i) Select a procedure §(x) for use;
(ii) Define a criterion (or Toss) L(e,5) that one would Tike to know or that
measures performance;
(ii1) Report (s, Rs(e)), where

Rs(e) = EGL(e,s(X)).

Example 4. For confidence set problems, §(x) = C(x) < ® defines a confidence

procedure,

(IA(e) denoting the usual indicator function) is what one would 1ike to know

and is the usual measure of performance, and

(2.1) RC(e) = EeL(e, C(X)) =1 - Pe(C(X) contains o).
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Example 5. In testing, let s denote a test and L be zero-one loss, so that
Rs(e) = Pe(incorrect decision).
O0f course, decision-theoretic examples are plentiful.

The usual justification for the frequentist viewpoint outlined above is

that if, for a given 6y One were to repeatedly use 8y on (independent) Xi " Pe s
0

then (with probab11ity one under mild conditions)

(2-2) _loo z 60& 6 X )) = Ré(eo)'
2]

Thus, by reporting Ra(e), one is giving the long run performance of § for 8.
This Teads, however, to two immediate questions:
(i) One does not know 6, so how is Ré(e) to be used?
(i1) In reality one will be using & with different problems having different 055
so what is the value in knowing (2.2)?
These questions are perplexing, and in an effort to understand the frequentist
answers to them I returned to Neyman's original papers which developed the frequentist
method. (See A Selection of Early Statistical Papers of J. Neyman; also relevant
is Neyman (1957).) To my surprise, a different and more appealing frequentist
viewpoint emerged from these papers, a viewpoint based on use of § in different
problems with different 6. In the notation of this paper, this viewpoint can
be expressed as follows.
First, consider an infinite sequence of problems in which Xi v Pei will
be observed. let g = (e],ez,... ). Suppose certain subsequences Qw,
w= (1), o(2)...) €{1,2,...}, are of interest.

w
Definition 1. A quantity §8w111 be called a valid frequentist measure of the

performance of ¢ on 8, if, with probability one,

(2.3) 1im sup l— 2 L(e (i) S(Xw(i))) f_ﬁg

N-»e0



The idea here is that one will report (s, ﬁg), and can be assured that, in repeated

use of & for 0. € Qw, the average long run performance will be at least ﬁ?.

Often, as in typical estimation or confidence set problems, one will be
interested only in w = (7,2,... ), i.e., will want to find a quantity ﬁé such
that, with probability one for all 6,

;N
(2.4) Tim sup ﬁ'.Z
N->eo i=

] L(e., §(X;)) <Rg -
Indeed, it can be argued that this is the only situation in which a truly meaningful
frequentist statement is being made, in that, without knowledge of the 0. (or w)
that are Tikely to be encountered, a reporting of ﬁg does not completely convey
the performance that is to be expected.

The typical situations in which subsequences are of interest are testing

problems, where 6, and gw] may refer, say, to sequences of null and alternative

0 W w
hypotheses, respectively. Then, for zero-one Toss, ﬁéo and ﬁﬁ]

would be bounds

on the propabilities of Type I and Type II error, respectively. Of course, if

8, refers to a subsequence for which all 8, equal a common value 6, then we are
back in the situation described at the beginning of the section, in that setting
ﬁ? = Ra(e) will suffice. The point, however, is that only subsequences that are
of separate interest and that can be expected to occur should be considered, since
the reporting of ﬁg is an attempt to model the actual real world performance of

8 on a variety of problems. Thus, if C is a confidence procedure, one would like
to say that, in repeated actual use, C will fail to contain 6; no more than

100 x ﬁb % of the time; while if § is a test, no more than 100 x ﬁio % of true
null hypotheses will be rejected. One can, of course, imagine the "thought
experiment" consisting of repeated use of § for the same 6, but Neyman explicitly
Created the frequentist theory precisely to eliminate the dependence of statistics
on "prior'beliefs or supposed structure about the 0 that would occur. It is

repeatedly stressed in his papers that the measure ﬁ? will be valid for gnx_gw,

and that this is the "breakthrough"provided by frequentist theory.



There are a number of reasons why frequentist theory came to be perceived
as simply reporting (s, Ra(e)). In the first place, for testing problems where
® consists of only two points, the null hypothesis (60) and the alternative
hypothesis (e]), then the W and W referred to above could be considered

w
sequences of identical parameters, with ﬁéo 1

= RG(SO) and ﬁi = Rﬁ(e]) corres-
ponding to the actual probabilities of Type I and Type II error. A "natural"
generalization to problems with more complicated ®, would be to consider Rs(e)
in general, forgetting the original motivation. A second reason for the intro-
duction of Ra(e) was that ﬁ? is often most easily obtained by finding an upper

bound on Ré(e) (for the type of subsequence {ew(ﬁ)} of interest). It is "easiest"

to just provide Rs(e), and let the user of § infer the appropriate ﬁ;ﬂ A third
natural reason for consideration of Ra(e) is for comparison of two procedures 6]
and e If Ré](e) < R(S2
performance than 62 in actual Tong run use. Similarly, for questions of experi-

(6), it will almost invariably follow that 61 has better

mental design, Ra(e) is a basic quantity of interest. It is indeed not surprising
that "report (s, Ré(e))“ came to be perceived as the frequentist viewpoint.
Ultimately, however, it is (2.3) (or even better (2.4))which seems to provide

the justification for the frequentist viewpoint, and so it is Definition 1 that
we will take as basic.

One final historical matter: it is probably not completely clear who first
espoused the frequentist viewpoint as described here (although there is no doubt that
it was Neyman who provided the first clear generaT formalizations). The resolution of
this historical matter is complicated by many red herrings, such as significance tests,
which are hundreds of years old and can be given a frequentist interpretation.

Indeed, a significance test of the null hypothesis that X has distribution PO’
which rejects when a statistic T(x) > tO’ can be considered a formal frequentist



procedure with

Until Neyman, however, the interpretation of such a procedure seemed to be,
upon rejecting, that "either PO is false or a very unlikely event has been
observed." (See Fisher (1926), for example.) The frequentist interpretation
in terms of long run behavior did not become prevalent until after Neyman.
(This is not to say that Neyman supported significance testing of a null hypo-
thesis; indeed, he often argued that-alternatives must be considered.)

To many, the definition of frequentism being given here may be felt to be
too strict. For instance, the quoting of a P-value ( in the above setting,
PO(T(X)>T(x))) may be felt to be a frequentist procedure by some, since it involves
an averaging over the sample space. The reporting of P-values can be given no
Tong run frequency interpretation, in the sense discussed above, however, and
cannot even be given such an interpretation in the more general setup of the
next section. A P-value actually Ties closer to conditional (Bayesian) measures
than to frequentist measures (see Berger and Wolpert (1984) for references).

This relates to a point that should be mentioned, namely that the "practicing"
frequentist statistician behaves quite differently than the "formal" frequentist
defined above, recognizing the rarity of being able to completely state (s, Rﬁ )
(or (s, Rs(e))) before experimentation, and thus admitting the need for
"adhocery." Presumably, however, such a frequentist attempts to stay as close
as possible to the frequentist ideal, so that discussion of the motivation for
this ideal is certainly not out of order.

2.2 Conditional Frequentist Approaches

Because of examples such as Example 1, there have Tong existed conditional
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frequentist approaches to statistics. The usual idea is to condition on some
event or statistic, such as an ancillary statistic (c.f. Fisher (1956)), and
then to do a frequentist calculation.

Example 1 (continued). Defining the ancillary statistic T(X) = 1X1 - X505 an

easy calculation show that

Pe(C(X) contains & |T(X) = 2) =1, and

f\)|._x —d

Pe(C(X) contains & |T(X) = 0) =

corresponding to intuition.

The most comprehensive development of conditional frequentist theory is
that in Kiefer (1975, 1976, 1977), Brownie and Kiefer (1977), and Brown (1978).
Two, more or less distinct, approaches are discussed in these papers namely
“conditional confidence" and "estimated confidence." These two approaches are
reviewed in the next two subsections although, since the setting will be that of
general L, the approaches will be termed "conditional risk" and "estimated risk."

2.2.1 Conditional Risk

This approach is essentially a formalization of conditioning on an ancillary

statistic or "relevant" subset. One considers a partition {Cb, be B} of X,

calculates
(2.5) R2(e) = E4[L(0,6(X))[C"T,

b

and reports, when x € Cb is observed, the triple (s(x), C°, Rg(e)). The Tong

run frequentist justification for doing this is, of course, that (when Cb has

positive probability)

n
1 Lie, 6(X1>)ch(x1)

(2.6) 1im 2

N>

= Rg(e)

D15 |
-

with probability one for each e, so that Rg(e) does measure the average performance
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of § in those problems where Xifa11s in Cb (and 6 is the same). Furthermore,
letting H(x) denote that b for which xECb, it is clear that

- H(X)
(2.7) Rs(e) = EeRa (8),

so that one also has unconditional frequentist validity.

1

Example 1 (continued). Let C' = {x:|xy-x,| =2}, and (x) = x: |xy=%,| = 0}. Then

RE(G) = 1—PG(C(X) contains 61C1) = 0, and
04y - ns a1l < L
Rc(e) = 1-P6(C(X) contains 6|C") 5

b

Example 3a (continued). Let C° = {b,-b} (just the two points) for each b > 0. Then

b
(2.8) Ré(e)

E,[L(0,6) [c"]

T + exp{2b]e|} .

Thus, one reports the relevant decision along with Rlﬁl(e), which, when x near zero

is observed, will be close to %—as intuition would suggest. And when x is far

from zero, the conditional risk,ngl(e),w111 be small. Observe also that

(2.9) sup Rg(e) =1/ [1 + exp(4b)].
)

Although the conditional risk approach has a number of attractive features,
as seen in the above examples, it also has several deficiencies. First, there
is still present the problem that different ei are not present in (2.6). In
other words a usable justification, as in Definition 1, cannot be given. This

b

can be corrected if Ra(e) has a usable upper bound ﬁg, for then, with probability

one for all 0 (under reasonable conditions)
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(2.10) 71im sup

N->c

-
Nr~—135] HEe1S
—
—
—
(e}

[
f—
o«

where the X; arise from different problems with different ;- In Example 1, R?(e)
is constant, so (2.10) automatically obtains. In Example 3a, a usuable bound
is given in (2.9), so again one has the validity of (2.10).

The obtaining of a useful bound for Rg(e) is deemed to be of primary
importance in Brown (1978), and even in Kiefer (1975) and Brownie and Kiefer
(1977) the desirability of choosing {Cb} so as to achieve constant Q?(e), or at
least a useful upper bound, is stressed. Unfortunately, a useful bound cannot

always be achieved. In Example 3b, for instance, it can be shown that, for any

partition {Cb}, sgp Rg(@) = %y a useless upper bound.
A second difficulty with conditional confidence is that the choice of the
partition {Cb} is quite arbitrary, and the Justification, even (2.10), depends
on this choice. We are not so much referring to the practical difficulty of
choosing {Cb} (which can be considerable, outside of obvious situations such as
Example 1), as to the unappealing arbitrariness in the evaluation of the accuracy
of § that is introduced. In all conditional approaches there will be a certain
degree of arbitrariness, but none as extensive as the allowance of arbitrary {Cb},

especially since the choice of {Cb} will rarely have any "outside justification."

More about this will be said in Section 2.3.

2.2.2 Estimated Risk

The estimated risk approach replaces the reporting of (¢, Rd(e)) by the
reporting of (s, ﬁs(x)), where ﬁd(x) is, in some sense, an estimate of Ré(e). If,
in fact, §6 is an unbiased estimator of Ra(e) for all 6, then with probability one

(under reasonable conditions),
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n
. 1 ~
(2.171) Tim = ¥ [L(e.,8(X.)) - R (X.)] =0
n ity i i s\
for any sequence 6 = (91’62"" ). Thus the average performance of §, in actual

repeated use, will be the average of the reported ﬁé(xi). Often an unbiased
estimator of Ré(e) may not exist, or may, in some sense, be undesirable. In such

cases, however, one can usually find a desirable function Qs(x) such that

(2.12) EeRa(X) 3_R6(e) for all e,

in which case (2.11) could be replaced (under reasonable conditions) by

n .
(2.13) im sup %’.X][L(ei’é(xi)) - Ra(xi)li 0,
i=

1
N-oo
establishing frequentist validity of the report (a,ﬁé) in the same "optimum"
sense as 1in Definition 1. This is the point to be stressed: the justification
for being a frequentist applies equally well to the (6’§5) report as to the
(6,?&) report (and applies much better than to the (6,R6(e)) report), and yet
allows much greater latitude for aligning the report with conditional common
sense.

Example 1 (continued). Simply choose

R 0 if 1x]-x2| =2

(2.14) Ra(x) =97
> if Ix]-le = 0

and one has an unbiased estimate of risk satisfying the "ideal" (2.11), and

providing good conditional reports.

Example 3a (continued). Although an unbiased estimate of risk cannot be obtained,

the choice

(2.15) ﬁs(x) =1/ [1+exp (4]x])]

satisfies (2.12), and hence (2.13). Thus (6,@5) provides a (conservatively) valid
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frequentist report, and seems much more attractive intuitively than the uncondi-

tional error probability bound of .0228.

The above two examples are situations in which ﬁd could be chosen to be an
appropriate conditional risk or bound on such. The estimated risk approach
provides additional flexibility, however, in that it can deal with situations
where the conditional risk approach does not provide useful bounds.

Example 3b (continued). It was noted that, for any {Cb}, sup Rg(e) = %u It

0

is possible, however, to find ﬁs(x) such that

(2.16) E, R.(X) > R (e) = o(-]e]|) for all o

(where ¢ is the standard normal c.d.f.), and such that ﬁé(x) decreases to zero
as |x|»«. Use of such (6,&6) allows one to report, when x = 10 is observed,

- that the null hypothesis is conclusively rejected. Of come concern here is that
any such Qa must be greater than %—with positive probability, in order for (2.16)
to hold when ¢ = 0. It would be unappealing to report "I reject HO and have
estimated error probability of .6." A casual observer would find such a statement

most peculiar. Of course, this will tend to arise only when x provides very

inconclusive evidence, and hence may not be of much practical concern.

It should be mentioned that the idea of estimated risk definitely precedes
Kiefer's work on the subject, although earlier work did not explicitly recognize
that use of estimated risk was completely valid from a frequentist perspective.
Mention of estimated power can be found in Lehmann (1959), and Sandved (1968)
found unbiased estimators of risk for a number of problems. There are also a

number of current areas of research where unbiased estimates of risk are commonly
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employed, such as Stein estimation.

Example 6. Suppose X ~ 7% _(e,I), and that L(g,5) = 16—6[2. For p > 3, Stein

p
(1981) shows that

Rg(x) = p - (p-2)% / [x|?

is an unbiased estimator of the risk of

§(x) = (1 - (p-2) / IXIZ) X

and hence

R (0) = Eeﬁé(x) <p-= Rao(e) ,

where 6O(x) = X 1s the usual estimator. One can thus report (§(x), ﬁs(x))
with total frequentist justification. (Of course, in this case such a report

will be fairly silly for |x]2 < (p-2)2 / p, since ﬁ@ will then be negative.)

Note that the estimated risk approach can be combined with the conditional
risk approach to obtain estimated conditional risk (see Kiefer (1977)). Or one
could obtain estimated versions of R? (see Definition 1), valid for subsequences
w of interest. Again, this would increase flexibility, but would result in more
ambiguous frequentist justification. Note, on the other hand, that reports of

(8, Ré) may require different interpretation than, say, ﬁ?, as the following

example shows.

Example 2b (continued). A possible choice of ﬁa would be

(2.17) Ry (1) = .5, R(2) = .00749, R((3) = .00754.
It can easily be checked that this is an unbiased estimator of risk, and hence
the report (6,&5) is a valid frequentist report. This report also has the

attractive frequentist property that, when x = 1 is observed, the estimated risk
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reported is .5, corresponding to the intuitive (Tikelihood ratio) assessment. On
the other hand, this estimated risk does not have any interpretation as Type I

or Type II error, which may be disturbing to some.

2.3 The Choice of a Conditional Frequentist Measure.

The huge variety of possible conditional measures makes choice among them
quite difficult. This is especially true for conditional risks Rg(e), and for
estimated risks ﬁg(x) where dependence on subsequences w is allowed. One natural
idea is to recognize that a purpose of any version of risk is to communicate some

feeling as to the actual loss L(e, &), and hence introduce a communication loss

L*(ﬁa(x), L{e, &(x)) and corresponding communication risk

(2.18) R%(R, 5, 8) = E,L*(R,(X), L(8, 8(X))).
Or, of course, one could define these same quantities with Rg(e) or ﬁg(x) in

place of ﬁé(x).)

Example 4 (continued). In this confidence set situation, a natural choice for

L* is
(2.19) LR (x), 1 = Tg((8)) = Re(x) - [1 - Iy (D)2

(Part of the reason that this would be a sensible measure of how well &%(x)
communicates whether or not ¢ is in C(x) is that it is a proper scoring rule.
Any proper scoring rule (c.f., Lindley (1982)) would probably serve as well.)
Thus,in the situation of Example 1, the unconditional frequentist report

Ré(e)

Hi

%- has

)= -

R*(% s Co 6) = Ee(]]l_" [.l = IC(X)(G)] 1 s

while the estimated risk report ﬁa given in (2.14) has

R¥(Ry» €, 6) = Eg(Rg(X) - [1 - Ip ()% = &
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Thus ﬁé is uniformly better, as intuition would demand.

An analysis of Example 3(a) similarly shows that ﬁ given in (2.15), is

5°
better than the best unconditional (Definition 1) statement of §%= .0228. It
is not always true that a sensible ﬁ& will uniformly dominate an unconditional
ﬁs, however, as Example 3(b) indicates. Here ﬁé = %—can be shown to be better
(under squared error L*) for e near zero than any other ﬁ& satisfying (2.16),

although a decreasing §6(x) seems much more satisfying intuitively.

In the above examples, only situations where the conditional or estimated
risk was independent of & (or w) were considered. Indeed, it is, perhaps, only
in such situations that the use of L* makes any sense. To see this, note that
there is nothing in the formalism of conditional risk to prevent one from
selecting each singleton {x} as a conditioning set, so that one gets
(2.20) R2(8) = E[L(0, 6(1)) [X= x] = L(e, 8(x)).

Clearly this will be optimal from the viewpoint of L*, and is a valid conditional
frequentist conclusion. It tends not to be operationally very useful, however.

Attempting to define meaningful criteria, under which to evaluate conditional
measures other than the simple ﬁs(x), leads to something of a morass. A wide
variety of evaluation methods and "admissibility criteria" are proposed in Kiefer
(1975, 1976, 1977), Brownie and Kiefer (1977), and Brown (1978). In some sense,
the criteria of Brown (1978) are the most appealing, in that they attempt to
relate the evaluation of the conditional measure to its likely use, as opposed
to trying to determine "intuitively appealing" properties of conditional measures.
Our own (somewhat naive or more realistic - take your pick) view of this issue

is that one would really like to communicate the posterior expected loss for the
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problem, and only evaluation criteria which recognize this will tend to produce
reasonable conditional measures. Of course, this probably also applies to the
(L*, R*) method for evaluating the simple ﬁs(x).

A few final comments are in order concerning the evaluation of ﬁa. First,
it should be emphasized that this is a decision problem with decision space
consisting only of ﬁa which satisfy the property (2.12). If one removes the

restriction (2.12), inadmissibility can result for otherwise admissible ﬁa' Consider

the following example.

Example 7. Suppose X ~ ?zp(e, 1), where ¢ = (91,...,ep) is unknown, and consider

the classical confidence procedure

Cx) = to: Jo-x]? < 52(1-0)3 ,

2
p
where Xg (1-a) is the T-a th percentile of the chi-squared distribution with p
degrees of freedom. In the framework of Example 4, this can be considered a
frequentist procedure with ﬁé = a. But with respect to the loss (2.19), Robinson

(1979a, 1979b) proves this to be inadmissible for p = 5. However, the uniformly

better procedure is of the form
R O (X) =a - k(X)Q

where k(x) > 0, so that Ee R 0 (X) < o, violating the frequentist validity
C
requirement.

e make no judgement (in this section) as to whether or not a violation of
the frequentist validity requirement, in situations such as the above example, is
desirable. It is (here) being taken as given that frequentist validity is

required, and the exploration concerns the leeway still allowed in the choice of
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~

Ra. For this reason we will also not put L* (or R*) on the same footing as L
(or R), even though it is very tempting to do so. In the confidence procedure
setting, for instance, one could consider an overall loss such as

Lo, C(x)s Re(x)) = k[T = Tg ()] + kolRo(x) = (1 = To(,y(0))0°

which recognizes not only the importance of having C(x) contain 6 but also the
importance of properly communicating whether or not it does. Decision theory
with such loss functions would be quite interesting, but it is probably best

to keep L and L* separate. Also, it is probably unwise to attempt to follow the
road much farther, i.e., to actually report (or estimate) R* as if it were a
meaningful quantity (as opposed to a device for selection of ﬁa). This is mainly
a feeling based on the seeming inevitability of Bayesian analysis as a mechanism
for sensible communication of whether or not e is in C(x) (c.f., Lindley (1982)).
To a non-Bayesian, however, there may be some appeal to reporting (s, ﬁg, R*),

and perhaps there is merit in so doing. This is especially plausible when the

"communication" aspect can be considered as part of the real problem.

One final comment about the situation of Example 7 is in order. A recently
much studied problem has been the replacement of the usual confidence spheres

{Co(x)} by spheres {C*(x)} of the same size, but centered at the Stein-type
estimator

SJ—S(X) =(1-c/ ]x|2)+x.

For appropriate c (depending on p) it can be shown (c.f., Hwang and Casella

(1982)) that

Rc*(e) =1 - Pe(C*(X) contains 8) < a
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for all ¢. But ﬁb* = sup Rc*(e) = o, SO that one can not improve on CO in terms
6
of an unconditional frequentist conclusion, independent of 6. It is clearly

possible, however (though probably difficult), to find éC* < a such that

Rex(8) < EgRu(X) < a,

~

allowing an estimated risk report of (C*, RC*) which offers a clear gain.

3. Conflicts Between Frequentist and Conditional Analysis

3.1 Introduction

The examples in Section 1 made it clear that unconditional frequentist

theory could not be suitable as a general philosophy of statistics. In Section 2

it was seen, however, that conditional frequentist theory was just as valid
from the frequentist viewpoint, and seemed to offer much greater scope for
correspondence with "conditional common sense." The obvious issue, therefore,
is whether or not the conditional frequentist theory is itself rich enough to
provide a suitable general philosophy. There are, disturbingly, still simple
examples indicating concern as to this suitability. For instance, consider
the following modification of Example 2b.

Example 2c. Suppose the probability structure is

1 2 3
P0 .05 .15 .8
P] .051 L8491 1

Now the risks (error probabilities) of the test &, which rejects when x = 1 or 2,

are RS(O) = ,2 and Rs(]) = .1. Conditional risk theory will never work well for



21

such a situation, since one of the sets Cb, of the partition, must contain only
one point, resulting in a conditional risk of zero or one (unless an extremely
artificial randomization is introduced). And, since RG(O) and R6(1) differ
substantially, the estimated risk theory does not easily apply. Perhaps some
version of the estimated risk theory which allows dependence on w (or 6) would
give sensible answers (by which is meant, not only frequentist validity, but
also an appropriate expression of doubt for x = 1), but it is not easy to find

such.

Although the difficulty in successfully dealing with simple examples, such
as Example 2c, via frequentist theory,is a cause for concern, the sheer vastness
of the conditional frequentist domain makes unlikely a "disproof by counter-
example." Serious axiomatic conflicts with frequentist or conditional frequentist
viewpoints exist, however, and it is to a brief discussion of these that we
now turn. Section 3.2 briefly reviews the axiomatics leading to the likelihood
principle, and the resultant conflict with frequentist ideas. Section 3.3
discusses one of the most important of these conflicts, that concerning the
role of the stopping rule in statistical analysis. Indeed, because of the impor-
tance and intuitive difficulties concerning this Tatter issue, a separate
argument is given, showing the incompatibility of frequentist admissibility

with the idea that the stopping rule must be taken into account.

3.2 The Likelihood Principle

We will forgo extensive discussion of the Likelihood Principle (LP) here,
presenting only a bare bones outline of its implications and its axiomatic
development (due to Birnbaum (1962)). A recent monograph (Berger and Wolpert

(1984)) extensively discusses the LP, its history, and its ramifications.
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In what follows, Z will be considered to be discrete, so that the likelihood
function f(x|e), i.e., the density considered as a function of & for the actual
X, is well defined. This restriction can be removed; indeed, in Berger and
Wolpert (1984) a generalization of the LP (called the relative likelihood
principle) is developed which yields the same consequences as the LP and yet
does not require the existence of densities (or even parametric models). Thus
the "common criticism" that the LP is not valid, because it does not apply to
situations where the model is uncertain, is not applicable to the appropriate
generalization of the LP. (And it can even be argued that, since in reality all
Z are discrete and finite and for such X all families of distributions are para-
metric - the most general possible index & being simply the vector of probabili-
ties of the elements of X, the simple version of the LP always applies. Such
an argument is given in Basu (1975).) This is not the place to extensively
discuss all the criticisms of the LP that have been raised. (See Berger and
Wolpert (1984) and Berger (1984a) for such discussion.) We merely wish to make
the point that Birnbaum's axiomatic development should be taken seriously, and
can not be easily dismissed.

Following Birnbaum's notation, we let E be an experiment consisting of
observing X ~ Pys and are concerned with the "evidence" or "information" about
6 that is obtained (or should be reported) upon observing x. This will be
denoted Ev(E,x). (This "evidence" could be anything at all, including one or
several frequentist measures: note that by listing E we allow "Ev" to depend
on full knowledge of all aspects of the experiment, and not just the observed

X.)

The Likelihood Principle. Ev (E,x) should depend on E and x only through the

likelihood function, f(x|e), for the observed x. Two likelihood functions for
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(the same unknown) o yield identical evidence about 6 if they are proportional

(as functions of o).

Example 2d. Again assume % = {1,2,3} and @ = {0,1}, and consider experiments E]
and E2 which consist of observing X1 and X2 with the above X and ®, but with

prcbability densities as follows:

X] X2
1 2 3 1 2 3
f](x]IO) .9 .05 .05 f,(x,10) .26 .73 .01
f](x]11) .09 .055 8551, f,(x,[1) .026 .803 77

If, now, X1 = 1 is observed, the LP states that Ev(E1,1) should depend on
the experiment only through (f](1]O), f](1|1)) = (.9,.09). Furthermore, since
this is proportional to (.26,.026) =(f2(110), f2(1|1)), it should be true that
Ev (E2,1) = Ev (E],l). (Another way of stating the LP for testing hypotheses,
as here, 1is that Ev(E,x) should depend on E and x only through the likelihood ratio
for the observed x.) It is similarly clear that, according to the LP,
Ev(E],Z) = Ev(E2,2) and Ev(E1,3) = Ev(E2,3). Hence, no matter which experiment
is performed, the same evidentiary conclusion about 6 should be -reached for the

given observation. (This example is given in Berger and Wolpert (1984).)

The above example clearly indicates the startling nature of the LP. Experi-
ments E] and E2 are very different from a frequentist perspective. For instance,

the decision procedure which decides 6 = 0 when the observation is 1 and

decides 6 = 1 otherwise is a most powerful test with error probabilities (of
Type I and Type II, respectively).10 and .09 for E], and .74 and .026 for E2.

Thus the classical frequentist would report drastically different "evidence"
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from the two experiments. (And conditional frequentist approaches are very un-
likely to give similar conclusions: indeed, for E2 it is very hard to perform
any sensible conditional frequentist analysis, because of the three point X and

the widely differing error probabilities.)

This example emphasizes a very important issue. It is clear that experiment
E] is more likely to provide useful information about o, as reflected by the
overall better error probabilities. The LP, in no sense, contradicts this.
Indeed, the LP says nothing about experimental design or any other situation
involving an evaluation for not yet observed X. The LP applies only to the
information about ¢ that is available from knowledge of E and the observed x.
Even though E] has a much better chance of yielding good information, the LP
states that the conclusion, once x is at hand, should be the same, regardless of
whether x came from E] or EZ' The conflict of the LP with frequentist justifi-
cations seems inescapable. (See also Birnbaum (1977).)

A committed frequentist might look at this example and reject the LP out
of hand, although some unease will undoubtedly be present because of the equal
Tikelihood ratios in the experiments. Very troubling, however, is the fact that
the LP is a direct consequence of two other "obvious" principles, the Sufficiency

Principle and the Weak Conditionality Principle.

The Sufficiency Principle. If T is a sufficient statistic for 6 in an experiment

E, and T(x]) = T(xz), then Ev(E,x]) = Ev(E,xZ).

The Weak Conditionality Principle. Let E] consist of observing X] with density
f](x]|e) and E2 consist of observing X2 with density fz(lee). (Here 6 1is the
same quantity in each experiment.) Consider the mixed experiment E consisting
of observing J = 1 or 2 with probability %-each (independent of everything - say,

the result of a fair coin flip), and then performing experiment Ey- The random
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quantity observed from E is thus (J,XJ). Then it should be true that

Ev(E, (j,xj)) = EV(Ej,xj) ,

i.e., the evidence obtained about & 1is simply the evidence from the experiment

actually performed.

Almost everyone accepts the Sufficiency Principle, and the Weak Conditionality
Principle (essentially due to Cox (1958)) seems very natural, being the weakest
form of conditioning imaginable. (Some frequentists might reject the Weak
Conditionality Principle by essentially rejecting the idea that the goal is to
communicate evidence about o. If the goal is simply to determine repeated
performance of a procedure in use, then the repeated performance for E will
Tikely differ from the repeated performance for one of the Ej' It seems un-
Tikely that such a view could ever gain wide acceptance, however; insisting
on reporting 75% coverage in Example 1, for instance, is hardly tenable.)
Birnbaum's surprising result was that this weakest form of conditioning (together
with sufficiency) implies that complete conditioning, down to f(x|e), should

be done.

Theorem (Birnbaum (1962)). The Sufficiency Principle and the Weak Conditionality

Principle together imply the LP.

A11 the generalizations of the LP that were referred to earlier also follow
from sufficiency and weak conditionality, and so a frequentist is left with the
uncomfortable choice of rejecting sufficiency or weak conditionality. It is a

conflict which clearly deserves careful thought.
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This is not to say that all frequentist procedures violate the LP. In
fact, it is well known that a large portion of standard frequentist procedures
can be interpreted as Bayesian procedures with "noninformative" priors and
hence are consistent with the LP. (Bayesian procedures always depend on E and x
only through f(x|6).) The frequentist concept of evidence, based on some type
of average over X, is clearly a concept in conflict with the LP, however, and

Example 2d shows how dramatic the conflict can be.

3.3 The Stopping Rule Principle

One of the most important practical applications of the LP is the Stopping
Rule Principle (SRP), developed (at various Tevels) in Barnard (1947), Birnbaum
(1962), Pratt (1965), and Berger and Wolpert (1984). Suppose E is a sequential
experiment, with possible observations X],Xz,... having probability distribution Pe
(determined by the finite dimensional distributions, of course), with & unknown.
For convenience, only non-randomized stopping rules, t, are considered. Such a

stopping rule can, most conveniently, be represented by a sequence of sets {(An,Bn)},

where

(3.1) if gn = (x],...,x ) € An’ stop sampling;

n

. n
if X

~

€ Bn’ continue sampling.

(Without Toss of generality, it can be assumed that, if gn €A s then 53 € Bj
for all j < n.) Let N denote the stopping time (i.e., the n for which 5” € An)'
Only proper stopping rules (i.e., those for which Pe(N<m) = 1) will be considered.

Stopping Rule Principle. For a sequential experiment E with observed data gn,

Ev(E,gn) should not depend on the stopping rule .

In words, the SRP simply states that the reason for stopping sampling should
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be irrelevant to evidentiary conclusions about 6 (providing this reason, as above,
does not depend on & in any fashion, except indirectly through the xi). One can
constantly monitor incoming data, and stop at any time that the data looks good
enough (or bad enough or whatever), and this"optional stopping" should play no
role for a valid measure of evidence.

The practical implications of the SRP are enormous, since optional stopping
is a huge problem in many areas of practical statistics, such as clinical trials.
Scrupulous experimenters and scientists would delight in the freedom to stop
an experiment at any point felt to be appropriate, without having to worry about
an effect of such optional stopping. And the scientific community, as a whole,
would no Tonger be prey to misleading (frequentist)conclusions arising from
situations where optional stopping was employed, but not reported.

0f course, the hitch in all this is that frequentist measures are very
dependent on the stopping rule, and can not be used in conjunction with the SRP.
Indeed, frequentist intuition will generally react to the SRP with outrage, it
being "obvious" that "stopping when the data looks good" will bias the results
(and, of course, it will in a frequentist sense). Since, however, the SRP can
be shown to be a trivial consequence of the LP (or of the relative 1ikelihood
principle of Berger and Wolpert (1984), if complete generality is desired), a
major conflict in intuition again surfaces; rejecting the SRP corresponds to
rejecting either sufficiency or weak conditionality.

In an attempt to resolve the issue (in favor of the SRP) it is interesting
to observe that the frequentist intuition that "the stopping rule matters" is
itself inconsistent with the frequentist concept of admissibility. Consider the

following example.
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Example 8. Suppose @ = R], and that it is desired to estimate 6 under squared

error loss, L(6,8) = @-6)2. Imagine, now, two possible stopping rules, T and
Tys determined by {(A;, Bl)} and {(Az, Bg)}, respectively, and suppose that, for
n
some N there exists a set N:A; FIAg such that Pe(A) > 0 and on which the
0 0

estimators 81 and 8o that would be used under g and Tos respectively, are
different. (If no such A exists, then the stopping rules are not really having
any effect on the decision.)

To see that this conflicts with admissibility, or more basically with long-
run frequentist optimality, imagine that one will be faced with a series of such

experiments, in half of which T will be used, and in half of which t, will be

2
used. Then it is a simple matter to show that one could do better (for a

sequence of . such that PG(A) > e > 0) by using the estimator aj if T is
n i
used and N # ng or x 0 € A, while using

n

1 n
if N =n,and x

t 5 8,(x

1

n
0 0 0
z 51lx ) )

(3.2) € A.

A formal statement of this would involve, for instance, the consideration of the
mixed experiment E, consisting of observing J = 1 or 2 with probability %—each

and then doing the sequential experiment with stopping rule = This E is a

J°
well defined sequential experiment with observation (J,XN) (N being the implied

stopping time for E), and it is trivial to show that a sufficient statistic for

e (in the experiment E) is

5" ifn-= Nos 5” €A

TG = ), .
(3,x") otherwise.
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If, now, "the stopping rule does matter" then one would presumably use 5J to
estimate o, but, by construction, this is not a function of the sufficient
statistic alone. Hence, since the Toss is strictly convex, Rao-Blackwellization
of the estimator (via ( 3.2 )) would result in an estimator with strictly
better frequentist risk. Thus, admissibility (or long run frequentist validity)
implies that the stopping rule should be ignored in making the decision (at

least for the 5” that can be observed under either stopping rule).
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4., Conclusions

Some general conclusions seem possible from the preceeding discussions.

The first is that the issue of conditioning is serious, and deserves careful
consideration by all statisticians. It is a tribute to Kiefer's unswerving
pursuit of scientific truth that he recognized this issue and sought to resolve
it, even though the issue is an uncomfortable one for frequentists.

The second conclusion that (at least tenuously) can be reached is that,
even though conditional frequentist approaches can go a very long way towards
achieving compatibility with the conditional view, complete reconciliation
appears to be impossible (see also Birnbaum (1977)). One thus has an uncomfortable
choice: either abandon frequentist justification as an absolute must, or resign
oneself to the possibility that, from time to time, one will be forced to state
a conclusion that is at variance with conditional common sense.

Neyman and Kijefer made the second choice. I have made the first choice,
essentially because of a refusal to be put in the position of having to give a
conclusion for a real statistical problem which I know is (conditionally) a
silly conclusion. This is not to say that the frequentist view can not be of
great usefulness, but does say that, as a philosophical foundation for statistics,
I find it unsuitable.

This raises the issue of what should serve as a philosophical foundation of
statistics, and the "obvious" answer is Bayesian analysis, which seems to be the
only approach capable of guaranteeing sensible conditional answers (c.f., Berger
(1983, 1984a, 1984b) and Berger and Wolpert (1984)). The practical issue of
(often extreme) uncertainty in prior knowledge then raises its head, however,
along with such issues as the need for "scientific objectivity" and the practical
difficulties in complicated situations of obtaining any answer at all. The value

of frequentist calculations can be considerable for these and other reasons, as
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discussed in the above mentioned articles (which also have earlier references).
Indeed it could be argued that, as a practical matter, the frequentist viewpoint
will tend to give better answers than the Bayesian viewpoint, even if the latter
is philosophically correct. Having now spent a number of years attacking problems
from both perspectives, I feel nearly certain that this is not the case, but a
discussion of these matters would clearly take us too far afield.

It should also be observed that the entire discussion in this paper has
been directed towards the statistical conclusion that will be made once the
data is at hand. The problem of designing good experiments, dependent on
knowing the expected performance of procedures that will be used, clearly
involves a strong frequentist component (although it can be argued that more
attention should be paid to Bayesian matters, here, also). Indeed, the
frequentist viewpoint partly arose as an effort to unify these two aspects of
statistics (see Pearson (1962)). There is no questioning the immense contributions
to statistics that have been made by Neyman and Kiefer by adopting this frequentist
viewpoint. It seems reasonably clear, however, that a grand unificatjon of the
design and evidentiary aspects of statistics, under the frequentist banner, is
impossible.
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