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Estimation of a covariance matrix C is a notoriously difficult problem; 
the standard unbiased estimator can be substantially suboptimal. We ap- 
proach the problem from a noninformative prior Bayesian perspective, de- 
veloping the reference noninformative prior for a covariance matrix and ob- 
taining expressions for the resulting Bayes estimators. These expressions 
involve the computation of high-dimensional posterior expectations, which 
is done using a recent Markov chain simulation tool, the hit-and-run sam- 
pler. Frequentist risk comparisons with previously suggested estimators are 
also given, and determination of the accuracy of the estimators is addressed. 

1. Introduction. Suppose that XI,.. . ,X,are i.i.d. Np(O, C), and consider 
the problem of estimating the p x p positive-definite C under the losses 

where 5denotes an arbitrary estimator. The first loss was advocated by Stein 
(1956) and is usually called entropy loss, while the second is typically called 
quadratic loss. The corresponding frequentist risk functions will be denoted by 

Analogous losses and risks can be defined for the problem of estimating C-I  
(see Section 3.1). 

The usual (unbiased) estimator of C is the sample covariance matrix 

where Wp(C, n) is the Wishart distribution with scale matrix C and n degrees of 
freedom. This estimator and S/(n + p  t.1)are the best scalar multiples of S for 
L1 and L2,respectively [see, e.g., Haff (1980)l. It was, however, pointed out by 
Stein (1956, 1975) and Dempster (1969) that the eigenstructure of C tends to 
be systematically distorted by these estimators unless p ln  is quite small. The 
problem is especially bad when C I.Starting with Stein's Rietz lecture [Stein 
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(197511, several major efforts have been made to overcome this distortion. 
The literature includes Stein (1975, 1977a, b), Efron and Morris (1976), Haff 
(1977,1979a, b, 1980,1991), Olkin and Selliah (1977), Sharma (1980), Sugiura 
and Fujimoto (1982), Sharma and Krishnamoorthy (1983,1985a, b), Takemura 
(19841, Dey and Srinivasan (1985, 19861, Lin and Perlman (1985), Dey (1988), 
Loh (1991a, b) and Perron (1992). Note that dramatic gains in risk are achiev- 
able. 

Simulation studies [cf. Lin and Perlman (1985) and Haff (1991)l seem to 
suggest that the estimators of Stein (1975) and Haff (1991) are particularly 
successful in adequately "shrinking" the eigenstructure of S.Both estimators 
are approximately Bayes (especially that of Ham but require incorporation of 
an isotonizing step in their computation to avoid overshrinkage of certain eigen- 
values. Also, no approach to shrinkage estimation of C has produced reportable 
measures of the accuracy of 2.This is a serious limitation. 

Because of the centrality in statistics of the covariance matrix estimation 
problem and because of the limitations of the existing estimation methods, it 
seemed desirable to attempt a fully Bayesian approach to the problem based on 
use of reference (noninformative) priors. These priors seem to be remarkably 
successful in many multivariate problems in producing estimators with simul- 
taneously good Bayesian and frequentist properties [cf. Berger and Bernardo 
(1992a, b, c) and Ye and Berger (1991)l. Also, they tend to yield very satis- 
factory measures of accuracy, through the posterior covariance, or posterior 
expected loss. 

Section 2 contains the development of the reference prior for this problem. 
Rather surprisingly, the reference prior turns out to be remarkably simple. 
Indeed, it is the prior proposed by Chang and Eaves (1990), which was based 
on the simpler (but less satisfactory) reference prior algorithm in Bernardo 
(1979). Not unexpectedly, however, computation with this prior is not possible in 
closed form; thus Section 3 develops an efficient computational scheme. Section 
4 compares the reference prior Bayes estimator to the estimators of S t e 5  (1975) 
and Haff (1991). Section 5 discusses determination of the accuracy of C. 

Note that there have been previous partial Bayesian approaches to estima- 
tion of C. These include the empirical Bayes analyses of Efron and Morris 
(1976) and Haff (1980). Conjugate priors have also been used [cf. Press (1982)], 
but these do not achieve the type of eigenvalue shrinkage that seems most de- 
sirable. A flexible and very appealing general class of prior distributions for 
C has recently been introduced by Leonard and Hsu (1992). Their approach 
allows for a wide variety of subjective shrinkage patterns, but it is not clear if 
the shrinkage pattern we seek can be reproduced in this way. 

The common noninformative prior for the problem has been the Jeffreys prior 

(5) x(C)= (detc)-(P+') /~d C ,  

This prior was developed by Jeffreys (19611, for p = 1,2, and by Geisser and 
Cornfield (1963), Geisser (1965) and Villegas (19691, for arbitrary p. Use of the 
Jeffreys prior tends simply to reproduce classical answers, however, and hence 
also fails to shrink the eigenvalues appropriately. 
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The work most closely related to this study is that of Haff (1991), which 
proposes an estimator based on a variational form of the Bayes estimator. In 
the derivation of Haff's estimator, however, a term in the expression for the 
Bayes estimator is (purposely) ignored, so that it is unclear if the result actually 
corresponds to a Bayes rule or what the implied prior distribution might be. We 
do, however, observe considerable similarity between our estimator and that 
of Haff. 

2. The reference prior for a covariance matrix. 

2.1. The Fisher information for a covariance matrix. We will use the fol- 
lowing notation. The entries of a matrix A will be denoted by Ari,j l ,  and At, IAl 
and tr(A) will denote the transpose, determinant and trace of a square matrix 
A, respectively. Denote the matrix operator which arranges the columns of a 
matrix into one long column as vec ( ). The Kronecker product of two matrices 
A and B will be denoted by A @ B. The covariance matrix C can be decomposed 
as C = OtDO, with 0 an orthogonal matrix with positive elements for the first 
row and D a diagonal matrix, D = diag (dl, . . . ,d,), with dl 2 dz 2 . . . 2 dp 2 0. 
Write 0 = (012013 . . . 02p). l,p)Da, with Oij being a simple . . . Olp)(OZ3 . . (Op-
orthogonal matrix such as 

where -7r/2 < o i j  I7r/2, and D, is a diagonal matrix with diagonal elements +1 
[see Anderson, Olkin and Underhill (1987)l. Let (dC) denote n i<jdoi j ,  let (dD) 
denote ddi, let (do) denote lJi <jdoi j  and let (dH) denotethe conditional 
invariant Haar measure over the space of orthogonal matrices 0 = (0 :  OtO = I )  
[see Anderson (1984) for definition]. 

LEMMA1. The Fisher information matrix for C, w.r.t, the reparametrization 
(D,01,is o f  the form 

with I(D) = diag(l/(2d:), . . . ,1/(2d;)). [Note that the explicit form of I(0)will 
not be needed.] 

See Appendix A for the proof of Lemma 1. 



1198 R.YANG AND J.0.BERGER 

LEMMA2. 
(i) The determinant of the Fisher information matrix of C is 

(ii) The relationship between the Fisher information matrix w.r.t. the param-
eter C and (D,0)is 

I(D,0)= [a?;)]--- 'I(.) [&I 
and 

(iii) The determinant of  I(0)i n  Lemma 1is 

PROOF.Equation (9)is trivial; for (81, see Press [(1982),page 791; for (lo), 
see Farrell [(1985),page 74)l; and for (ll),see Anderson, Olkin and Underhill 
(1987).Part (iii)follows from the representation C = OtDO. 

2.2. The reference prior Bernardo (1979) initiated an information-based 
approach to development of noninformative priors, called the reference prior 
approach. A review and discussion of the current status of the approach can 
be found in Berger and Bernardo (1992~).The motivation for developing the 
approach was the acknowledged problems of the Jeffreys prior in higher di-
mensions. Even Jeffreys would often alter the Jeffreys prior in multiparame-
ter problems to remove perceived inadequacies. The reference prior approach 
seeks to overcome these difficulties by breaking up multiparameter problems 
into a series of conditional one-parameter problems, for which reasonable non-
informative priors can be determined. The approach has proven to be remark-
ably successful in overcoming the inadequacies of the Jeffreys prior in multi-
parameter problems [cf. Berger and Bernardo (1989, 1992a, b, c) and Ye and 
Berger (1991)l. 

In the followingtheorem, the reference prior for C is given. The Jeffreys prior 
is also given for comparison. Note that the reference prior can depend on what 
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is called the group ordering, which is typically simply a listing of parameters 
according to perceived "importance." Note, also, that  the reference prior here 
was first given in Chang and Eaves (1990), although their derivation utilized 
the early version of the reference prior algorithm in Bernardo (1979), which 
was improved in Berger and Bernardo (1992a, b, c). 

THEOREM1. The reference prior for the parameter (Dl0)is a s  follows, pro-
viding the group ordering used lists D before 0 and the {di) are ordered mono-
tonically (either increasing or decreasing): 

The Jeffreys prior is 

See Appendix B for the proof of Theorem 1. 

COROLLARY1. The resultingposterior distributions are 

etr (- i.X -IS) 
T R ( ' ~ ~ ) ( ~ ' )  =qn/2+ln<j(di  d j )( d m  

where etr stands for exp(tr( 1). 

PROOF. Simply multiply the prior and the likelihood. 

Note that  the posterior in (15) is proper, having all moments of order less 
than n/2 (including negative moments), because i t  is bounded by an inverse 
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Gamma distribution. Compared to the Jeffreys prior, note that the reference 
prior seems to put considerably more mass near the region of equality of the 
eigenvalues; thus it is intuitively plausible that the reference prior would pro- 
duce a covariance matrix estimator with better eigenstructure shrinkage. 

Sometimes C -I ,  rather than C itself, is of interest. Note, however, that the 
reference prior for C-l will be the same as that for C. This follows from the 
fact that C-I = OtD-l0 and that the reference prior for the group ordering 
that lists first the ordered { d i l l ,  and then 0 ,  is the same as that listing { d i )  
followed by 0.(It can be shown that a one-to-one transformation of an element 
of the group ordering does not change the reference prior.) Similarly, if it is 
the eigenvalues of C that are of interest, the reference prior again turns out to 
be given by (13). It is methodologically pleasant that this same reference prior 
emerges for any of the usual quantities of interest. 

3. Computation of the Bayes estimators. 

3.1. Bayes estimators for C and C-l. To find the Bayes estimators for C 
w.r.t. the loss functions L1 and La, one merely minimizes the associated pos- 
terior expected losses. The proofs of the following lemma and corollary are 
straightforward and are omitted. 

LEMMA3. The Bayes estimator for C w.r.t. the posterior n(C I S)and under 
L1 is 

the Bayes estimator under Lz is 

~ ( cI rSrt)= r S ~ ( ~Both 6; and 6; are orthogonally invariant i n  the sense Si 
1 

I 
,

i = 1,2,provided the prior is orthogonally invariant i n  the sense ~ ( rCrt)= T(C), 
where r is a n  arbitrary orthogonal matrix. Also, for such priors, the Bayes esti- 
mators are diagonal when S is diagonal. 

COROLLARY The Jeffreys prior Bayes estimator for the covariance matrix 2. 
under L1 is the usual unbiased estimator S l n .  

Often, estimation of C rather than C, is desired. The literature in this field 
includes Efron and Morris (1976), Haff (1977), Sharma and Krishnamoorthy 
(1985b), Sinha and Ghosh (1986), Krishnamoorthy and Gupta (1989) and 
Krishnamoorthy (1991). The commonly used loss functions are the natural ana- 
logues of (1)and (2), namely, 
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As in Lemma 3, these two loss functions result in Bayes estimators of C given 
by, respectively, 

[E"" "C] -' and [E""ls)(C @ C)] -'vec[E"'"IS)C]. 

Efron and Morris (1976) and Haff (1977) used a slightly different loss function, 

this would result in the Bayes estimator E "(C IS)[C-l/tr (C -I)]. Haff (1977) also 
considered the loss function 

where Q is an arbitrary positive-definite matrix; this would result in the simple 
Bayes estimator E "(' I S, [C-'I. 

3.2. Hit-and-run sampler. For the reference posterior, analytical evaluation 
ofthe quantities in Lemma 3 appears to be quite difficult. Thus we turn to Monte 
Carlo integration to do the computation. 

Recently, Monte Carlo methods for Bayesian integration have undergone 
extensive development. The methods that are commonly used are importance 
sampling, data augmentation and the Gibbs sampler. Attempts to apply these 
methods encountered difficulties, so we turned to the less common hit-and-run 
sampler, which is another Markov chain sampler. 

The hit-and-run sampler was first proposed by Smith (1980, 1984) and later 
generalized by Belisle, Romeijin and Smith (1993). The algorithm we used is 
a version that was developed by Schmeiser and Chen (1991) and Chen and 
Schmeiser (1993) and is called the Metropolisized hit-and-run sampler. This 
algorithm is particularly useful when the domain of the posterior along a ran- 
dom direction from a given point can be obtained without undue difficulty. 

When sampling from the posterior (15), it will be convenient to transform 
from the space of positive-definite matrices to all of Euclidean space. We do this, 
as in Leonard and Hsu (1992), by defining C* = log C, or C = exp(C*), in the 
sense that 

Using Lemma 2, it can be shown that the reference posterior for C* is 

etr{ -( n / 2 ) ~ *- (112)0~ X ~ ( - D * ) O ~ S }  
(20) 7r;I (c*S) (~C*)  (dC*),I cc 

Il,<j(d? -d;) 

with C* = OD*Ot, D* = diag(d;, . . . ,d;), dT 2 d; 2 . . 2 d; and 0 orthogonal. 
Our actual sampling procedure thus proceeds as follows: 
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1. Select a starting positive-definite matrix Co, set C: = log& and k = 0. Here 
we choose Co = (l/n)S. 

2. Select a random direction symmetric p x p matrix T, with elements t i j  

= z u / \ / i x ,  where z, - i i d  N(0, I),i 5 j. (The other elements of T 

are defined by symmetry.) 


3. Generate X -N(0,l) .  
4. Set Y = C: + AT. Then set 

Y, with probability min (1,a*(Y I S)/a*(C; 1 s)),
(21) c;+,= 

Ci , otherwise. 

5. Set k = k + 1and go back to step 2. 

Finally, after a sufficiently large sample CT, C$,. . . , CI; has been generated, 
one simply approximates a posterior expectation by E "(' I ')f(C) = ( l / ~ ) ~ f =  
f(eci), where f is the function of interest. As N -+ oo,the ergodic theorem as- 
serts that the approximation converges to the true value [see Schmeiser and 
Chen (1991)l. Of course, one should simultaneously evaluate E"(C IS )  [f(C)] for 
all f of interest. In the simulation in Section 4, we set p = 5 (so that the inte- 
grals are 15-dimensional) and N = 50,000. This gave simulation accuracies [I00 
x (simulation error)/(true value)] of about 1.5% for the loss L1(6,", C) and 0.75% 
for E2(6,", C), the quantities needed in the risk evaluations. The individual ele- 
ments of 6," and 6," were not quite so accurate, having simulation accuracies of 
about 5%. 

4. Frequentist risk comparisons. 

4.1. Stein's and Haff's estimators. Writing S = VL Vt, where V is an or- 
thogonal matrix and L = diag(ll, . . . ,I,) with ll > l2 > . . . > I,, Stein (1975) 
considered the orthogonal invariant estimator 

where @(L) = diag(41,. . . ,4,) with 4i = l i / a i ,  

This estimator has two problems. First, the intuitively compatible ordering 
$1 2 4 2  2 . . . 2 4p is frequently violated. Second, and more serious, some of 
the 4i may even be negative. Stein suggests an isotonizing algorithm to avoid 
these problems. The idea of the algorithm is to pool the adjacent pairs (Ii, ai). 
The resulting estimators of the eigenvalues are 
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The details ofthis isotonizing algorithm can be found in Lin and Perlman (1985). 
Haff's estimator [Haff (1991)l is closely related to the above estimator. He 

minimizes the formal Bayes risk for an orthogonally invariant prior by a varia- 
tional technique. Assuming the prior yields 1/ISI as the marginal distribution 
of S,  this technique reproduces Stein's unconstrained estimator. By imposing 
the constraint $1 > $2 > . .  . > $p in the minimization under L1, the formal 
Bayes estimator is of the form (23) with the eigenvalue estimators obtained by 
solving the equations 

where $7 = lj/aj, j = 1,2,. . . ,p ,  and E: = - $2, E; = $2 - $3, . . . ,E: = Op. 
The two estimators discussed above are both obtained under L1. Stein's and 

Haff's methods are difficult to apply under La. Thus it is common to take the 
L1 estimators and simply rescale for L2 [see Haff (1991) and Lin and Perlman 
(1985)l; that is, if f: is derived under L1, then one simply considers the esti- 
mator nf:/(n + p + 1)under La. This corresponds to the optimal rescaling for 
the unbiased estimator under L1. Note that such ad hoc adjustments are not 
required for the Bayes estimators. 

4.2. Risk simulations. The frequentist risks of the various estimators un- 
der L1 and L2 will be approximated by average losses in simulation. The simu- 
lation was designed as follows: Setp = 5 and n = 10,20,40. The test covariance 
matrices were chosen to be C1 = diag(l , l ,  1,1,1), C2 = diag(5,4,3,2,1) and 
C3 = diag(l6,8,4,2,1).For fixed n and Xi, we do the following: 

1. Generate 50 random Yk N Wp(I, n), 15 k 5 50, using Bartlett's decomposi- 
tion, and then transform them into Wp(Ci, n) random variables Sk. 

2. For each observation Sk,  estimate the covariance matrix using the reference 
prior Bayes estimator, Stein's estimator and Haff's estimator, under L1 and 
La. Record the associated loss for each estimator. 

3. Compute the mean and standard error of the differences in loss between the 
three different estimators. 

4. Following the tradition of Lin and Perlman (1985), we also record the per- 
centage reduction in average loss (PRIAL) of the three estimators relative 
to the usual estimator, defined by ' 

R ( ( 1 )S,) -~ ( f : .C)
(26) 	 PRIAL = x 100 for L1; 

R (( l in)  s1c) 
R((l / (n + p + 1))S,C) - ~ ( f : ,C)

(27) 	 PRIAL = x 108 for La. 
R ((l/(n +P + 1))8,C) 
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TABLE1 
Risk differences of reference prior and Stein and Haff estimators 

The simulation results for frequentist risk are given in Table 1,with the 
standard errors in parentheses. Table 2 presents the results for PRIAL. 

The performance of the reference prior Bayes estimator is very comparable 
to that of the Stein and Haff estimators. It is somewhat worse when C = I, 
somewhat better otherwise. This behavior is indicative of an estimator that 
has more moderate shrinkage than that of the Stein or Haff estimator. This 
might well be desirable; indeed, for C far from the identity matrix (i.e., C3), 
there is a suggestion in Table 2 that the Stein and Haff estimators slightly 
overshrink, at least for L2, where the PRIAL can become negative. 

To investigate this further, we considered alternative reference priors that 
happened to yield more shrinkage. For instance, if one applies the reference 
prior algorithm to the ordered group {(dl, dP), (d2, . . . dp- ( 0 1 2 ~. . . op- I , ~ ) )  
[see Berger and Bernardo (1992~) for definition], the reference prior turns out 
to be 

TABLE2 

PRML relative to the usual estimator 


L1 Lz 
n Ref. Ref.* Stein Haff Ref. Ref.* Stein Haff 
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Risk differences of modified reference prior and Stein and Haff estimators 

which intuitively will induce more shrinkage than will (13). Risk differences and 
PRIAL's for the associated Bayes estimators are given in Table 3 and the "Ref"" 
columns of Table 2, respectively. The apparently more aggressive shrinkage 
of these estimators results in dramatically improved risk when C I.These 
high-shrinkage Bayes estimators seem somewhat superior to the Stein and 
Haff estimators. 

Note that there is nothing particular compelling about TR* from a reference 
prior perspective. Indeed, we would still probably recommend TR in (13); it is 
likely to have better confidence properties, and in general one should be wary 
of overshrinking. It must be admitted, however, that all these conclusions are 
quite tentative, being based on only a very limited study. Indeed, we feel that 
all four estimators considered here are comparably effective in practice. 

5. Determination of accuracy. It is something of a bonus that the refer- 
ence prior Bayes estimators may actually have superior risk properties, com- 
pared with existing shrinkage estimators. The primary motivation and value of 
the Bayesian approach to estimation problems such as this is, rather, that the 
Bayesian approach readily allows determination of accuracy of estimation and 
allows associated prediction and numerous other types of infecence involving 
C. We illustrate this here by providing estimates of the loss of C under L1  and 
La. The proof of the following lemma is straightforward. 

LEMMA4. The posterior expected loss o f  the Bayes estimator i n  Lemma 3 
under L 1  i s  

p l ( ~ ( CIS),^;) = -1og16;I;~ " " ~ ' 1 o ~ l C  

the posterior expected loss under L2 is 

( ( I ) ) = - tr[6;(6;)V1]. 
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EXAMPLE1. Consider, as data, the following matrix Sin, where S is gener- 
ated from a W5(C, 10) distribution, with C = diag(5,4,3,2,1): 

The corresponding Bayes estimators are 

Using Lemma 4, the posterior expected losses of these estimators can be 
computed to be pl(.ir(C I S),6T) = 1.152 and p2(.ir(C I S),6;) = 1.509, respectively. 
Note that the actual losses (computable since we know C) are L1(6;, C) = 1.270 
and L2(6;, C) = 1.548, respectively. [For comparison, observe that the actual 
losses for S/n and S/(n + p  + 1)are Ll(S/n, C) = 2.267 and L2(S/(n + p  + I),C) 
= 2.147.1 

Classical estimates of loss (the unbiased estimates of risk) are available here 
[cf. Haff (1991)1, but they are unwieldy and potentially unreliable (e.g., they can 
even be negative). 

Other estimates of accuracy could be found using the Bayesian approach, 
such as the posterior covariance matrix for C (a [p(p + 1)/2] x [p(p + 1)/2] 
matrix), or even credible intervals for components of C. This could also be done 
for functions of C that are of interest. ' 

6. Comments and generalizations. 

1. Although unquestionably computationally intensive, the rewards for adopt- 
ing the Bayesian approach here are considerable. Resulting estimators have 
exceptional risk properties, and determination of accuracy and inference for 
functions of C is straightforward. Indeed, once the computation for is 
set up, it is easy to compute the expectation of any function g(C) that is 
of interest. 
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2. The situation in which the Xi are i.i.d. N,(p, C) can be handled similarly; the 
reference prior will be constant over p,  so that p can simply be integrated 
out to reduce the problem (in a Bayesian sense) to consideration of 

Analysis then proceeds as before, with n replaced by n - 1. Note, how- 
ever, that, from a frequentist or a hierarchical Bayesian perspective, there 
might be advantages in utilizing "shrinkage priors" for p, rather than the 
constant prior. 

3. 	As with all scale problems, choice of the loss is a rather perplexing question. 
From Example 1it is clear that the effect can be substantial. We have no 
firm recommendation here, except to note that, whenp = 1,the Jeffreys and 
reference priors both equal the usual invariant prior 1/02,and use ofLl with 
this prior yields, as the Bayes estimator, the "standard" estimator S/n (see 
Corollary 2). Hence use of L1, and the corresponding ST,has some appeal. 

4. 	It can be argued that the reference prior should depend on the loss function. 
For instance, whenp = 1,the standard reference prior is l/a2,and this is 
completely satisfactory for invariant losses such as L1 or L2, but it is not 
optimal for, say, squared error loss. Unfortunately, it is not easy, in general, 
to determine how the reference prior should depend on the loss [see Bernardo 
(1981) and Bernardo and Smith (1994) for discussion]. In our situation, the 
problem is probably not severe, since we only utilized invariant losses. 

5. A related problem can arise if one is interested in some function g(C) of C. 
Conceivably a better reference prior can be developed that recognizes the 
centrality of g(C) [cf. Berger and Bernardo (1992c)l. Use of the given refer- 
ence prior % is likely to be quite satisfactory, however, especially because it 
arises from so many different group orderings that it will be the reference 
prior for "most" g(C). 

APPENDIX A 

PROOFOF LEMMA1. Tracy and Jinadasa (1988) established that the Fisher 
information matrix for C is I(C) = ; G ~ ( c - ~@ C-l)G, where G is defined as 
G = avec(C)/avecp(C), with C = OtDO and vecp (C) = (dl, . . . ,d,, 012 ,  . . . ,olpr 
0 2 3 , .  . . , 02,, . . . ,O, - 1,,I. Writing ai = v'ec d(OtDO)/adi and bij= vec d(OtDO)/ 
doij yields G = (al,. . . ,a,, b12,. . . ,bp-l,p), and thus the Fisher information ma- 
trix, w.r.t. the reparameterization (D, 0),is I(D, 0)= ;Gt(C-l @ C -l)G, where 
G and C are to be considered functions of D and 0.The elements of I(D, 0)are 
of three types: (i) @ C-l)aj, (ii) aF(C-' 8 C-I )b, or bF,(C-l 8 C-')ai; 
and (iii) bfj(C-l @ C-l)b,,. To finish the proof of Lemma 1,we need only evalu- 
ate the first two types. We will utilize the following matrix equality [from, e.g., 
Magnus and Neudecker (1988)l to do so: 

(29) 	 tr(ABCD)= (vec Dt)t(Ct 8A)(vecB). 
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(i) For the first type, 

i f i  =j, 

( 0 ,  otherwise. 

(ii) For the second type, 

d o t  
. O +D- . O t 

80,s adi  dors I 

where C = 0dOt/do,, . 
To complete the proof, it suffices to show that  C is skew symmetric. This is 

true, because 

and Or, dO;,/do,, is skew symmetric. 

APPENDIX B 

PROOFOF THEOREM1. The general algorithm for computing ordered group 
reference priors can be found in Berger and Bernardo (1992~).In the following, 
we will use the notations G1,hi ,~ ~ ( 0 ~ ~ ~ )and .ir; from Berger and Bernardo (1992~). 

We will take the ordered group to be {d l , . . . ,d,, (olz,.. . ,0,-I,,)) as an  ex-
ample of the computation of the reference prior for C; all the other ordered 
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groups give the same answer, providing the Idi} are listed before the {oU) and 
the {di) are ordered monotonically (either increasing or decreasing). Define the 
compact subsets of the parameter space to be 

@'=  {(D,o): 0 <a1 < d p  < . . .  < d l  < bl < m , - ~ / 2< o i j  17r/2,Vi < j ) ,  

where a' -+ 0 and bl -+ m. Using Lemmas 1and 2, note that 
'I 

Also, 

@' (Q[~ - I I )  = { d i : a ~S d i  ~ d i - ~ } ,  i = l ,. . . ,p ,  

@ ' ( Q I ( P + ~ ) -11) = { o i j :  - ~ / 2< O i j  < T / ~ , Vi <j ) ,  

where do is interpreted as bl. Thus (2.3.6) in Berger and Bernardo (1992~) 
becomes 

The reference prior w.r.t, this group ordering is thus given by 

r(D,0)K lim -7rl,(0) 
1-+m 7ri(0*) 
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