Lab Assignment 2: Descriptive Statistics

Analyzing a Scatter plot.
Let’s continue using the Polycity.JMP dataset from last time.

1. Which variable(s) are nominal (qualitative)?

 city

2. Which variable(s) are ordinal (qualitative, but ordered)?

 none

3. Which variable(s) are quantitative (specify discrete or continuous)?

 Both POP and OZONE are continuous

4. Plot ozone (y) by population (x). Analyze → Fit Y by X. Next, try changing the title of your plot by double clicking on the grey bar at the top of the plot. Change the title to "Ozone by Population", then click enter. If you wish to also change the names of either axis you can click on the variable name for that axis to change it. Try this by changing the x-axis from "POP" to "Population".

5. Move the pointer over various observations: the city name should appear on the screen to correspond to that particular observation. The reason we’re able to see the city name corresponding to a particular observation is because ”city” has been labeled by default. Can you find Jacksonville, FL? Estimate the population size and ozone level for Jacksonville. Do you see a pattern in the data? (Does it form a straight line? Are there any clusters of observations? Any points that ”stray” from the general pattern?)

 The population and ozone levels for Jacksonville, FL are 878 and 0.12 respectively. There appears to be some clustering in the observations, except for a few points with very large populations.

6. What city has a population of approximately 3500 units and an ozone level of approximately 0.18 units?

 Washington

Constructing a Histogram.
Now let’s use the dataset Students.JMP, which can be found under JMP IN Data.

1. Let’s get familiar with this new dataset: repeat questions 1-3 from above. In our last dataset, ”city” was our unit of observation-what is our unit of observation?

 The nominal variables are SEX and IDNUM, the continuous ones are HEIGHT and WEIGHT and AGE is an ordinal variable. The unit of observation in this data set is children/students.

2. We want to use ”sex” as a labeling variable in plotting height (y) by weight (x). To do this, right click on the ”sex” variable at the leftmost side of your screen, and select ”label”. Notice the tag next to the ”sex” variable. Now let’s plot height (y) by weight (x).
3. Is the observation at approximately height = 53 units and weight = 195 units male or female?
 Male

4. Of the four tallest students, how many are male?
 All are male

5. Of the three shortest students, how many are female?
 Two are female

6. What percent of students are age 13? In order to this, use **Analyze → Distribution of Y** and choose "age". This gives us a histogram of "age". If you wish to see this histogram on a horizontal scale, click on the red arrow next to "age", then go to **Display Options → Horizontal Layout**.
 19.742% are 13 years old

Variable Summaries, Box plots and Stem and Leaf plots.
Moving right along to the Cereal.JMP dataset found in JMP Extra Data, let’s go through the following questions:

1. What is the average, standard deviation, minimum, and maximum of "calories"?
 Analyze → Distribution of Y.
 Average = 140.5263 calories, Standard deviation = 49.6090 calories, Minimum = 50 calories and Maximum = 250 calories

2. What is the median and quartiles of "sugars"?
 Median = 11 units, Q1 = 4 units and Q3 = 14 units

3. Using the histogram, boxplot, and stem and leaf plot, describe the distribution of "complex carbo". Click on the red arrow next to "complex carbo" and select **Stem and Leaf**. Describe the distribution in terms of location, spread, shape, any gaps, or potential outlying observations. Next, click on the hand icon on the tool bar at the very top of your screen. Use this to alter the bin widths of your histogram. Do this by clicking on any given bar of the histogram and dragging the hand up or down to change the widths. By pulling the bars up to the top, you will have the maximum number of bars. Now, click back on the arrow on the top toolbar. Use the arrow to select the leftmost bin of your histogram. This will highlight the observation in the stem and leaf plot as well as the dataset itself. What cereal does this correspond to?

 The histogram and box plot show that the complex carbs is right skewed with a large amount of the data in the 10-15 bin. Fitting a normal curve over the histogram shows that is doesn’t have the best fit. The stem and leaf plot illustrate even more clearly (along with the histogram with the largest number of bins) that there are a lot of little bumps in this variable. All-Bran with Extra Fiber was the smallest.