A viewe of Duckshilter	We start with a set of 21 numbers,			
3 - Axioms of Probability	## [1] -2.2 -1.6 -1.0 -0.5 -0.4 -0.3 -0.2 0.1 0.1 0.2 0.4 ## [12] 0.4 0.5 0.7 0.7 0.7 0.9 1.2 1.2 1.7 1.8			
Sta102 / BME102	and calculate the mean, median, and mode:			
Colin Rundel	mean(x)			
September 1, 2014	## [1] 0.2095			
	median(x)			
	## [1] 0.4			
	Mode(x)			
	## [1] 0.7			

Mean, Median and Mode

Connecting Mean, Median and Mode.

Lecture 3 - Axioms of

Graphically

Connecting Mean, Median and Mode.

Connecting Mean, Median and Mode.

Where do they come from?

Sta102 / BME102 (Colin Rundel)

Imagine we didn't know about the mean, median, or mode - how should we choose a single number *s* that best summarizes a set of numbers (data)?

Lecture 3 - Axioms of Probability

There are a couple of different ways we could think about doing this by defining different discrepancy functions

$$L_{0} = \sum_{i} |x_{i} - s|^{0} \qquad \text{assume, } n^{0} = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{otherwise} \end{cases}$$
$$L_{1} = \sum_{i} |x_{i} - s|^{1}$$
$$L_{2} = \sum_{i} |x_{i} - s|^{2}$$

we want to find the values of s that minimizes L_0 , L_1 , L_2 for any given data set x.

Lecture 3 - Axioms of Probability

September 1, 2014

Minimizing L_0

Connecting Mean, Median and Mode.

Minimizing L_2

Minimizing L_1

Connecting Mean, Median and Mode.

What have we learned?

 L_0 , L_1 , and L_2 are examples of what we call loss functions. These come up all the time in higher level statistics.

What we have just seen is that:

- L_0 is minimized when *s* is the mode.
- L_1 is minimized when s is the median.
- L_2 is minimized when *s* is the mean.

Introduction to Probability Definitions

What does it mean to say that:

- The probability of rolling snake eyes is P(S) = 1/36?
- The probability of flipping a coin and getting heads is P(H) = 1/2?
- The probability Apple's stock price goes up today is P(+) = 3/4?

Interpretations:

Sta102 / BME102 (Colin Rundel)

Set Operations and Definitions

• Symmetry: If there are k equally-likely outcomes, each has

$$P(E) = 1/k$$

• Frequency: If you can repeat an experiment indefinitely,

$$P(E) = \lim_{n \to \infty} \frac{\#E}{n}$$

P(E) = p

 Belief: If you are indifferent between winning \$1 if E occurs or winning \$1 if you draw a blue chip from a box with 100 × p blue chips, rest red,

Lecture 3 - Axioms of Probability

Introduction to Probability Definitions

Introduction to Probability Definition

Terminology

Event (<i>E</i>) - Examples:	One die roll Sum of two rolls Seconds waiting for b subset of Ω (<i>E</i> 2 heads	$\{2,3,\ldots,11,12\}$ us $[0,\infty)$ $\subseteq \Omega$) that might happe		Τ}
Examples:	2 heads	,	en, or might not	
			, , , , , , ,	
	Roll an even number Wait < 2 minutes	(/ /)		
Random Va	riable (X) - a va	lue that depends some	how on chance	
	# flips until heads	$\begin{array}{l} \{3, 2, 2, 1, 2, 1, 1, 0\} \\ \{3, 2, 1, 1, 0, 0, 0, 0\} \\ \{2, 4, 8, 16, 32, 64\} \end{array}$		
Sta102 / BME102	2 (Colin Rundel)	ecture 3 - Axioms of Probability	September 1, 2014	10 / 26
,				

Intersection Union	E and F , EF , $E \cap F$ E or F , $E \cup F$	• $P(E) \ge 0$
Complement	not <i>E</i> , <i>E^c</i>	
Disjoint	$E \cap F = \emptyset$	2 $P(\Omega) = P(\omega_1 \text{ or } \omega_2 \text{ or } \cdots \text{ or } \omega_n) = 1$
Difference	$Eackslash F=E$ and F^c	3 $P(E \text{ or } F) = P(E) + P(F)$

September 1, 2014

if E and F are disjoint, i.e. P(E and F) = 0

Symmetric Difference $E \triangle F = (E \text{ and } F^c) \text{ or } (E^c \text{ and } F)$

Introduction to Probability Rules of Probabilit

Useful Identities

Complement Rule:

$$P(\text{not } A) = P(A^c) = 1 - P(A)$$

Difference Rule:

$$P(B \text{ and } A^c) = P(B) - P(A) \text{ if } A \subseteq B$$

Inclusion-Exclusion:

Sta102 / BME102 (Colin Rundel)

$$P(A \cup B) = P(A) + P(B) - P(A \text{ and } B)$$

Lecture 3 - Axioms of Probability

Useful Identities (cont)

Commutativity & Associativity:

$$A \text{ or } B = B \text{ or } A$$
 $A \text{ and } B = B \text{ and } A$ $(A \text{ or } B) \text{ or } C = A \text{ or } (B \text{ or } C)$ $(A \text{ and } B) \text{ and } C = A \text{ and } (B \text{ and } C)$

(A or B) and C = (A and C) or (B and C)

*Think of union as addition and intersection as multiplication: $(A + B) \times C = AC + BC$

DeMorgan's Rules:

not
$$(A \text{ and } B) = (\text{not } A) \text{ or } (\text{not } B)$$

not $(A \text{ or } B) = (\text{not } A) \text{ and } (\text{not } B)$

Lecture 3 - Axioms of Probability

13 / 26 Sta102 / BME102 (Colin Rundel)

Introduction to Probability Rules of Probability

Generalized Inclusion-Exclusion

$$P(\bigcup_{i=1}^{n} E_i) = \sum_{i \le n} P(E_i) - \sum_{i < j \le n} P(E_i E_j) + \sum_{i < j < k \le n} P(E_i E_j E_k) - \ldots + (-1)^{n+1} P(E_1 \ldots E_n)$$

For the case of n = 3:

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$

Lecture 3 - Axioms of Probability

September 1. 2014 15 / 26

September 1, 2014

September 1, 2014 13 / 26

Introduction to Probability Rules of Probability

Equally Likely Outcomes

$$P(E) = rac{\#(E)}{\#(\Omega)} = rac{1}{\#(\Omega)} \sum_i \mathbb{1}_{\omega_i \in E}$$

Notation:

Cardinality - #(S) = number of elements in set *S*

Indicator function -
$$1_{x \in S} = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S \end{cases}$$

Probability of rolling an even number with a six sided die?

Roulette

FIGURE 1. Layout of a Nevada roulette table. Key to colors: 0 and 00 = Green, unshaded numbers = Red, shaded numbers = Black.

	1s 1 to 18	t 12 EVEN	2nc RED	I 12 B	3rd ODD	d 12 19 to 36	-
	14	7 10 D	13 16 G	19 22	25 28	31 34	2 to 1
\geq	2 5	8 11	14 17	20 23	^{F)} 26 29	32 35	2.C1
00	3 ¹ 6	н)9 12	15 18			33 36	2 to 1

	and the second	
Play	Set of winning numbers	Payoff odds
A. Even mo	ney play Group of 18 numbers as marked in the box	1 to 1
B. Dozen pl	ay 12 numbers marked in the box	2 to 1
C. Column	play 12 numbers in column	2 to 1
	(shown here as a row)	
D. Line play	Six numbers above	5 to 1
E. House sp	ecial 0, 00, 1, 2, 3	6 to 1
F. Quarter p	lay Four numbers in square	8 to 1
G. Street pla	Three numbers above	11 to 1
H. Split play	Two adjoining numbers	17 to 1
I. Straight p	lay Single number	35 to 1
L		
Sta102 / BME102 (Colin Rundel)	Lecture 3 - Axioms of Probability	September 1, 2014

Conditional Probability

This is the probability an event will occur when another event is known to have already occurred.

With equally likely outcomes we define the probability of A given B as

$$P(A|B) = \frac{\#(A \cap B)}{\#(B)}$$

(the proportion of outcomes in B that are also in A)

Lecture 3 - Axioms of Probability

Sta102 / BME102 (Colin Rundel)

September 1, 2014

Conditional Probability Definition

Conditional Probability, cont.

We can rewrite the counting definition of conditional probability as

$$P(A|B) = \frac{\#(A \cap B)}{\#(B)}$$
$$= \frac{\#(A \cap B)/\#(\Omega)}{\#(B)/\#(\Omega)}$$
$$= \frac{P(A \cap B)}{P(B)}$$

which is the general definition of conditional probability.

Note that P(A|B) is undefined if P(B) = 0.

Conditional Probability Definitio

Useful Rules

Very often we may know the probability of events and their conditional probabilities but not probabilities of the events together, in which case we can use

Multiplication rule:

$$P(A \cap B) = P(A|B)P(B)$$

Other cases where we do not have the probability of one of the events, we can use

Rule of total probability:

For a partition B_1, \ldots, B_n of Ω , with $B_i \cap B_j = \emptyset$ for all $i \neq j$.

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_n)$$

= $P(A|B_1)P(B_1) + \ldots + P(A|B_n)P(B_n)$

Conditional Probability Definition

Example - Hiking

A quick example of the application of the rule of total probability:

Whether or not I go hiking depends on the weather, if it is sunny there is a 60% chance I will go for a hike, while there is only a 10% chance if it is raining and a 30% chance if it is snowing.

The weather forecast for tomorrow calls for 50% chance of sunshine, 40% chance of rain, and a 10% chance of snow.

What is the probability I go for a hike tomorrow?

Independence

We defined events A and B to be independent when

$$P(A \cap B) = P(A)P(B)$$

which also implies that

Sta102 / BME102 (Colin Rundel)

P(A|B) = P(A)P(B|A) = P(B)

This should *not* to be confused with disjoint (mutually exclusive) events where

 $P(A \cap B) = 0$

Lecture 3 - Axioms of Probability

Sta102 / BME102 (Colin Rundel)

Lecture 3 - Axioms of Probability Sept

September 1, 2014 21 / 26

Conditional Probability Examples

Example - Eye and hair color

Table 3.3.1 Hair color and eye color					
]			
		Brown	Black	Red	Total
Eye color	Brown	400	300	20	720
	Blue	800	200	50	1,050
	Total	1,200	500	70	1,770

- Are brown and black hair disjoint?
- ② Are brown and black hair independent?
- In the second second
- Are brown eyes and red hair independent?

Conditional Probability Examples

Example - Circuit Reliability

If the probability that C_1 will fail in the next week is 0.2, the probability C_2 will fail is 0.4, and component failure is independent which circuit configuration is more reliable? (has greater probability of being functional next week)

Series:

Parallel:

Conditional Probability Examples

Bayes' Rule

Expands on the definition of conditional probability to give a relationship between P(B|A) and P(A|B)

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

In the case where P(A) is not known we can extend this using the law of total probability

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

Example - House

If you've ever watched the TV show *House* on Fox, you know that Dr. House regularly states, "It's never lupus."

Lupus is a medical phenomenon where antibodies that are supposed to attack foreign cells to prevent infections instead see plasma proteins as foreign bodies, leading to a high risk of blood clotting. It is believed that 2% of the population suffer from this disease.

The test for lupus is very accurate if the person actually has lupus, however is very inaccurate if the person does not. More specifically, the test is 98% accurate if a person actually has the disease. The test is 74% accurate if a person does not have the disease.

Is Dr. House correct even if someone tests positive for Lupus?

Sta102 /	BME102 ((Colin Rundel)	
----------	----------	----------------	--

Lecture 3 - Axioms of Probability

September 1, 2014 25 / 26

Sta102 / BME102 (Colin Rundel)

Lecture 3 - Axioms of Probability

September 1, 2014 26 /