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Variability of Estimates Example

Margin of error

41% ± 2.9%: We are 95% confident that 38.1% to 43.9% of the
public believe young adults, rather than middle-aged or older adults,
are having the toughest time in today’s economy.

49% ± 4.4%: We are 95% confident that 44.6% to 53.4% of 18-34
years olds have taken a job they didn’t want just to pay the bills.
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Variability of Estimates Example

Mean

Sample mean (x̄) -

x̄ =
1

n
(x1 + x2 + x3 + · · ·+ xn) =

1

n

n∑
i=1

xi

Population mean (µ) -

µ =
1

N
(x1 + x2 + x3 + · · ·+ xN) =

1

N

N∑
i=1

xi

The sample mean is a sample statistics, or a point estimate of the
population mean. This estimate may not be perfect, but if the sample
is good (representative of the population) it is usually a good guess.
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Variability of Estimates Example

Variance

Sample Variance (s2)

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

Population Variance (σ2) -

σ2 =
1

N

N∑
i=1

(xi − µ)2

Similarly, the sample variance is a sample statistics, or a point
estimate of the population variance.
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Variability of Estimates Example

Parameter estimation

We are often interested in population parameters.

Since complete populations are difficult (or impossible) to collect data
on, we use sample statistics as point estimates for the unknown
population parameters of interest.

Sample statistics vary from sample to sample.

Quantifying how sample statistics vary provides a way to estimate the
margin of error associated with our point estimate.

But before we get to quantifying the variability among samples, let’s
try to understand how and why point estimates vary from sample to
sample.

Suppose we randomly sample 1,000 adults from each state in the US. Would
you expect the sample means to be the same, somewhat different, or very
different?
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Variability of Estimates Activity

Estimate the avg. # of drinks it takes to get drunk

We would like to estimate the average (self reported) number of drinks it
takes a person get drunk, we assume that we have the population data:

Number of drinks to get drunk
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Variability of Estimates Activity

Estimate the avg. # of drinks it takes to get drunk (cont.)

Sample, with replacement, ten respondents and record the number of
drinks it takes them to get drunk.

Use RStudio to generate 10 random numbers between 1 and 146

sample(1:146, size = 10, replace = TRUE)

If you don’t have a computer, ask a neighbor to generate a sample for
you.

Find the sample mean, round it to 1 decimal place, and report it
using your clicker.
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Variability of Estimates Activity

Estimate the avg. # of drinks it takes to get drunk (cont.)

sample(1:146, size = 10, replace = TRUE)

## [1] 59 121 88 46 58 72 82 81 5 10

(8 + 6 + 10 + 4 + 5 + 3 + 5 + 6 + 6 + 6)/10 = 5.9
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Variability of Estimates Activity

1 7 21 6 41 6 61 10 81 6 101 4 121 6 141 4
2 5 22 2 42 10 62 7 82 5 102 7 122 5 142 6
3 4 23 6 43 3 63 4 83 6 103 6 123 3 143 6
4 4 24 7 44 6 64 5 84 8 104 8 124 2 144 4
5 6 25 3 45 10 65 6 85 4 105 3 125 2 145 5
6 2 26 6 46 4 66 6 86 10 106 6 126 5 146 5
7 3 27 5 47 3 67 6 87 5 107 2 127 10
8 5 28 8 48 3 68 7 88 10 108 5 128 4
9 5 29 0 49 6 69 7 89 8 109 1 129 1
10 6 30 8 50 8 70 5 90 5 110 5 130 4
11 1 31 5 51 8 71 10 91 4 111 5 131 10
12 10 32 9 52 8 72 3 92 0.5 112 4 132 8
13 4 33 7 53 2 73 5.5 93 3 113 4 133 10
14 4 34 5 54 4 74 7 94 3 114 9 134 6
15 6 35 5 55 8 75 10 95 5 115 4 135 6
16 3 36 7 56 3 76 6 96 6 116 3 136 6
17 10 37 4 57 5 77 6 97 4 117 3 137 7
18 8 38 0 58 5 78 5 98 4 118 4 138 3
19 5 39 4 59 8 79 4 99 2 119 4 139 10
20 10 40 3 60 4 80 5 100 5 120 8 140 4

http://bit.ly/Sta102_CLT
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Variability of Estimates Activity

Sampling distribution

What we just constructed is called a sampling distribution.

What is the shape and center of this distribution.

Based on this distribution what do you think is the true population
average?
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Variability of Estimates Sampling distributions - via simulation

Average number of Duke games attended

Next let’s look at the population data for the number of basketball games
attended by a class of Duke students:

number of Duke games attended
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Variability of Estimates Sampling distributions - via simulation

Average number of Duke games attended (cont.)

Sampling distribution, n = 10:

sample means from samples of n = 10
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What does each observation in
this distribution represent?

Is the variability of the sampling
distribution smaller or larger
than the variability of the
population distribution? Why?
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Variability of Estimates Sampling distributions - via simulation

Average number of Duke games attended (cont.)

Sampling distribution, n = 30:

sample means from samples of n = 30
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How did the shape, center,
and spread of the sampling
distribution change going
from n = 10 to n = 30?

Sta102/BME102 (Colin Rundel) Lec 9 September 22, 2014 14 / 31

Variability of Estimates Sampling distributions - via simulation

Average number of Duke games attended (cont.)

Sampling distribution, n = 70:

sample means from samples of n = 70
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Variability of Estimates Sampling distributions - via CLT

Sums of iid Random Variables

Let X1,X2, · · · ,Xn
iid∼ D where D is some probability distribution with

E (Xi ) = µ and Var(Xi ) = σ2.

We define Sn = X1 + X2 + · · ·+ Xn
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Variability of Estimates Sampling distributions - via CLT

Average of iid Random Variables

Let X1,X2, · · · ,Xn
iid∼ D where D is some probability distribution with

E (Xi ) = µ and Var(Xi ) = σ2.

We define X n = (X1 + X2 + · · ·+ Xn)/n = Sn/n then
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Variability of Estimates Sampling distributions - via CLT

Central Limit Theorem

Central limit theorem - Sn

The distribution of the sum of n independent and identically
distributed random variables is well approximated by a normal model:

Sn ∼ N
(
µ = n E (Xi ), σ

2 = n Var(Xi )
)

when n is large.

Central limit theorem - x̄

The distribution of the average of n independent and identically
distributed random variables is therefore well approximated by a
normal model:

x̄ ∼ N
(
µ = E (Xi ), σ

2 = Var(Xi )/n
)

when n is large.
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Variability of Estimates Sampling distributions - via CLT

CLT - Conditions

Certain conditions must be met for the CLT to apply:

1 Independence: Sampled observations must be independent and
identically distributed.

This is difficult to verify, but is usually reasonable if

random sampling/assignment is used, and
n < 10% of the population.

2 Sample size/skew: the population distribution must be nearly normal
or n > 30 and the population distribution is not extremely skewed.

This is also difficult to verify for the population, but we can check it
using the sample data, and assume that the sample mirrors the
population.
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Variability of Estimates Sampling distributions - via CLT

CLT - Simulation

http://bit.ly/clt_mean
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Variability of Estimates Sampling distributions - via CLT

Review

To the right is a plot of a population distribution.
Match each of the following descriptions to one of
the three plots below.

1 a single random sample of 100 observations
from this population

2 a distribution of 100 sample means from
random samples with size 7

3 a distribution of 100 sample means from
random samples with size 49
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Confidence intervals Why do we report confidence intervals?

Confidence intervals

A plausible range of values for the population parameter is called a
confidence interval.

Using only a point estimate to estimate a parameter is like fishing in a
murky lake with a spear, and using a confidence interval is like fishing
with a net.

We can throw a spear where we saw a

fish but we are more likely to miss. If we

toss a net in that area, we have a better

chance of catching the fish.

If we report a point estimate, we probably will not hit the exact
population parameter. If we report a range of plausible values – a
confidence interval – we have a good shot at capturing the parameter.
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Confidence intervals Why do we report confidence intervals?

Confidence intervals and the CLT

We have a point estimate x̄ for the population mean µ, but we want to
design a “net” to have a reasonable chance of capturing µ.

From the CLT we know that we can think of x̄ as a sample from
N(µ, σ/

√
n).

Therefore, 96% of observed x̄ ’s should be within 2 SEs (2σ/
√
n) of µ.

Clearly then for 96% of random samples from the population, µ must then
be with in 2 SEs of x̄ .

Note that we are being very careful about the language here - the 96%
here only applies to random samples in the abstract. Once we have
actually taken a sample x̄ will either be within 2 SEs or outside of 2 SEs of
µ.
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Confidence intervals Constructing a confidence interval

Example - Relationships

A sample of 50 Duke students were asked how many long term exclusive
relationships they have had. The sample yielded a mean of 3.2 and a
standard deviation of 1.74. Estimate the true average number of exclusive
relationships using this sample.

The 96% confidence interval is defined as

point estimate ± 2× SE

x̄ = 3.2 s = 1.74 SE =
s√
n

=
1.74√

50
≈ 0.25

x̄ ± 2× SE = 3.2± 2× 0.25

= (3.2− 0.5, 3.2 + 0.5)

= (3.15, 3.25)

We are 96% confident that Duke students on average have been in
between 3.15 and 3.25 exclusive relationships
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Confidence intervals Constructing a confidence interval

What does 96% confident mean?

Suppose we took many samples and built a confidence interval from
each sample using the equation point estimate ± 2× SE .
Then about 96% of those intervals would contain the true population
mean (µ).

The figure on the left shows this
process with 25 samples, where
24 of the resulting confidence
intervals contain the true
average number of exclusive
relationships, and one does not.

µ = 3.207
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It does not mean there is a 96% probability the CI contains the true
value
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Confidence intervals A more accurate interval

A more accurate interval

Confidence interval, a general formula

point estimate ± Z ? × SE

Conditions when the point estimate = x̄ :
1 Independence: Observations in the sample must be independent

random sample/assignment
n < 10% of population

2 Sample size / skew: n ≥ 30 and distribution not extremely skewed

Note: We’ll talk about what happens when n < 30 after the midterm.
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Confidence intervals A more accurate interval

Changing the confidence level

point estimate ± Z ? × SE

In order to change the confidence level all we need to do is adjust Z ?

in the above formula.

Commonly used confidence levels in practice are 90%, 95%, 98%, and
99%.

For a 95% confidence interval, Z ? = 1.96.

Using the Z table it is possible to find the appropriate Z ? for any
confidence level.
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Confidence intervals A more accurate interval

Example - Calculating Z ?

What is the appropriate value for Z ? when calculating a 98% confidence
interval?

Sta102/BME102 (Colin Rundel) Lec 9 September 22, 2014 28 / 31



Confidence intervals A more accurate interval

Width of an interval

If we want to be very certain that we capture the population parameter,
i.e. increase our confidence level, should we use a wider interval or a
smaller interval?

Can you see any drawbacks to using a wider interval?
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Confidence intervals A more accurate interval

Example - Sample Size

Coca-Cola wants to estimate the per capita number of Coke products consumed each
year in the United States, in order to properly forecast market demands they need their
margin of error to be 5 items at the 95% confidence level. From previous years they
know that σ ≈ 30. How many people should they survey to achieve the desired
accuracy? What if the requirement was at the 99% confidence level?
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Confidence intervals A more accurate interval

Common Misconceptions

1 The confidence level of a confidence interval is the probability that the
interval contains the true population parameter.

This is incorrect, CIs are part of the frequentist paradigm and as such the
population parameter is fixed but unknown. Consequently, the probability
any given CI contains the true value must be 0 or 1 (it does or does not).

2 A narrower confidence interval is always better.

This is incorrect since the width is a function of both the confidence level
and the standard error.

3 A wider interval means less confidence.

This is incorrect since it is possible to make very precise statements with
very little confidence.
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