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Modeling numerical variables

Modeling numerical variables

So far we have worked with single numerical and categorical variables,
and explored relationships between numerical and categorical, and
two categorical variables.

Today we will learn to quantify the relationship between two
numerical variables.

Next week we will learn to model numerical variables using many
predictor (independent) variables (including both numerical and
categorical) at once.
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Modeling numerical variables

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in
all 50 US states and DC and the % of residents who live below the poverty
line (income below $23,050 for a family of 4 in 2012).
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Covariance and Correlation

Covariance

We have previously discussed variance as a measure of uncertainty of a
sampled variable

Var(X ) = σ2 =
1

n

n∑
i=1

(xi − µX )2

we can generalize this to two variables,

Cov(X ,Y ) =
1

n

n∑
i=1

(xi − µX )(yi − µY )

This quantity is called Covariance, and it is not a measure of uncertainly
but rather a measure of the degree to which X and Y tend to be large (or
small) at the same time or in other words, the degree to which one tends
to be large while the other is small.
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Covariance and Correlation

Covariance, cont.

The magnitude of the covariance is not immediately informative since it is
affected by the magnitude of both X and Y . However, the sign of the
covariance tells us something useful about the relationship between X and
Y .

Consider the following conditions:

xi > µX and yi > µY then (xi − µX )(yi − µY ) will be positive.

xi < µX and yi < µY then (xi − µX )(yi − µY ) will be positive.

xi > µX and yi < µY then (xi − µX )(yi − µY ) will be negative.

xi < µX and yi > µY then (xi − µX )(yi − µY ) will be negative.

Sta102 / BME102 (Colin Rundel) Lec 18 November 9, 2015 5 / 34

Covariance and Correlation

Properties of Covariance

Cov(X ,X ) = Var(X )

Cov(X ,Y ) = Cov(Y ,X )

Cov(X ,Y ) = 0 if X and Y are independent

Cov(X , c) = 0

Cov(aX , bY ) = ab Cov(X ,Y )

Cov(X + a,Y + b) = Cov(X ,Y )

Cov(X ,Y + Z ) = Cov(X ,Y ) + Cov(X ,Z )
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Covariance and Correlation

Correlation

Since Cov(X ,Y ) depends on the magnitude of X and Y we would prefer
to have a measure of association that is not affected by changes in the
scales of the variables.

The most common measure of linear association is correlation which is
defined as

ρ(X ,Y ) =
Cov(X ,Y )

σX σY

−1 < ρ(X ,Y ) < 1

Where the magnitude of the correlation measures the strength of the linear
association and the sign determines if it is a positive or negative
relationship.
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Covariance and Correlation

Quantifying the relationship

Correlation describes the strength of the linear association between
two variables.

It takes values between -1 (perfect negative) and +1 (perfect
positive).

A value of 0 indicates no linear association.

We use ρ to indicate the population correlation coefficient, and R or r
to indicate the sample correlation coefficient.
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Covariance and Correlation

Correlation Examples

From http://en.wikipedia.org/wiki/Correlation
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Covariance and Correlation

Correlation and Independence

Given random variables X and Y

If X and Y are independent =⇒ Cov(X ,Y ) = ρ(X ,Y ) = 0

If Cov(X ,Y ) = ρ(X ,Y ) = 0 6=⇒ X and Y are independent

Necessary but not sufficient
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Covariance and Correlation

Guessing the correlation

Which of the following is the best guess for the correlation between % in
poverty and % HS grad?
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(a) 0.6

(b) -0.75

(c) -0.1

(d) 0.02

(e) -1.5
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Covariance and Correlation

Guessing the correlation

Which of the following is the best guess for the correlation between % in
poverty and % single mother household?

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8 10 12 14 16 18

6

8

10

12

14

16

18

% female householder, no husband present

%
 in

 p
ov

er
ty

(a) 0.1

(b) -0.6

(c) -0.4

(d) 0.9

(e) 0.5
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Covariance and Correlation

Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation
coefficient closest to +1 or -1?
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Best fit line - least squares regression Eyeballing the line

Eyeballing the line

Which of the following appears to be the line that best fits the linear
relationship between % in poverty and % HS grad?
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Best fit line - least squares regression Residuals

Line Equation

The line shown can be described by an equation of the form
ŷi = β0 + β1xi , we would like a measure of the quality of its fit.
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Best fit line - least squares regression Residuals

Residuals

Just like with ANOVA, we can think about each value (yi ) as being the
result of our model (ŷi ) and some unexplained error (ei ) - this error is
what we call a residual.

yi = ŷi + ei = β0 + β1 xi + ei
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Best fit line - least squares regression Residuals

Residual Examples

We can think about a residual being the difference between our observed
outcome (yi ) minus our predicted outcome.

ei = yi − ŷi = yi − β0 − β1 xi
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y

5.44

ŷ
y

−4.16

ŷ

DC

RI

% living in poverty in
DC is 5.44% more than
predicted.

% living in poverty in RI
is 4.16% less than
predicted.

Sta102 / BME102 (Colin Rundel) Lec 18 November 9, 2015 17 / 34

Best fit line - least squares regression Residuals

A measure for the best line

We want a line that has small residuals - any idea what criteria we
should use?

Minimize the sum of squared residuals – least squares

e2
1 + e2

2 + · · ·+ e2
n

Why least squares?
1 Most commonly used
2 Square is a nicer function than absolute value
3 In many applications, a residual twice as large as another is more than

twice as bad

Sta102 / BME102 (Colin Rundel) Lec 18 November 9, 2015 18 / 34

Best fit line - least squares regression Residuals

The least squares line

ŷ = β0 + β1x

���
���predicted y

�
�
��	

intercept

A
AAU

slope

HH
HHHj

predictor variable

Notation:

Intercept:

Parameter: β0

Point estimate: b0

Slope:

Parameter: β1

Point estimate: b1
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Best fit line - least squares regression The least squares line

Given...
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% HS grad % in poverty
(x) (y)

mean x̄ = 86.01 ȳ = 11.35
sd sx = 3.73 sy = 3.1

correlation R = −0.75

What values of b0 and b1 will minimize the sum of squared residuals?
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Best fit line - least squares regression The least squares line

Slope

The slope of the bivariate least squares regression line is given by

β1 =
Cov(X ,Y )

Var(X )
=
σxσyCor(X ,Y )

σ2
x

=
σy
σx
ρ

b1 =
sy
sx
R

In context:

b1 =
3.1

3.73
×−0.75 = −0.62

Interpretation:
For each % point increase in HS graduate rate, we would expect the %
living in poverty to decrease on average by 0.62% points.
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Best fit line - least squares regression The least squares line

Intercept

The intercept is where the line intersects the y -axis. To calculate the
intercept for the least squares line we use the fact that the regression line
will always pass through (x̄ , ȳ).

b0 = ȳ − b1x̄
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b0 = 11.35− (−0.62)× 86.01 = 64.68
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Best fit line - least squares regression The least squares line

Interpreting Intercepts

Which of the following is the correct interpretation of the intercept?

(a) For each % point increase in HS graduate rate, % living in poverty is
expected to increase on average by 64.68%.

(b) For each % point decrease in HS graduate rate, % living in poverty is
expected to increase on average by 64.68%.

(c) Having no HS graduates leads to 64.68% of residents living below the
poverty line.

(d) States with no HS graduates are expected on average to have 64.68%
of residents living below the poverty line.

(e) In states with no HS graduates % living in poverty is expected to
increase on average by 64.68%.
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Best fit line - least squares regression The least squares line

Regression line

̂[% in poverty ] = 64.68− 0.62 [% HS grad ]
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Best fit line - least squares regression The least squares line

Interpretation of slope and intercept

Intercept: When x = 0, y is expected to equal the intercept on
average.

Slope: For each unit increase in x , y is expected to increase/decrease
on average by the slope.
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Best fit line - least squares regression Prediction & extrapolation

Prediction

Using the linear model to predict the value of the response variable
for a given value of the predictor variable is called prediction, simply
by plugging in the value of x in the linear model equation.
There will be some uncertainty associated with the predicted value -
we’ll talk about this next time.
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Best fit line - least squares regression Prediction & extrapolation

Extrapolation

Applying a model estimate to values outside of the range of the
original data is called extrapolation.

Sometimes the intercept might be an extrapolation.
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression Prediction & extrapolation

Anscombe’s Quartet
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Best fit line - least squares regression Prediction & extrapolation

Anscombe’s Quartet - Data

x1 y1 x2 y2 x3 y3 x4 y4
10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50

12 0.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

All four datasets have the same regression line:

y = 3 + 0.5x
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Best fit line - least squares regression R2

R2

The strength of the fit of a linear model is often evaluated using R2.

R2 is calculated as the square of the correlation coefficient.

It tells us what percent of variability in the response variable (y) is
explained by the predictor variables (x).

The remainder of the variability is “unexplained”.

Sometimes refered to as the coefficient of determination.

For the model we’ve been working with, R2 = (−0.75)2 = 0.5625.
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Best fit line - least squares regression R2

Interpretation of R2

Which of the below is the correct interpretation of R = −0.75, R2 = 0.5625?

(a) 56% of the variability in the % of HG
graduates among the 51 states is explained
by the model.

(b) 56% of the variability in the % of residents
living in poverty among the 51 states is
explained by the model.

(c) 56% of the time % HS graduates predict %
living in poverty correctly.

(d) 75% of the variability in the % of residents
living in poverty among the 51 states is
explained by the model.
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