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Linear regression with categorical predictors

Poverty vs. region (east, west)

str(poverty)

## 'data.frame': 51 obs. of 8 variables:

## $ State : Factor w/ 51 levels "Alabama","Alaska",..: 1 2 3 4 5 6 7 8 9 10 ...

## $ Metropolitan.Residence: num 55.4 65.6 88.2 52.5 94.4 84.5 87.7 80.1 100 89.3 ...

## $ Caucasian : num 71.3 70.8 87.7 81 77.5 90.2 85.4 76.3 36.2 80.6 ...

## $ Graduates : num 79.9 90.6 83.8 80.9 81.1 88.7 87.5 88.7 86 84.7 ...

## $ Poverty : num 14.6 8.3 13.3 18 12.8 9.4 7.8 8.1 16.8 12.1 ...

## $ PercFemaleHH : num 14.2 10.8 11.1 12.1 12.6 9.6 12.1 13.1 18.9 12 ...

## $ region2 : Factor w/ 2 levels "east","west": 1 2 2 2 2 2 1 1 1 1 ...

## $ region4 : Factor w/ 4 levels "northeast","midwest",..: 4 3 3 4 3 3 1 4 4 4 ...
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Linear regression with categorical predictors

Poverty vs. region (east, west)

by(poverty$Poverty, poverty$region2,

function(x) c(mean=mean(x),med=median(x),sd=sd(x),iqr=IQR(x)))

## poverty$region2: east

## mean med sd iqr

## 11.170370 10.300000 3.085427 4.600000

## ---------------------------------------------

## poverty$region2: west

## mean med sd iqr

## 11.550000 10.700000 3.168459 4.000000
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Linear regression with categorical predictors

Poverty vs. region (east, west)

summary(lm(Poverty ~ region2, data=poverty))

##

## Call:

## lm(formula = Poverty ~ region2, data = poverty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.5704 -2.2000 -0.8704 2.0398 6.4500

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.1704 0.6013 18.576 <2e-16 ***

## region2west 0.3796 0.8766 0.433 0.667

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.125 on 49 degrees of freedom

## Multiple R-squared: 0.003813,Adjusted R-squared: -0.01652

## F-statistic: 0.1875 on 1 and 49 DF, p-value: 0.6669
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Linear regression with categorical predictors

Poverty vs. region (east, west)

̂% poverty = 11.17 + 0.38× 1west

Explanatory variable: region

Reference level: east

Intercept: estimated average % poverty in eastern states is 11.17%

This is the value we get if we plug in 0 for the explanatory variable

Slope: estimated average % poverty in western states is 0.38% higher
than eastern states.

Estimated average % poverty in western states is 11.17 + 0.38 =
11.55%.
This is the value we get if we plug in 1 for the explanatory variable
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Linear regression with categorical predictors

Poverty vs. Region (Northeast, Midwest, West, South)
summary(lm(Poverty ~ region4, data=poverty))

##

## Call:

## lm(formula = Poverty ~ region4, data = poverty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.359 -1.559 -0.025 1.574 6.508

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.5000 0.8682 10.943 1.62e-14 ***

## region4midwest 0.0250 1.1485 0.022 0.982725

## region4west 1.7923 1.1294 1.587 0.119220

## region4south 4.1588 1.0736 3.874 0.000331 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.604 on 47 degrees of freedom

## Multiple R-squared: 0.3361,Adjusted R-squared: 0.2938

## F-statistic: 7.933 on 3 and 47 DF, p-value: 0.0002205
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Linear regression with categorical predictors

Poverty vs. Region (Northeast, Midwest, West, South)

Which region (Northeast, Midwest, West, South) is the reference level?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.50 0.87 10.94 0.00

region4midwest 0.03 1.15 0.02 0.98
region4west 1.79 1.13 1.59 0.12

region4south 4.16 1.07 3.87 0.00

Interpretation:

Predict 9.50% poverty in Northeast

Predict 9.53% poverty in Midwest

Predict 11.29% poverty in West

Predict 13.66% poverty in South
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Linear regression with categorical predictors

Poverty vs. Region (Northeast, Midwest, West, South)

by(poverty$Poverty, poverty$region4,

function(x) c(mean=mean(x),med=median(x),sd=sd(x),iqr=IQR(x)))

## poverty$region4: northeast

## mean med sd iqr

## 9.500000 9.600000 2.381701 2.500000

## ---------------------------------------------

## poverty$region4: midwest

## mean med sd iqr

## 9.525000 9.550000 1.415579 1.550000

## ---------------------------------------------

## poverty$region4: west

## mean med sd iqr

## 11.292308 10.800000 2.647471 3.400000

## ---------------------------------------------

## poverty$region4: south

## mean med sd iqr

## 13.658824 14.200000 3.233431 3.900000
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Linear regression with categorical predictors

Poverty vs. Region (Northeast, Midwest, West, South)

summary(aov(poverty$Poverty~poverty$region4))

## Df Sum Sq Mean Sq F value Pr(>F)

## poverty$region4 3 161.4 53.81 7.933 0.00022 ***

## Residuals 47 318.8 6.78

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Linear regression with categorical predictors

Poverty vs. Region (Northeast, Midwest, West, South)
summary(lm(Poverty ~ region4, data=poverty))

##

## Call:

## lm(formula = Poverty ~ region4, data = poverty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.359 -1.559 -0.025 1.574 6.508

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.5000 0.8682 10.943 1.62e-14 ***

## region4midwest 0.0250 1.1485 0.022 0.982725

## region4west 1.7923 1.1294 1.587 0.119220

## region4south 4.1588 1.0736 3.874 0.000331 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.604 on 47 degrees of freedom

## Multiple R-squared: 0.3361,Adjusted R-squared: 0.2938

## F-statistic: 7.933 on 3 and 47 DF, p-value: 0.0002205
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Multiple predictors in a linear model

Weights of books

weight (g) volume (cm3) cover
1 800 885 hc
2 950 1016 hc
3 1050 1125 hc
4 350 239 hc
5 750 701 hc
6 600 641 hc
7 1075 1228 hc
8 250 412 pb
9 700 953 pb

10 650 929 pb
11 975 1492 pb
12 350 419 pb
13 950 1010 pb
14 425 595 pb
15 725 1034 pb

w

l

h
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Multiple predictors in a linear model

Weights of hard cover and paperback books

Can you identify a trend in the relationship between volume and weight of
hardcover and paperback books?

200 400 600 800 1000 1200 1400

400

600

800

1000

volume (cm3)

w
ei

gh
t (

g)

hardcover
paperback
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Multiple predictors in a linear model

Modeling weights of books using volume and cover type

book_mlr = lm(weight ~ volume + cover, data = allbacks)

summary(book_mlr)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 197.96284 59.19274 3.344 0.005841 **

## volume 0.71795 0.06153 11.669 6.6e-08 ***

## cover:pb -184.04727 40.49420 -4.545 0.000672 ***

##

##

## Residual standard error: 78.2 on 12 degrees of freedom

## Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154

## F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
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Multiple predictors in a linear model

Linear model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

ŵeight = 197.96 + 0.72 volume− 184.05 cover:pb

1 For hardcover books: plug in 0 for cover

ŵeight = 197.96 + 0.72 volume− 184.05× 0

= 197.96 + 0.72 volume

2 For paperback books: plug in 1 for cover

ŵeight = 197.96 + 0.72 volume− 184.05× 1

= 13.91 + 0.72 volume
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Multiple predictors in a linear model

Visualising the linear model

200 400 600 800 1000 1200 1400
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Multiple predictors in a linear model

Interpretation of the regression coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

Slope of volume: All else held constant, for each 1 cm3 increase in
volume we would expect weight to increase on average by 0.72 grams.

Slope of cover: All else held constant, the model predicts that
paperback books weigh 184 grams less than hardcover books, on
average.

Intercept: Hardcover books with no volume are expected on average
to weigh 198 grams.

Obviously, the intercept does not make sense in context. It only serves
to adjust the height of the line.
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Multiple predictors in a linear model

Prediction

What is the correct calculation for the predicted weight of a paperback
book that has a volume of 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00
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Multiple predictors in a linear model

A note on interactions

ŵeight = 197.96 + 0.72 volume− 184.05 cover:pb

200 400 600 800 1000 1200 1400

400

600

800

1000

volume (cm3)

w
ei

gh
t (

g)

hardcover
paperback

This model assumes that hardcover
and paperback books have the same
slope for the relationship between
their volume and weight. If this isn’t
reasonable, then we would include an
“interaction” variable in the model.
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Multiple predictors in a linear model

Example of an interaction

summary( lm(weight ~ volume + cover + volume:cover, data = allbacks) )

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 161.58654 86.51918 1.868 0.0887 .

## volume 0.76159 0.09718 7.837 7.94e-06 ***

## coverpb -120.21407 115.65899 -1.039 0.3209

## volume:coverpb -0.07573 0.12802 -0.592 0.5661

##

## Residual standard error: 80.41 on 11 degrees of freedom

## Multiple R-squared: 0.9297, Adjusted R-squared: 0.9105

## F-statistic: 48.5 on 3 and 11 DF, p-value: 1.245e-06

ŵeight = 161.58 + 0.76 volume− 120.21 cover:pb− 0.076 volume× cover:pb
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Multiple predictors in a linear model

Example of an interaction - interpretation

Estimate Std. Error t value Pr(>|t|)
(Intercept) 161.5865 86.5192 1.87 0.0887

volume 0.7616 0.0972 7.84 0.0000
coverpb -120.2141 115.6590 -1.04 0.3209

volume:coverpb -0.0757 0.1280 -0.59 0.5661

Regression equations for hardbacks:

ŵeight = 161.58 + 0.76 volume− 120.21× 0− 0.076 volume× 0

= 161.58 + 0.76 volume

Regression equations for paperbacks:

ŵeight = 161.58 + 0.76 volume− 120.21× 1− 0.076 volume× 1

= 41.37 + 0.686 volume
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Multiple predictors in a linear model

Example of an interaction - Results
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R2 and Adjusted R2

Another look at R

For a linear regression we have defined the correlation coefficient to be

R = Cor(X ,Y ) =
Cov(X ,Y )

σXσY

This definition works fine for the simple linear regression case where X and
Y are numeric variables, but does not work for regression with a
categorical predictor or for multiple regression.

A more useful, and equivalent, definition is R = Cor(Y , Ŷ ), which will
work for all regression examples we will see in this class.
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R2 and Adjusted R2

Another look at R , cont.

Claim: Cor(X ,Y ) = Cor(Y , Ŷ )

Remember: Cor(X ,Y ) = Cov(X ,Y )
σXσY

, Ŷ = b0 + b1 X ,

Var(aX + b) = a2 Var(X ),

Cov(aX + b,Y ) = a Cov(X ,Y )

Cor(Y , Ŷ ) =
Cov(Y , Ŷ )√

Var(Y )Var(Ŷ )

=
Cov(Y , b0 + b1 X )√
σ2
Y Var(b0 + b1 X )

=
b1 Cov(Y ,X )

σY

√
b2
1Var(X )

=
b1 Cov(Y ,X )

b1 σYσX

= Cor(X ,Y )
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R2 and Adjusted R2

Another look at R2

So how can we claim that R2 is a measure of variability “explained” by the
model?

Remember, in an ANOVA we can partition total uncertainty into model
(group) uncertainty and residual (error) uncertainty.

SST = SSG + SSE

k∑
i=1

ni∑
j=1

(yij − ȳ)2 =
k∑

i=1

ni∑
j=1

(ȳi − ȳ)2 +
k∑

i=1

ni∑
j=1

(yij − ȳi )
2

For a regression we can do the same thing, just replacing ȳi with ŷi

SST = SSR + SSE
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi )
2
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R2 and Adjusted R2

Another look at R2

After a fair bit of algebra we can show that,

R2 = Cor(Y , Ŷ )2 =
Cov(Y , Ŷ )2

Var(Y )Var(Ŷ )

=

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

=
SSR

SST

=
SST − SSE

SST
= 1− SSE

SST
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R2 and Adjusted R2

Revisit: Modeling poverty

poverty
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R2 and Adjusted R2

Predicting poverty using % female householder

summary(lm(poverty ~ female_house, data = poverty))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.31 1.90 1.74 0.09

female house 0.69 0.16 4.32 0.00
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R = 0.53

R2 = 0.532 = 0.28
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R2 and Adjusted R2

Another look at R2 - from last week

anova(lm(poverty ~ female_house, data = poverty))

Df Sum Sq Mean Sq F value Pr(>F)
female house 1 132.57 132.57 18.68 0.00
Residuals 49 347.68 7.10
Total 50 480.25

SSTot =
∑

(y − ȳ)2 = 480.25 → total variability

SSErr =
∑

e2i = 347.68 → unexplained variability

SSReg = SSTotal − SSError → explained variability

= 480.25− 347.68 = 132.57

R2 =
explained variability

total variability
=

132.57

480.25
= 0.28 X
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R2 and Adjusted R2

Predicting poverty using % female hh + % cauc

pov_mlr = lm(poverty ~ female_house + cauc, data = poverty)

summary(pov_mlr)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.58 5.78 -0.45 0.66

female house 0.89 0.24 3.67 0.00
cauc 0.04 0.04 1.08 0.29

anova(pov_mlr)

Df Sum Sq Mean Sq F value Pr(>F)

female house 1 132.57 132.57 18.74 0.00
cauc 1 8.21 8.21 1.16 0.29
Residuals 48 339.47 7.07

Total 50 480.25

R2 =
explained variability

total variability
=

132.57 + 8.21

480.25
= 0.29
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R2 and Adjusted R2

R2 vs. adjusted R2

R2 Adjusted R2

Model 1 (poverty vs. female house) 0.2760 0.2613

Model 2 (poverty vs. female house + cauc) 0.2931 0.2637

We would like to have some criteria to evaluate if adding an additional
variable makes a difference in the explanatory power of the model.

When any variable is added to the model R2 increases.

Adjusted R2 is based on R2 but it penalizes the addition of variables.
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R2 and Adjusted R2

Adjusted R2

Adjusted R2

R2
adj = 1−

(
SSError
SSTotal

× n − 1

n − k − 1

)
where n is the number of cases and k is the number of predictors
(explanatory variables excluding the intercept) in the model.

Because k is never negative, R2
adj will always be less than or equal to

R2.

R2
adj applies a penalty for the number of predictors included in the

model.

Therefore, we prefer models with higher R2
adj
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R2 and Adjusted R2

Calculate adjusted R2

Df Sum Sq Mean Sq F value Pr(>F)

female house 1 132.57 132.57 18.74 0.0001
cauc 1 8.21 8.21 1.16 0.2868
Residuals 48 339.47 7.07

Total 50 480.25

R2
adj = 1−

(
SSError
SSTotal

× n − 1

n − k − 1

)
= 1−

(
339.47

480.25
× 51− 1

51− 2− 1

)
= 1−

(
339.47

480.25
× 50

48

)
= 1− 0.74

= 0.26
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Collinearity and parsimony

We saw that adding the variable cauc to the model only marginally increased

adjusted R2, i.e. did not add much useful information to the model. Why?
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Collinearity and parsimony

Collinearity between explanatory variables (cont.)

Two predictor variables are said to be collinear when they are
correlated, and this collinearity (also called multicollinearity)
complicates model estimation.
Remember: Predictors are also called explanatory or independent variables, so ideally they

should be independent of each other.

We don’t like adding predictors that are associated with each other to
the model, because often times the addition of such variable brings
nothing to the table. Instead, we prefer the simplest model that
explains as much as possible - the most parsimonious model.

In addition, inclusion of collinear variables can result in biased
estimates of the slope parameters.

While it’s impossible to avoid all collinearity, often experiments are
designed to control for correlated predictors.
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