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Evaluating Normality

Normal probability plot

Below is a histogram, with a superimposed normal distribution, of a sample
of 100 male heights. Does height appear to be normally distributed?

Male heights (inches)
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Evaluating Normality

Anatomy of a normal probability plot

Data are plotted on the y-axis of a normal probability plot, and
theoretical quantiles (following a normal distribution) on the x-axis.

If there is a linear relationship between the data and the theoretical
quantiles, then the data follow a nearly normal distribution.

Since a linear relationship should appear as a straight line on the
scatter plot, the closer the points are to a perfect straight line, the
more confident we can be that the data follow the normal distribution.

Constructing a normal probability plot requires calculating percentiles
and corresponding Z-scores for each observation, which is tedious.
Therefore we generally rely on software when making these plots.
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Evaluating Normality

Constructing a normal probability plot

We construct a normal probability plot for the heights of a sample of 100
men as follows:

1 Order the observations.

2 Determine the percentile of each observation in the ordered data set.

3 Identify the Z score corresponding to each percentile (using a Z table).

4 Create a scatterplot of the observations (y) against the Z scores (x)

Observation i 1 2 3 · · · 100

xi 61 63 63 · · · 78
Percentile 1% 2% 3% · · · 99%
Zi -2.33 -2.06 -1.89 · · · 2.33
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Evaluating Normality

Example - NBA Height

Below is a histogram and normal probability plot for the heights of NBA
players. Do these data appear to follow a normal distribution?

Height (inches)
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Evaluating Normality

Normal probability plot and skewness

Right Skew - If the plotted points appear to bend up and to
the left of the normal line that indicates a long tail to the
right.

Left Skew - If the plotted points bend down and to the
right of the normal line that indicates a long tail to the left.

Long/Fat Tails - A curve which starts below the normal
line, bends to follow it, and ends above it indicates long
tails. That is, you are seeing more variance than you would
expect in a normal distribution, i.e. wider than expected.
Short/Skinny Tails - An S shaped-curve indicates shorter
than normal tails, i.e. narrower than expected.
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Evaluating Normality

Right Skew
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Here the biggest values are bigger than we would expect and the smallest
values are also bigger than we would expect.
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Evaluating Normality

Left Skew
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Here the biggest values are smaller than we would expect and the smallest
values are also smaller than we would expect.
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Evaluating Normality

Fat tails
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Best to think about what is happening with the most extreme values -
here the biggest values are bigger than we would expect and the smallest
values are smaller than we would expect (for a normal).
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Evaluating Normality

Skinny tails
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Here the biggest values are smaller than we would expect and the smallest
values are bigger than we would expect.
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Normal Approximation to the Binomial Basics

Histograms of the number of successes

Hollow histograms of samples from a binomial model where p = 0.10 and
n = 10, 30, 100, and 300. What happens as n increases?
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Normal Approximation to the Binomial Basics

QQ plots of the number of successes

QQ plots of samples from a binomial model where p = 0.10 and n = 10,
30, 100, and 300. What happens as n increases?
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In general, if np ≥ 10 and n(1− p) ≥ 10 then approximately normal.
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Normal Approximation to the Binomial Basics

de Moivre-Laplace Limit Theorem

When n is large enough the Binomial distribution will always have this
bell-curve shape.

Approximation is usually considered reasonable when np ≥ 10 and
n(1− p) ≥ 10

de Moivre and Laplace where the first to identify this pattern (in the 18th
century) and characterize the shape of the curve.

This is a special case of a more general result known as the Central Limit
Theorem. (More on this on Wednesday)
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Normal Approximation to the Binomial Basics

Example - Drosophila

A geneticist is studying a population of Drosophila where 25% of the flies
have white eyes, the other 75% have red eyes. For an upcoming
experiment the scientist needs at least 70 white eyed flies. If they are able
to collect 245 larvae what is the probability that they will have sufficient
white eyed flies for their experiment?

We are given that n = 245, p = 0.25, and we are asked to find the
probability P(X ≥ 70).

P(X ≥ 70) = P(X = 70 or X = 71 or X = 72 or · · · or X = 245)

= P(X = 70) + P(X = 71) + P(X = 72) + · · ·+ P(X = 245)

This seems like an awful lot of work...
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Normal Approximation to the Binomial Basics

Normal approximation to the binomial

When the number of trials (n) is large enough, a binomial distribution (X )
has an approximately normal distribution (X ′) where

µ = E (X ) = np and σ = SD(X ) =
√
np(1− p).

For our Drosophila experiment, n = 245 and p = 0.25.

E (X ) = 245×0.25 = 61.25 SD(X ) =
√

245× 0.25× 0.75 = 6.78

As such, for the probability P(X ≥ x) we can approximate it using
P(X ′ ≥ x) where

X ∼ Binom(n = 245, p = 0.25) and X ′ ∼ N(µ = 61.25, σ = 6.78).
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Normal Approximation to the Binomial Basics

Normal approximation to the binomial (graphically)

k

20 40 60 80 100

0.00

0.01

0.02
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Bin(245,0.25)
N(61.5,6.78)
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Normal Approximation to the Binomial Basics

Drosophila cont.

What is the probability that among the 245 larvae there are 70 or more
white eyed genotypes?

Let X ∼ Binom(n = 245, p = 0.25) and X ′ ∼ N(µ = 61.25, σ = 6.78)
then

P(X ≥ 70) ≈ P(X ′ ≥ 70) = ?P(Z ≥ 1.29) = 0.0985

61.25 70

Z =
x − E (X )

SD(X )
=

70− 61.25

6.78
= 1.29

Z 0.05 0.06 0.07 0.08 0.09

1.0 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8944 0.8962 0.8980 0.8997 0.9015
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Normal Approximation to the Binomial Improvements

Improving the approximation

Take for example the Binomial distribution X ∼ Binom(n = 20, p = 0.5), we should be

able to approximate this distribution using X ′ ∼ N(10,
√
5).

2 3 4 5 6 7 8 9 10 12 14 16 18

Our approximation is missing about 1/2 of P(X = 7) and P(X = 13),
which is ≈ 7%. (This error shrinks as n increases)
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Normal Approximation to the Binomial Improvements

Improving the approximation, cont.

Binomial probability:

P(7 ≤ X ≤ 13) =
13∑
k=7

(
20

k

)
0.5k(1− 0.5)20−k = 0.88468

Naive approximation:

P(7 ≤ X ≤ 13) ≈ P

(
Z ≤ 13− 10√

5

)
− P

(
Z ≤ 7− 10√

5

)
= 0.82029

Continuity corrected approximation:

P(7 ≤ X ≤ 13) ≈ P

(
Z ≤ 13 + 1/2− 10√

5

)
− P

(
Z ≤ 7− 1/2− 10√

5

)
= 0.88248
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Normal Approximation to the Binomial Improvements

Improving the approximation, cont.

This correction also lets us do clever things like calculate the probability
for a particular value of k . Such as, what is the chance of 50 Heads in 100
tosses of slightly unfair coin (p = 0.55)?

Binomial probability:

P(X = 50) =

(
100

50

)
0.5550(1− 0.55)50 = 0.04815

Naive approximation:

P(X = 50) ≈ P

(
Z ≤ 50− 55

4.97

)
− P

(
Z ≤ 50− 55

4.97

)
= 0

Continuity corrected approximation:

P(X = 50) ≈ P

(
Z ≤ 50 + 1/2− 55√

4.97

)
− P

(
Z ≤ 50− 1/2− 55√

4.97

)
= 0.04839
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Normal Approximation to the Binomial Improvements

Example - Rolling lots of dice

Roll a fair die 500 times, what’s the probability of rolling at least 100 ones?

P(X ≥ 100) =
500∑

k=100

(
500

k

)
(1/6)k (5/6)500−k

= 1−
99∑
k=0

(
500

k

)
(1/6)k (5/6)500−k

= 1− pbinom(99, 500, 1/6)

= 1− 0.9717129

= 0.0282871
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Normal Approximation to the Binomial Improvements

Example - Rolling lots of dice

Roll a fair die 500 times, what’s the probability of rolling at least 100 ones?

Since n is large, X can be approximated with a normal distribution (X ′)
where µ = E (X ) = np = 500/6 = 83.33 and
σ = SD(X ) =

√
npq =

√
2500/36 = 8.333

P(X ≥ 100) ≈P(X ′ ≥ 100)

= P

(
Z ≥ 100− 1/2− µ

σ

)
= P

(
Z ≥ 100− 1/2− 83.33

8.333

)
= 1− P(Z ≤ 1.94)

= 1− 0.9738

= 0.0262
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Normal Approximation to the Binomial Improvements

Example - Airline booking

An airline knows that over the long run, 90% of passengers who reserve
seats show up for flight. On a particular flight with 300 seats, the airline
accepts 324 reservations. If passengers show up independently what is the
probability the flight will be overbooked?
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Normal Approximation to the Binomial Improvements

Example - Voter support

Suppose 55% of a large population of voters support actually favor a
particular candidate. How large a random sample must be take for there
to be a 99% chance that the majority of voters in the sample will favor
that candidate?
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Normal Approximation to the Binomial Improvements

Example - Roulette

Suppose you enter a casino and plan to play roulette by betting $1 on
black for every spin. Assuming you do this for 8 hours and the croupier
spins the wheel once a minute. What is the probability that you break
even or come out ahead? (Win as many times or more than you lose.)
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