1 Variability of Estimates
- Activity
- Sampling distributions - via simulation
- Sampling distributions - via CLT

2 Confidence intervals
- Why do we report confidence intervals?
- Constructing a confidence interval
- A more accurate interval
Mean

Sample mean (\bar{X}):

\[\bar{X} = \frac{1}{n} (x_1 + x_2 + x_3 + \cdots + x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \]

Population mean (μ):

\[\mu = \frac{1}{N} (x_1 + x_2 + x_3 + \cdots + x_N) = \frac{1}{N} \sum_{i=1}^{N} x_i \]

The sample mean (\bar{X}) is a *point estimate* of the population mean (μ) - the estimate may not be perfect, but if the sample is good (representative of the population) it should be close - today we will discuss how close.
Varability of Estimates

Variance

- **Sample Variance** \((s^2)\)
 \[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})^2
 \]

- **Population Variance** \((\sigma^2)\) -
 \[
 \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2
 \]

Similarly, the sample variance \((s^2)\) is a *point estimate* of the population variance \((\sigma^2)\). For a decent sample, this should also be close to the population variance.
Parameter estimation

- We are usually interested in *population parameters*.

- Since full populations are difficult (or impossible) to collect data on, we use *sample statistics* as *point estimates* for the unknown population parameters of interest.

- Sample statistics vary from sample to sample.

- Quantifying how much sample statistics vary provides a way to estimate the *margin of error* associated with our point estimates.

- First we will look at how much point estimates vary from sample to sample.
We would like to estimate the average (self reported from students in a Duke Statistics class) number of drinks it takes a person get drunk, we will assume that this is population data:

\[\mu = 5.39 \quad \sigma = 2.37 \]
Activity

- Use RStudio to generate 10 random numbers between 1 and 146 (with replacement)
  ```r
  sample(1:146, size = 10, replace = TRUE)
  ```

- If you don't have a computer, ask a neighbor to generate a sample for you.

- Using the handout find the 10 data points associated with your sampled values then
 - Calculate the sample mean of these 10 values
 - Round this mean to 1 decimal place
```r
sample(1:146, size = 10, replace = TRUE)
```

```
## [1] 17 91 89 92 126 94 2 34 98 76
```

```
   1  2  3  4  5  6  7  8  9 10
 10  2  1  4  6  3  7  5  8  6
```

```
  11 12 13 14 15 16 17 18 19 20
  4  5  6  7  8  9 10 11 12 13
```
Sampling distribution

What we just constructed is called a *sampling distribution* - it is an empirical distribution of sample statistics (\bar{X} in this case).
Sampling distribution

What we just constructed is called a *sampling distribution* - it is an empirical distribution of sample statistics (\bar{X} in this case).

What is the shape and center of this distribution?
Increasing number of samples

If we increase the number of \bar{X}s we calculated to 1000 the sampling distribution looks like the following:

![Histogram of means](image1)

![Normal Q–Q Plot](image2)
Increasing number of samples

If we increase the number of \bar{X}s we calculated to 1000 the sampling distribution looks like the following:

Histogram of means

$$\text{avg}(\bar{X}) = 5.4 \quad SD(\bar{X}) = 0.74$$
Next let’s look at the population data for the number of basketball games attended by a class of Duke students:
Average number of Duke games attended (cont.)

Sampling distribution, $n = 10$:

What does each observation in this distribution represent?
Sampling distribution, $n = 10$:

What does each observation in this distribution represent?

Sample mean, \bar{X}, of samples of size $n = 10$.
Sampling distribution, $n = 10$:

What does each observation in this distribution represent?

Sample mean, \bar{X}, of samples of size $n = 10$.

Is the variability of the sampling distribution smaller or larger than the variability of the population distribution? Why?
Average number of Duke games attended (cont.)

Sampling distribution, $n = 10$:

What does each observation in this distribution represent?

Sample mean, \bar{X}, of samples of size $n = 10$.

Is the variability of the sampling distribution smaller or larger than the variability of the population distribution? Why?

Smaller, sample means will vary less than individual observations.
Average number of Duke games attended (cont.)

Sampling distribution, $n = 30$:

How did the shape, center, and spread of the sampling distribution change going from $n = 10$ to $n = 30$?
Sampling distribution, $n = 30$:

How did the shape, center, and spread of the sampling distribution change going from $n = 10$ to $n = 30$?

Shape is more symmetric, center is about the same, spread is smaller.
Average number of Duke games attended (cont.)

Sampling distribution, $n = 70$:
Sums of iid Random Variables

Let $X_1, X_2, \cdots, X_n \overset{iid}{\sim} D$ where D is some probability distribution with $E(X_i) = \mu$ and $\text{Var}(X_i) = \sigma^2$.

If we define $S_n = X_1 + X_2 + \cdots + X_n$ then what is expected value and variance of S_n?
Sums of iid Random Variables

Let $X_1, X_2, \cdots, X_n \sim iid D$ where D is some probability distribution with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$.

If we define $S_n = X_1 + X_2 + \cdots + X_n$ then what is expected value and variance of S_n?

\[
E(S_n) = E(X_1 + X_2 + \cdots + X_n) \\
= E(X_1) + E(X_2) + \cdots + E(X_n) \\
= \mu + \mu + \cdots + \mu = n\mu
\]
Sums of iid Random Variables

Let $X_1, X_2, \ldots, X_n \sim iid \ D$ where D is some probability distribution with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$.

If we define $S_n = X_1 + X_2 + \cdots + X_n$ then what is expected value and variance of S_n?

$$E(S_n) = E(X_1 + X_2 + \cdots + X_n)$$
$$= E(X_1) + E(X_2) + \cdots + E(X_n)$$
$$= \mu + \mu + \cdots + \mu = n\mu$$

$$Var(S_n) = Var(X_1 + X_2 + \cdots + X_n)$$
$$= Var(X_1) + Var(X_2) + \cdots + Var(X_n)$$
$$= \sigma^2 + \sigma^2 + \cdots + \sigma^2 = n\sigma^2$$
Average of iid Random Variables

Let $X_1, X_2, \cdots, X_n \overset{iid}{\sim} D$ where D is some probability distribution with

$$E(X_i) = \mu \text{ and } Var(X_i) = \sigma^2.$$

If we define $\bar{X}_n = (X_1 + X_2 + \cdots + X_n)/n = S_n/n$ then what is the expected value and variance of \bar{X}_n?
Average of iid Random Variables

Let $X_1, X_2, \cdots, X_n \sim iid D$ where D is some probability distribution with

$$E(X_i) = \mu \text{ and } Var(X_i) = \sigma^2.$$

If we define $\bar{X}_n = (X_1 + X_2 + \cdots + X_n)/n = S_n/n$ then what is the expected value and variance of \bar{X}_n?
Average of iid Random Variables

Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} D$ where D is some probability distribution with

$$E(X_i) = \mu \text{ and } Var(X_i) = \sigma^2.$$

If we define $\bar{X}_n = (X_1 + X_2 + \cdots + X_n)/n = S_n/n$ then what is the expected value and variance of \bar{X}_n?

$$E(\bar{X}_n) = E(S_n/n) = E(S_n)/n = \mu$$
Average of iid Random Variables

Let $X_1, X_2, \cdots, X_n \sim D$ where D is some probability distribution with $E(X_i) = \mu$ and $\text{Var}(X_i) = \sigma^2$.

If we define $\bar{X}_n = (X_1 + X_2 + \cdots + X_n)/n = S_n/n$ then what is the expected value and variance of \bar{X}_n?

$$E(\bar{X}_n) = E(S_n/n) = E(S_n)/n = \mu$$

$$\text{Var}(\bar{X}_n) = \text{Var}(S_n/n)$$

$$= \frac{1}{n^2} \text{Var}(S_n)$$

$$= \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$
Central Limit Theorem

Central limit theorem - sum of iid RVs (S_n)

The distribution of the *sum* of n independent and identically distributed random variables X is approximately normal when n is large.

$$S_n \sim N \left(\mu = n \ E(X), \ \sigma^2 = n \ Var(X) \right)$$
Central Limit Theorem

Central limit theorem - sum of iid RVs (S_n)

The distribution of the *sum* of n independent and identically distributed random variables X is approximately normal when n is large.

$$S_n \sim N \left(\mu = n \ E(X), \ \sigma^2 = n \ Var(X) \right)$$

Central limit theorem - average of iid RVs (\bar{X})

The distribution of the *average* of n independent and identically distributed random variables X is approximately normal when n is large.

$$\bar{X} \sim N \left(\mu = E(X), \ \sigma^2 = Var(X)/n \right)$$
CLT - Conditions

Certain conditions must be met for the CLT to apply:

1. **Independence**: Sampled observations must be independent and identically distributed.

 This is difficult to verify, but is usually reasonable if
 - random sampling/assignment is used, and
 - $n < 10\%$ of the population.

2. **Sample size/skew**: The population distribution must be nearly normal or the sample size must be large (the less normal the population distribution, the larger the sample size needs to be).

 This is also difficult to verify for the population, but we can check it using the sample data, and assume that the sample distribution is similar to the population distribution.
Variability of Estimates

Sampling distributions - via CLT

CLT - Simulation

Central Limit Theorem

Population distribution: Normal

Review

To the right is a plot of a population distribution. Match each of the following descriptions to one of the three plots below.

1. a single random sample of 100 observations from this population
2. a distribution of 100 sample means from random samples with size 7
3. a distribution of 100 sample means from random samples with size 49
Review

To the right is a plot of a population distribution. Match each of the following descriptions to one of the three plots below.

1. a single random sample of 100 observations from this population
2. a distribution of 100 sample means from random samples with size 7
3. a distribution of 100 sample means from random samples with size 49
Review

To the right is a plot of a population distribution. Match each of the following descriptions to one of the three plots below.

1. a single random sample of 100 observations from this population
2. a distribution of 100 sample means from random samples with size 7
3. a distribution of 100 sample means from random samples with size 49
To the right is a plot of a population distribution. Match each of the following descriptions to one of the three plots below.

1. a single random sample of 100 observations from this population
2. a distribution of 100 sample means from random samples with size 7
3. a distribution of 100 sample means from random samples with size 49
1 Variability of Estimates
 • Activity
 • Sampling distributions - via simulation
 • Sampling distributions - via CLT

2 Confidence intervals
 • Why do we report confidence intervals?
 • Constructing a confidence interval
 • A more accurate interval
Confidence intervals

- A plausible range of values for the population parameter is called a **confidence interval**.

- Using only a point estimate to estimate a parameter is like fishing in a murky lake with a spear, and using a confidence interval is like fishing with a net.

We can throw a spear where we saw a fish but we are more likely to miss. If we toss a net in that area, we have a better chance of catching the fish.

- If we report a point estimate, we probably will not hit the exact population parameter. If we report a range of plausible values – a confidence interval – we have a good shot at capturing the parameter.
Confidence intervals and the CLT

We have a point estimate \bar{X} for the population mean μ, but we want to design a “net” to have a reasonable chance of capturing μ.

From the CLT we know that we can think of \bar{X} as a sample from $N(\mu, \sigma/\sqrt{n})$. Therefore, 96% of observed \bar{X}’s should be within 2 SEs ($2\sigma/\sqrt{n}$) of μ.

Clearly then for 96% of random samples from the population, μ must then be within 2 SEs of \bar{X}.

Note that we are being very careful about the language here - the 96% here only applies to random samples in the abstract. Once we have actually taken a sample \bar{X} will either be within 2 SEs or outside of 2 SEs of μ.
We have a point estimate \bar{X} for the population mean μ, but we want to design a “net” to have a reasonable chance of capturing μ.

- From the CLT we know that we can think of \bar{X} as a sample from $N(\mu, \sigma/\sqrt{n})$.
Confidence intervals and the CLT

We have a point estimate \bar{X} for the population mean μ, but we want to design a “net” to have a reasonable chance of capturing μ.

- From the CLT we know that we can think of \bar{X} as a sample from $N(\mu, \sigma/\sqrt{n})$.

- Therefore, 96% of observed \bar{X}’s should be within 2 SEs ($2\sigma/\sqrt{n}$) of μ.
We have a point estimate \bar{X} for the population mean μ, but we want to design a “net” to have a reasonable chance of capturing μ.

- From the CLT we know that we can think of \bar{X} as a sample from $N(\mu, \sigma/\sqrt{n})$.

- Therefore, 96% of observed \bar{X}’s should be within 2 SEs ($2\sigma/\sqrt{n}$) of μ.

- Clearly then for 96% of random samples from the population, μ must then be within 2 SEs of \bar{X}.

Confidence intervals and the CLT

We have a point estimate \bar{X} for the population mean μ, but we want to design a “net” to have a reasonable chance of capturing μ.

- From the CLT we know that we can think of \bar{X} as a sample from $N(\mu, \sigma/\sqrt{n})$.

- Therefore, 96% of observed \bar{X}’s should be within 2 SEs ($2\sigma/\sqrt{n}$) of μ.

- Clearly then for 96% of random samples from the population, μ must then be within 2 SEs of \bar{X}.

Note that we are being very careful about the language here - the 96% here only applies to random samples in the abstract. Once we have actually taken a sample \bar{X} will either be within 2 SEs or outside of 2 SEs of μ.
Example - Cardinals

A transect was sampled 50 times by counting the number of cardinals seen when walking a 1 mile path in the Duke forest. The mean of these samples was 13.2. Estimate the true average number of cardinals along this path, assuming the population distribution is nearly normal with a population standard deviation of 1.74.

The 96% confidence interval is defined as

\[
\bar{X} = 13.2, \quad \sigma = 1.74, \quad SE = \frac{\sigma}{\sqrt{n}} = \frac{1.74}{\sqrt{50}}
\]

\[
\bar{X} \pm 2 \times SE = 13.2 \pm 2 \times 0.25 = (12.75, 13.65)
\]

We are 96% confident that the true average number of cardinals on the transect is between 12.7 and 13.7.
Example - Cardinals

A transect was sampled 50 times by counting the number of cardinals seen when walking a 1 mile path in the Duke forest. The mean of these samples was 13.2. Estimate the true average number of cardinals along this path, assuming the population distribution is nearly normal with a population standard deviation of 1.74.

The 96% confidence interval is defined as

$$\text{point estimate} \pm 2 \times SE$$

where

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{1.74}{\sqrt{50}} = 0.25$$

Thus, the 96% confidence interval is

$$13.2 \pm 2 \times 0.25 = (13.2 - 0.5, 13.2 + 0.5) = (12.7, 13.7)$$

We are 96% confident that the true average number of cardinals on the transect is between 12.7 and 13.7.
Example - Cardinals

A transect was sampled 50 times by counting the number of cardinals seen when walking a 1 mile path in the Duke forest. The mean of these samples was 13.2. Estimate the true average number of cardinals along this path, assuming the population distribution is nearly normal with a population standard deviation of 1.74.

The 96% confidence interval is defined as

\[\text{point estimate} \pm 2 \times SE \]

\[
\bar{X} = 13.2 \quad \sigma = 1.74 \quad SE = \frac{\sigma}{\sqrt{n}} = \frac{1.74}{\sqrt{50}} = 0.25
\]

We are 96% confident that the true average number of cardinals on the transect is between 12.7 and 13.7.
Example - Cardinals

A transect was sampled 50 times by counting the number of cardinals seen when walking a 1 mile path in the Duke forest. The mean of these samples was 13.2. Estimate the true average number of cardinals along this path, assuming the population distribution is nearly normal with a population standard deviation of 1.74.

The 96% confidence interval is defined as

\[
\text{point estimate} \pm 2 \times SE
\]

\[
\bar{X} = 13.2 \quad \sigma = 1.74 \quad SE = \frac{\sigma}{\sqrt{n}} = \frac{1.74}{\sqrt{50}} = 0.25
\]

\[
\bar{X} \pm 2 \times SE = 13.2 \pm 2 \times 0.25
\]

\[
= (13.2 - 0.5, 13.2 + 0.5)
\]

\[
= (12.7, 13.7)
\]

We are 96% confident that the true average number of cardinals on the transect is between 12.7 and 13.7.
Example - Cardinals

A transect was sampled 50 times by counting the number of cardinals seen when walking a 1 mile path in the Duke forest. The mean of these samples was 13.2. Estimate the true average number of cardinals along this path, assuming the population distribution is nearly normal with a population standard deviation of 1.74.

The 96% confidence interval is defined as

\[
\text{point estimate} \pm 2 \times SE
\]

\[
\bar{X} = 13.2 \quad \sigma = 1.74 \quad SE = \frac{\sigma}{\sqrt{n}} = \frac{1.74}{\sqrt{50}} = 0.25
\]

\[
\bar{X} \pm 2 \times SE = 13.2 \pm 2 \times 0.25
\]

\[
= (13.2 - 0.5, 13.2 + 0.5)
\]

\[
= (12.7, 13.7)
\]

We are 96% confident that the true average number of cardinals on the transect is between 12.7 and 13.7.
What does 96% confident mean?

- Suppose we took many samples and built a confidence interval from each sample using the equation \(\text{point estimate} \pm 2 \times SE \).
- Then about 96% of those intervals would contain the true population mean (\(\mu \)).

- The figure on the left shows this process with 25 samples, where 24 of the resulting confidence intervals contain the true average number of exclusive relationships, and one does not.

- It **does not** mean there is a 96% probability the CI contains the true value.
Confidence intervals

A more accurate interval

Confidence interval, a general formula

\[\text{point estimate} \pm CV \times SE \]
A more accurate interval

Confidence interval, a general formula

\[\text{point estimate} \pm CV \times SE \]

Conditions when the point estimate = \(\bar{X} \):

1. **Independence**: Observations in the sample must be independent
 - random sample/assignment
 - \(n < 10\% \) of population

2. **Normality**: nearly normal population distribution

3. **Population Variance**: so far we’ve assumed this is known, this is almost never true. We’ll talk about a more general approach after the midterm.
Changing the confidence level

In general,

\[\text{point estimate} \pm CV \times SE \]

- In order to change the confidence level all we need to do is adjust the critical value in the above formula.
- Commonly used confidence levels in practice are 90\%, 95\%, 98\%, and 99\%.

If the conditions for the CLT are met then,

- For a 95\% confidence interval, \(CV = Z^* = 1.96 \).
- Using the \(Z \) table it is possible to find the appropriate \(Z^* \) for any desired confidence level.
Example - Calculating Z^*

What is the appropriate value for Z^* when calculating a 98% confidence interval?
Example - Calculating Z^*

What is the appropriate value for Z^* when calculating a 98% confidence interval?

$0.98 = -2.33$
$0.98 = 2.33$
Confidence intervals

Width of an interval

If we want to be very certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?
Width of an interval

If we want to be very certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?

A wider interval.
Width of an interval

If we want to be very certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?

A wider interval.

Can you see any drawbacks to using a wider interval?
Width of an interval

If we want to be very certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?

A wider interval.

Can you see any drawbacks to using a wider interval?
Width of an interval

If we want to be very certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?

A wider interval.

Can you see any drawbacks to using a wider interval?

If the interval is too wide it may not be very informative.
Example - Sample Size

Coca-Cola wants to estimate the per capita number of Coke products consumed each year in the United States, in order to properly forecast market demands they need their margin of error to be 5 items at the 95% confidence level. From previous years they know that $\sigma \approx 30$. How many people should they survey to achieve the desired accuracy? What if the requirement was at the 99% confidence level?
Example - Sample Size

Coca-Cola wants to estimate the per capita number of Coke products consumed each year in the United States, in order to properly forecast market demands they need their margin of error to be 5 items at the 95% confidence level. From previous years they know that $\sigma \approx 30$. How many people should they survey to achieve the desired accuracy? What if the requirement was at the 99% confidence level?

At the 95% and 99% confidence levels Z^* is 1.96 and 2.58 respectively. Therefore,
Example - Sample Size

Coca-Cola wants to estimate the per capita number of Coke products consumed each year in the United States, in order to properly forecast market demands they need their margin of error to be 5 items at the 95% confidence level. From previous years they know that $\sigma \approx 30$. How many people should they survey to achieve the desired accuracy? What if the requirement was at the 99% confidence level?

At the 95% and 99% confidence levels Z^* is 1.96 and 2.58 respectively. Therefore,

$$\text{MoE} = Z^* \frac{\sigma}{\sqrt{n}} = 5$$

$$\sqrt{n} = Z^* \frac{\sigma}{5}$$

$$n = (Z^* \frac{\sigma}{5})^2$$

$$n_{95} = (1.96 \frac{30}{5})^2 = 138.30 = 139$$

$$n_{99} = (2.58 \frac{30}{5})^2 = 239.63 = 240$$
Common Misconceptions

1. The confidence level of a confidence interval is the probability that the interval contains the true population parameter.

2. A narrower confidence interval is always better.

3. A wider interval means less confidence.
Common Misconceptions

1. The confidence level of a confidence interval is the probability that the interval contains the true population parameter.

 This is incorrect, CIs are part of the frequentist paradigm and as such the population parameter is fixed but unknown. Consequently, the probability any given CI contains the true value must be 0 or 1 (it does or does not).

2. A narrower confidence interval is always better.

3. A wider interval means less confidence.
Common Misconceptions

1. The confidence level of a confidence interval is the probability that the interval contains the true population parameter.

 This is incorrect, CIs are part of the frequentist paradigm and as such the population parameter is fixed but unknown. Consequently, the probability any given CI contains the true value must be 0 or 1 (it does or does not).

2. A narrower confidence interval is always better.

 This is incorrect since the width is a function of both the confidence level and the standard error.

3. A wider interval means less confidence.
Common Misconceptions

1. The confidence level of a confidence interval is the probability that the interval contains the true population parameter.

 This is incorrect, CIs are part of the frequentist paradigm and as such the population parameter is fixed but unknown. Consequently, the probability any given CI contains the true value must be 0 or 1 (it does or does not).

2. A narrower confidence interval is always better.

 This is incorrect since the width is a function of both the confidence level and the standard error.

3. A wider interval means less confidence.

 This is incorrect since it is possible to make very precise statements with very little confidence.