Lab 7: Inference for numerical data

Template for lab report

Write your report, or at least run the code and create the plots, as you go so that if you get errors you can ask your TA to help on the spot. Knit often to more easily determine the source of the error.

North Carolina births

In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.

Exploratory analysis

Load the nc data set into our workspace.

We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fage</td>
<td>father’s age in years.</td>
</tr>
<tr>
<td>mage</td>
<td>mother’s age in years.</td>
</tr>
<tr>
<td>mature</td>
<td>maturity status of mother.</td>
</tr>
<tr>
<td>weeks</td>
<td>length of pregnancy in weeks.</td>
</tr>
<tr>
<td>premie</td>
<td>whether the birth was classified as premature (premie) or full-term.</td>
</tr>
<tr>
<td>visits</td>
<td>number of hospital visits during pregnancy.</td>
</tr>
<tr>
<td>marital</td>
<td>whether mother is married or not married at birth.</td>
</tr>
<tr>
<td>gained</td>
<td>weight gained by mother during pregnancy in pounds.</td>
</tr>
<tr>
<td>weight</td>
<td>weight of the baby at birth in pounds.</td>
</tr>
<tr>
<td>lowbirthweight</td>
<td>whether baby was classified as low birthweight (low) or not (not low).</td>
</tr>
<tr>
<td>gender</td>
<td>gender of the baby, female or male.</td>
</tr>
<tr>
<td>habit</td>
<td>status of the mother as a nonsmoker or a smoker.</td>
</tr>
<tr>
<td>whitemom</td>
<td>whether mom is white or not white.</td>
</tr>
</tbody>
</table>

Exercise 1 What are the cases in this data set? How many cases are there in our sample?

As a first step in an analysis, we should consider summaries of the data. This can be done using the summary command:
As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.

Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful rst step because it helps us quickly visualize trends, identify strong associations, and develop research questions.

Exercise 2 Make a side-by-side boxplot of `habit` and `weight`. What does the plot highlight about the relationship between these two variables?

The box plots show how the medians of the two distributions compare, and we can also compare the means of the distributions. The following use of the `by` function splits the `weight` variable into the `habit` groups, then takes the mean of each using the `mean` function.

```r
by(nc$weight, nc$habit, mean)
```

There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test.

Inference

Exercise 3 Check if the conditions necessary for inference are satisfied. Note that you will need to obtain sample sizes to check the conditions. You can compute the group size using the same `by` command above but replacing `mean` with `length`.

Exercise 4 Write the hypotheses for testing if the average weights of babies born to smoking and non-smoking mothers are different.

Next, we introduce a new function, `inference`, that we will use for conducting hypothesis tests and constructing confidence intervals.

```r
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
           alternative = "twosided", method = "theoretical")
```

Let’s pause for a moment to go through the arguments of this custom function.

- The first argument is `y`, which is the response variable that we are interested in: `nc$weight`.
- The second argument is the grouping variable, `x`, which is the variable that splits the data into two groups, smokers and non-smokers: `nc$habit`.
- The third argument, `est`, is the parameter we’re interested in: "mean" (other options are "median", or "proportion").
- Next we decide on the `type` of inference we want: a hypothesis test ("ht") or a confidence interval ("ci").
- When performing a hypothesis test, we also need to supply the `null` value, which in this case is 0, since the null hypothesis sets the two population means equal to each other.
• The **alternative** hypothesis can be "less", "greater", or "two sided".

• Lastly, the **method** of inference can be "theoretical" or "simulation" based.

Exercise 5 Change the **type** argument to "ci" construct a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.

By default the function reports an interval for \(\mu_{\text{nonsmoker}} - \mu_{\text{smoker}} \), we can easily change this order by using the **order** argument:

```
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci",
           method = "theoretical", order = c("smoker","nonsmoker"))
```

Additional Exercises

Exercise 6 Calculate a 95% confidence interval for the average length of pregnancies (**weeks**) and interpret it in context. Note that since you’re doing inference on a single population parameter, there is no grouping variable, so you can omit the \(x \) variable from the function.

Exercise 7 Calculate a new confidence interval for the same parameter at the 90% confidence level. You can change the confidence level by adding a new argument to the function: \(\text{conflevel} = 0.90 \).

Exercise 8 Conduct a hypothesis test evaluating whether the average weight gained by younger mothers is different than the average weight gained by mature mothers.

Exercise 9 Now, a non-inference task: Determine the age cutoff for younger and mature mothers. Use a method of your choice, and explain how your method works.

Exercise 10 Pick a pair of of variables (one numerical and one categorical) and come up with a research question evaluating the relationship between these variables. Formulate the question in a way that it can be answered using a hypothesis test and/or a confidence interval. Answer your question using the **inference** function, report the statistical results, and also provide an explanation in plain language.