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Projects

Projects

Please remember,

Project 1 is due Friday, April 4th.

Project 2 Proposal is due Friday, April 11th.

And now some advise on writing from the creators of South Park ...

http://www.mtvu.com/shows/stand-in/

trey-parker-matt-stone-surprise-nyu-class/
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Modeling numerical variables

Modeling numerical variables

So far we have worked with single numerical and categorical variables,
and explored relationships between numerical and categorical, and
two categorical variables.

This week we will learn to quantify the relationship between two
numerical variables, as well as modeling numerical response variables
using a numerical or categorical explanatory variable.

Next week we will learn to model numerical variables using many
explanatory variables at once.

Sta102 / BME102 (Colin Rundel) Lec 15 March 31, 2014 3 / 35

Modeling numerical variables

Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate rate in
all 50 US states and DC and the % of residents who live below the poverty
line (income below $23,050 for a family of 4 in 2012).
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Explanatory?

Relationship?
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http://www.mtvu.com/shows/stand-in/trey-parker-matt-stone-surprise-nyu-class/
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Correlation

Quantifying the relationship

Correlation describes the strength of the linear association between
two variables.

It takes values between -1 (perfect negative) and +1 (perfect
positive).

A value of 0 indicates no linear association.

We use ρ to indicate the population correlation coefficient, and R or r
to indicate the sample correlation coefficient.
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Correlation

Correlation Examples

From http://en.wikipedia.org/wiki/Correlation
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Correlation Covariance and Correlation

Covariance

We have previously discussed the variance as a measure of uncertainty of a
random variable:

Var(X ) = σ2 =
1

n

n∑
i=1

(xi − µX )2

In order to define correlation we first need to define covariance, which is a
generalization of variance to two random variables

Cov(X ,Y ) =
1

n

n∑
i=1

(xi − µX )(yi − µY )

Covariance is not a measure of uncertainly but rather a measure of the
degree to which X and Y tend to be large (or small) at the same time or
the degree to which one tends to be large while the other is small.
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Correlation Covariance and Correlation

Covariance, cont.

The magnitude of the covariance is not very informative since it is affected
by the magnitude of both X and Y . However, the sign of the covariance
tells us something useful about the relationship between X and Y .

Consider the following conditions:

xi > µX and yi > µY then (xi − µX )(yi − µY ) will be positive.

xi < µX and yi < µY then (xi − µX )(yi − µY ) will be positive.

xi > µX and yi < µY then (xi − µX )(yi − µY ) will be negative.

xi < µX and yi > µY then (xi − µX )(yi − µY ) will be negative.
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Correlation Covariance and Correlation

Properties of Covariance

Cov(X ,X ) = Var(X )

Cov(X ,Y ) = Cov(Y ,X )

Cov(X ,Y ) = 0 if X and Y are independent

Cov(X , c) = 0

Cov(aX , bY ) = ab Cov(X ,Y )

Cov(X + a,Y + b) = Cov(X ,Y )

Cov(X ,Y + Z ) = Cov(X ,Y ) + Cov(X ,Z )

Sta102 / BME102 (Colin Rundel) Lec 15 March 31, 2014 9 / 35

Correlation Covariance and Correlation

Correlation

Since Cov(X ,Y ) depends on the magnitude of X and Y we would prefer
to have a measure of association that is not affected by changes in the
scales of the variables.

The most common measure of linear association is correlation which is
defined as

ρ(X ,Y ) =
Cov(X ,Y )

σX σY

−1 < ρ(X ,Y ) < 1

Where the magnitude of the correlation measures the strength of the linear
association and the sign determines if it is a positive or negative
relationship.
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Correlation Covariance and Correlation

Correlation and Independence

Given random variables X and Y

X and Y are independent =⇒ Cov(X ,Y ) = ρ(X ,Y ) = 0

Cov(X ,Y ) = ρ(X ,Y ) = 0 6=⇒ X and Y are independent

Sta102 / BME102 (Colin Rundel) Lec 15 March 31, 2014 11 / 35

Correlation Covariance and Correlation

Guessing the correlation

Which of the following is the best guess for the correlation between % in
poverty and % HS grad?
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(a) 0.6

(b) -0.75

(c) -0.1

(d) 0.02

(e) -1.5
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Correlation Covariance and Correlation

Guessing the correlation

Which of the following is the best guess for the correlation between % in
poverty and % single mother household?
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(a) 0.1

(b) -0.6

(c) -0.4

(d) 0.9

(e) 0.5
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Correlation Covariance and Correlation

Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation
coefficient closest to +1 or -1?
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Best fit line - least squares regression Eyeballing the line

Eyeballing the line

Which of the following appears to be the line that best fits the linear
relationship between % in poverty and % HS grad?
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Best fit line - least squares regression Residuals

Quantifying best fit
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Best fit line - least squares regression Residuals

Residuals

Residual

Residual is the difference between the observed and predicted y .

ei = yi − ŷi
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y

5.44

ŷ
y

−4.16

ŷ

DC

RI

% living in poverty in
DC is 5.44% more than
predicted.

% living in poverty in RI
is 4.16% less than
predicted.
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Best fit line - least squares regression Residuals

A measure for the best line

We want a line that has small residuals:
1 Option 1: Minimize the sum of magnitudes (absolute values) of

residuals
|e1|+ |e2|+ · · ·+ |en|

2 Option 2: Minimize the sum of squared residuals – least squares

e2
1 + e2

2 + · · ·+ e2
n

Why least squares?
1 Most commonly used
2 Easier to compute by hand and using software
3 In many applications, a residual twice as large as another is more than

twice as bad
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Best fit line - least squares regression Residuals

The least squares line

ŷ = β0 + β1x

��
����predicted y

�
�
��	

intercept

A
AAU
slope

HH
HHHj
explanatory variable

Notation:

Intercept:

Parameter: β0

Point estimate: b0

Slope:

Parameter: β1

Point estimate: b1
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Best fit line - least squares regression The least squares line

Given...
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% HS grad % in poverty
(x) (y)

mean x̄ = 86.01 ȳ = 11.35
sd sx = 3.73 sy = 3.1

correlation R = −0.75
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Best fit line - least squares regression The least squares line

Slope

Slope

The slope of the regression can be calculated as

b1 =
sy
sx
R

In context...

b1 =
3.1

3.73
×−0.75 = −0.62

Interpretation
For each % point increase in HS graduate rate, we would expect the %
living in poverty to decrease on average by 0.62% points.
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Best fit line - least squares regression The least squares line

Intercept

Intercept

The intercept is where the regression line intersects the y -axis. The cal-
culation of the intercept uses the fact the a regression line always passes
through (x̄ , ȳ).

b0 = ȳ − b1x̄
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b0 = 11.35− (−0.62)× 86.01 = 64.68
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Best fit line - least squares regression The least squares line

Interpreting Intercepts

Which of the following is the correct interpretation of the intercept?

(a) For each % point increase in HS graduate rate, % living in poverty is
expected to increase on average by 64.68%.

(b) For each % point decrease in HS graduate rate, % living in poverty is
expected to increase on average by 64.68%.

(c) Having no HS graduates leads to 64.68% of residents living below the
poverty line.

(d) States with no HS graduates are expected on average to have 64.68%
of residents living below the poverty line.

(e) In states with no HS graduates % living in poverty is expected to
increase on average by 64.68%.
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Best fit line - least squares regression The least squares line

Regression line

̂[% in poverty ] = 64.68− 0.62 [% HS grad ]
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Best fit line - least squares regression The least squares line

Interpretation of slope and intercept

Intercept: When x = 0, y is expected to equal the intercept.

Slope: For each unit increase in x , y is expected to increase/decrease
on average by the slope.
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Best fit line - least squares regression Prediction & extrapolation

Prediction

Using the linear model to predict the value of the response variable
for a given value of the explanatory variable is called prediction,
simply by plugging in the value of x in the linear model equation.
There will be some uncertainty associated with the predicted value -
we’ll talk about this next time.
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Best fit line - least squares regression Prediction & extrapolation

Extrapolation

Applying a model estimate to values outside of the realm of the
original data is called extrapolation.

Sometimes the intercept might be an extrapolation.
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression Prediction & extrapolation

Examples of extrapolation
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Best fit line - least squares regression R2

R2

The strength of the fit of a linear model is most commonly evaluated
using R2.

R2 is calculated as the square of the correlation coefficient.

It tells us what percent of variability in the response variable is
explained by the model.

The remainder of the variability is explained by variables not included
in the model.

Sometimes called the coefficient of determination.

For the model we’ve been working with, R2 = −0.622 = 0.38.

Sta102 / BME102 (Colin Rundel) Lec 15 March 31, 2014 31 / 35

Best fit line - least squares regression R2

Interpretation of R2

Which of the below is the correct interpretation of R = −0.62, R2 = 0.38?

(a) 38% of the variability in the % of HG
graduates among the 51 states is explained
by the model.

(b) 38% of the variability in the % of residents
living in poverty among the 51 states is
explained by the model.

(c) 38% of the time % HS graduates predict %
living in poverty correctly.

(d) 62% of the variability in the % of residents
living in poverty among the 51 states is
explained by the model.
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Best fit line - least squares regression R2

Another look at R

For a linear regression we have defined the correlation coefficient to be

R = Cor(X ,Y ) =
1

n − 1

∑
i

(xi − x̄)(yi − ȳ)

This definition works fine for the simple linear regression case where X and
Y are numerical variable, but does not work well in some of the extensions
we will see this week and next week.

A better definition is R = Cor(Y , Ŷ ), which will work for all regression
examples we will see in this class. Additionally, it is equivalent to
Cor(X ,Y ) in the case of simple linear regression and it is useful for
obtaining a better understanding of the meaning of R2.
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Best fit line - least squares regression R2

Another look at R , cont.

Claim: Cor(X ,Y ) = Cor(Y , Ŷ )

Remember: Cor(X ,Y ) = Cov(X ,Y )
σXσY

, Ŷ = b0 + b1 X ,

Var(aX + b) = a2 Var(X ),

Cov(aX + b,Y ) = a Cov(X ,Y )
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Best fit line - least squares regression R2

Another look at R2

Just like with ANOVA we can partition total uncertainty into model
uncertainty and residual uncertainty.

SST = SSM + SSR
n∑

i=1

(Yi − µY )2 =
n∑

i=1

(Ŷi − µY )2 +
n∑

i=1

(Yi − Ŷi )
2

Based on this definition,

R2 =
SSM

SST
=

∑n
i=1(Ŷi − µY )2∑n
i=1(Yi − µY )2

= 1− SSE

SST
=

∑n
i=1(Yi − Ŷi )

2∑n
i=1(Yi − µY )2
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