Poverty vs. region (east, west)

Lecture 18 - More multiple linear regression

Sta102 / BME102

Colin Rundel

April 9, 2014

 $\widehat{poverty} = 11.17 + 0.38 \times west$

- Explanatory variable: region
- Reference level: east
- Intercept: estimated average % poverty in eastern states is 11.17%
 - This is the value we get if we plug in 0 for the explanatory variable
- *Slope:* estimated average % poverty in western states is 0.38% higher than eastern states.
 - Estimated average % poverty in western states is 11.17 + 0.38 = 11.55%.
 - This is the value we get if we plug in 1 for the explanatory variable

Sta102 / BME102 (Colin Rundel)

Lec 18

ril 9, 20<u>14 2 / 2</u>

More on categorical explanatory variables

Poverty vs. Region (Northeast, Midwest, West, South)

Which region (Northeast, Midwest, West, South) is the reference level?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

Interpretation:

- Predict 9.50% poverty in Northeast
- Predict 9.53% poverty in Midwest
- \bullet Predict 11.29% poverty in West
- Predict 13.66% poverty in South

Model selection

Modeling kid's test scores (revisited)

Predicting cognitive test scores of three- and four-year-old children using characteristics of their mothers. Data are from a survey of adult American women and their children - a subsample from the National Longitudinal Survey of Youth.

	kid_score	mom_hs	mom_iq	mom_work	mom_age
1	65	yes	121.12	yes	27
÷	÷	÷	÷	÷	÷
5	115	yes	92.75	yes	27
6	98	no	107.90	no	18
÷	÷	÷	÷	÷	÷
434	70	yes	91.25	yes	25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.

Model selection

Model output

##		Estimate	Std. Error	t value	Pr(>ltl)	
	(
##	(Intercept)	19.59241	9.21906	2.125	0.0341	
##	mom_hsyes	5.09482	2.31450	2.201	0.0282	
##	mom_iq	0.56147	0.06064	9.259	<2e-16	
##	mom_workyes	2.53718	2.35067	1.079	0.2810	
##	mom_age	0.21802	0.33074	0.659	0.5101	
##						
##	Residual sta	andard eri	ror: 18.14 o	n 429 de	egrees of	fre

Residual standard error: 18.14 on 429 degrees of freedom
Multiple R-squared: 0.2171, Adjusted R-squared: 0.2098
F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16</pre>

Backward-elimination

- Adjusted R^2 approach:
 - Start with the full model
 - Drop one variable at a time and record R_{adi}^2 of each smaller model
 - Pick the model with the largest increase in R_{adi}^2
 - Repeat until none of the reduced models yield an increase in R_{adi}^2
- p-value approach:

Sta102 / BME102 (Colin Rundel)

- Pick a critical value α_{crit}
- Start with the full model
- Drop the variable with the highest p-value and refit a smaller model
- Repeat until all variables left have a p-value smaller than $\alpha_{\it crit}$
- When removing a categorical variable all levels should be included or removed (may not be clear what to do with the p-value approach)

Lec 18

Sta102 / BME102	(Colin Rundel)
-----------------	----------------

Lec 18

April 9, 2014 5 / 2

Model selection Backward-elimination

Backward-selection: R_{adj}^2 approach

Step	Variables included	R^2_{adj}
Full	$kid_score~~mom_hs + mom_iq + mom_work + mom_age$	0.2098
Step 1	kid_score ~ mom_iq + mom_work + mom_age	0.2027
	kid_score ~ mom_hs + mom_work + mom_age	0.0541
	kid_score ~ mom_hs + mom_iq + mom_age	0.2095
	$kid_score~~mom_hs + mom_iq + mom_work$	0.2109
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_hs + mom_work	0.0546
	kid_score ~ mom_hs + mom_iq	0.2105
Step 3*	kid_score ~ mom_hs	0.2024
	kid_score ~ mom_iq	0.0546

Model selection Backward-elimination

Backward-selection: R_{adj}^2 approach

Step	Variables included	R^2_{adj}
Full	$kid_score~~mom_hs + mom_iq + mom_work + mom_age$	0.2098
Step 1	kid_score ~ mom_iq + mom_work + mom_age	0.2027
	kid_score ~ mom_hs + mom_work + mom_age	0.0541
	$kid_score~~mom_hs + mom_iq + mom_age$	0.2095
	kid_score ~ mom_hs + mom_iq + mom_work	0.2109
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_hs + mom_work	0.0546
	kid_score ~ mom_hs + mom_iq	0.2105
Step 3*	kid_score ~ mom_hs	0.2024
	kid_score ~ mom_iq	0.0546

Backward-selection: p-value approach

Full model:

lm(formula = kid_score ~ mom_hs + mom_iq + mom_work + mom_age, data = cognitive)

Estimate Std. Error t value Pr(>|t|) (Intercept) 19.59241 9.21906 2.125 0.0341 * mom_hsves 5.09482 2.31450 2.201 0.0282 * mom_iq 0.56147 0.06064 9.259 <2e-16 *** mom_workyes 2.53718 2.35067 1.079 0.2810 0.21802 0.33074 0.659 0.5101 mom_age

Step 1: lm(formula = kid_score ~ mom_hs + mom_iq + mom_work, data = cognitive)

Estimate Std. Error t value Pr(>|t|) (Intercept) 24.17944 6.04319 4.001 7.42e-05 *** mom_hsyes 5.38225 2.27156 2.369 0.0183 * 0.56278 0.06057 9.291 < 2e-16 *** mom_iq mom_workyes 2.56640 2.34871 1.093 0.2751

Step 2: lm(formula = kid_score ~ mom_hs + mom_iq, data = cognitive)

	Estimate	Std. Error	• t	value	Pr(> t)	
(Intercept)	25.73154	5.87521		4.380	1.49e-05	***
mom_hsyes	5.95012	2.21181		2.690	0.00742	**
mom_iq	0.56391	0.06057		9.309	< 2e-16	***

Sta102 / BME102 (Colin Rundel)

Lec 18

adjusted R^2 vs. p-value

• If you're interested in finding out which variables are significant predictors, use p-value approach.

Model selection

- If you're interested in more reliable predictions, use adjusted R^2 method.
- Most of the time (simple cases) both procedures will arrive at the same (or very similar) models.
- Note that the p-value method depends on the (somewhat arbitrary) α_{crit} cutoff. Using a different significance level you could get a completely different model. It is used commonly since it requires fitting fewer models (in the more commonly used backwards-selection approach).

Sta102 / BME102 (Colin Rundel)

Step

Step 1

Step 2

Step 3

Step 4*

Forward-selection: R_{adi}^2 approach

Variables included

kid score ~ mom hs

kid_score ~ mom_work

kid_score ~ mom_age

kid_score ~ mom_ig

kid_score ~ mom_iq + mom_work

kid_score ~ mom_iq + mom_age

kid_score ~ mom_ig + mom_hs

kid_score ~ mom_iq + mom_hs + mom_age

kid_score ~ mom_iq + mom_hs + mom_work

Lec 18

Model selection Forward-selection

April 9, 2014 10 /

R²_{adj}

0.0539

0.0097

0.0062

0.1991

0.2024

0.1999

0.2105

0.2095

0.2109

0.2098

Model selection Forward-selectio

Forward-selection

- Adjusted R² approach:
 - Start with regressions of response vs. each explanatory variable
 - Pick the model with the highest R_{adi}^2
 - Add the remaining variables one at a time to the existing model, and once again pick the model with the highest R_{adi}^2
 - Repeat until the addition of any of the remanning variables does not result in a higher R_{adi}^2
- P-value approach:
 - Start with regressions of response vs. each explanatory variable
 - Pick the variable with the smallest p-value
 - Add the remaining variables one at a time to the existing model, and pick the variable with the smallest p-value below α_{crit}
 - Repeat until any of the remaining variables does not have a p-value below $\alpha_{\it crit}$

In forward-selection the p-value approach is not any simpler (you still need to fit a bunch of models), so there's little reason to use it.

Lec 18

April 9, 2014

kid_score ~ mom_iq + mom_hs + mom_age + mom_work

Forward-selection: R_{adj}^2 approach

Step	Variables included	R^2_{adj}
Step 1	kid_score ~ mom_hs	0.0539
	kid_score ~ mom_work	0.0097
	kid_score ~ mom_age	0.0062
	kid_score ~ mom_iq	0.1991
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_iq + mom_age	0.1999
	kid_score ~ mom_iq + mom_hs	0.2105
Step 3	kid_score ~ mom_iq + mom_hs + mom_age	0.2095
	kid_score ~ mom_iq + mom_hs + mom_work	0.2109
Step 4*	kid_score ~ mom_iq + mom_hs + mom_age + mom_work	0.2098

Forward-selection: p-value approach

Which variable should b	e added to the model fi	rst?
lm(formula = kid_score	e ~ mom_hs, data = cognitiv	ve)
	Std. Error t value Pr(> t) 2.322 5.069 5.96e-0	
<pre>lm(formula = kid_score</pre>	e ~ mom_iq, data = cognitiv	Je)
	Std. Error t value Pr(> t) 0.05852 10.42 < 2e-16	
lm(formula = kid_score	e ~ mom_work, data = cognit	tive)
	Std. Error t value Pr(> t) 2.552 2.285 0.022	
<pre>lm(formula = kid_score</pre>	e ~ mom_age, data = cognit:	ive)
	Std. Error t value Pr(> t) 0.3620 1.920 0.055	
Sta102 / BME102 (Colin Rundel)	Lec 18	April 9

Model selection Forward-selection

Lec 18

Expert opinion as criterion for model selection

In addition to the quantitative approaches we discussed, variables can be included in (or eliminated from) the model based on expert opinion.

Model selection Forward-selection

Final model choice

cog_final = lm(kid_score ~ mom_hs + mom_iq, data = kid)
summary(cog_final)

##	Call:					
##	lm(formula :	= kid_scor	re ~ mom_hs +	- mom_ic	1, data =	kid)
##						
##	Coefficient	s:				
##		Estimate	Std. Error t	value	Pr(> t)	
##	(Intercept)	25.73154	5.87521	4.380	1.49e-05	***
			2.21181			
##	mom_iq	0.56391	0.06057	9.309	< 2e-16	***
##						
##	Residual sta	andard ern	or: 18.14 or	n 431 de	egrees of	freedom
##	Multiple R-	squared: ().2141, Adjus	sted R-s	squared: 0	.2105
##	F-statistic	: 58.72 or	n 2 and 431 I)F, p-v	value: < 2	.2e-16

Sta102 / BME102 (Colin Rundel)

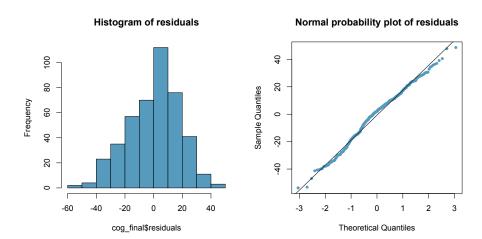
Model diagnostics

Conditions for MLR

In order to perform inference for multiple regression we require the following conditions:

- (1) Nearly normal residuals
- (2) Constant variability of residuals
- (3) Independent residuals

Nearly normal residuals

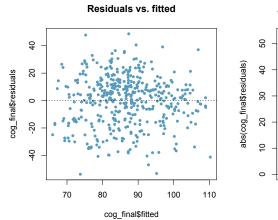


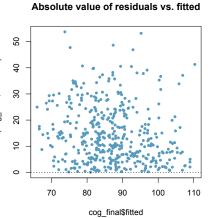
Sta102 / BME102 (Colin Rundel)	Lec 18	April 9, 2014	17 / 29	Sta102 / BME102 (Colin Rundel)	Lec 18	April 9, 2014	18 / 29

Model diagnostics

Constant variability of residuals

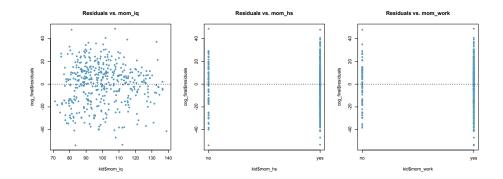
Why do we use the fitted (predicted) values in MLR?





Model diagnostics

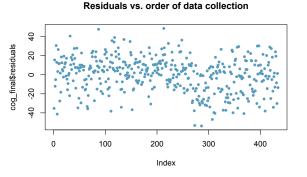
Constant variability of residuals (cont.)



Model diagnostics

Independent residuals

• If we suspect that order of data collection may influence the outcome (mostly in time series data):



• If not, think about how data are sampled.

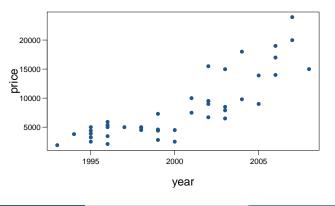
Sta102 / BME102 (Colin Rundel)	Lec 18	April 9, 2014	21 / 29

Transformations

Remove unusual observations

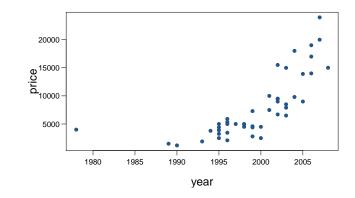
Let's remove trucks older than 20 years, and only focus on trucks made in 1992 or later.

Now what can you say about the relationship?



Truck prices

The scatterplot below shows the relationship between year and price of a random sample of 43 pickup trucks. Describe the relationship between these two variables.

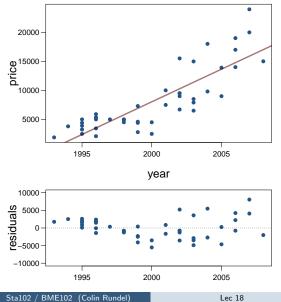


From: http://faculty.chicagobooth.edu/robert.gramacy/teaching.html

Sta102 / BME102 (Colin Rundel)	Lec 18	April 9, 2014 22 / 29

Transformations

Truck prices - linear model?



Model:

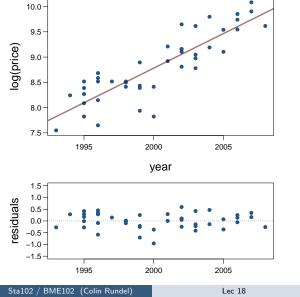
$$\widehat{price} = b_0 + b_1$$
 year

The linear model doesn't appear to be a good fit since the residuals have non-constant variance.

In particular residuals for newer cars (to the right) have a larger variance than the residuals for older cars (to the left).

Transformations

Truck prices - log transform of the response variable



Model:

 $log(price) = b_0 + b_1$ year

We have applied a log transformation to the response variable. The relationship now seems linear, and the residuals have (more) constant variance.

April 9, 2014

Interpreting models with log transformation

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-265.07	25.04	-10.59	0.00
pu\$year	0.14	0.01	10.94	0.00

Model:
$$\widehat{log(price)} = -265.07 + 0.14$$
 year

• For each additional year the car is newer (for each year decrease in car's age) we would expect the log price of the car to increase on average by 0.14 log dollars.

• which is not very useful ...

Sta102 / BME102 (Colin Rundel

Transformations

Working with logs

• Subtraction and logs:

$$log(a) - log(b) = log(\frac{a}{b})$$

• Natural logarithm:

$$e^{\log(x)} = x$$

• We can use these identities to "undo" the log transformation

Transformations

Interpreting models with log transformation (cont.)

The slope coefficient for the log transformed model is 0.14, meaning the log price difference between cars that are one year apart is predicted to be 0.14 log dollars.

Lec 18

$$log(price 1) = -265.07 + 0.14 y$$
$$log(price 2) = -265.07 + 0.14 (y + 1)$$

$$\begin{array}{rcl} \log({\rm price}\ 2) - \log({\rm price}\ 1) &=& 0.14\\ \log\left(\frac{{\rm price}\ 2}{{\rm price}\ 1}\right) &=& 0.14\\ e^{\log\left(\frac{{\rm price}\ 2}{{\rm price}\ 1}\right)} &=& e^{0.14}\\ \frac{{\rm price}\ 2}{{\rm price}\ 1} &=& e^{0.14} \end{array}$$

For each additional year the car is newer (for each year decrease in car's age) we would expect the price of the car to increase on average *by a*

April 9, 2014

Recap: dealing with non-constant variance

- Non-constant variance is one of the most common model violations, however it is usually fixable by transforming the response (y) variable
- The most common variance stabilizing transform is the log transformation: log(y), especially useful when the response variable is (extremely) right skewed.
- When using a log transformation on the response variable the interpretation of the slope changes:
 - For each unit increase in x, y is expected on average to decrease/increase by a factor of e^{b_1} .
- Another useful transformation is the square root: \sqrt{y} , especially useful when the response variable is counts.
- These transformations may also be useful when the relationship is non-linear, but in those cases a polynomial regression may also be needed (this is beyond the scope of this course, but you're welcomed to try it for your project, and I'd be happy to provide further guidance)

Lec 18

```
Sta102 / BME102 (Colin Rundel)
```

April 9, 2014 29 / 29