Lecture 1 - Introduction	
Sta 102 / BME 102	
Colin Rundel	
January 9, 2014	

General Info

Professor:	Dr. Colin Rundel - <i>colin.rundel@stat.duke.edu</i> Old Chemistry 223E
Teaching Assistants:	Stephen Desilets - <i>stephen.desilets@duke.edu</i> Xi Yang - <i>xi.yang@duke.edu</i> Tongrong Wang - <i>tongrong.wang@duke.edu</i>
Lecture:	Old Chemistry 116 Wednesdays and Fridays, 11:45 am - 1:00 pm
Labs:	Old Chem 101 01L - Mondays 10:05 - 11:20 pm 02L - Mondays 11:45 - 1:00 pm

Sta 102 / BME 102 (Colin Rundel)

Lecture 1 - Introduction

January 9, 2<u>014 <u>1</u> / 3</u>

Syllabus & Policies Syllabus Redux

Course goals & objectives

- Recognize the importance of data collection, identify limitations in data collection methods, and determine how they affect the scope of inference.
- Use statistical software to summarize data numerically and visually, and to perform data analysis.
- **③** Have a conceptual understanding of the unified nature of statistical inference.
- Apply estimation and testing methods to analyze single variables or the relationship between two variables in order to understand natural phenomena and make data-based decisions.
- Model numerical response variables using a single explanatory variable or multiple explanatory variables in order to investigate relationships between variables.
- Interpret results correctly, effectively, and in context without relying on statistical jargon.
- **(2)** Critique data-based claims and evaluate data-based decisions.
- 0 Complete an independent research project employing what you learn in this class.

Syllabus & Policies Syllabus Redux

Major topics

- Introduction to data: Observational studies and non-causal inference, principles of experimental design and causal inference, exploratory data analysis: description, summary and visualization.
- *Probability and distributions:* The basics of probability and chance processes, Bayesian perspective in statistical inference, the normal distribution.
- Framework for inference: Central Limit Theorem and sampling distributions
- Statistical inference for numerical variables
- Statistical inference for categorical variables
- *Simple linear regression:* Bivariate correlation and causality, introduction to modeling
- Multivariate regression: Multiple regression, logistic regression

Statistics for the Life Sciences - Samuels, Witmer, Schaffner

Pearson, 4th Edition, 2012 (ISBN: 9780321652805)

OpenIntro Statistics - Diez, Barr, Çetinkaya-Rundel CreateSpace, 2nd Edition, 2012 (ISBN: 1478217200)

Four function calculator

Course materials

Optional Materials:

Webpage

Announcements, slides, assignments, etc. posted on the website.

a 102 / BME	102 - Intro	Biostatistics	(Spring 2015)			Schedule	Info	Syllabus	Sakai	RStudio
:	Sched	ule								
	Week	Date	Торіс	Reading	Slides	Assig	nments			
	Week 0	Wed, 1/7	No class, no lab							
		Fri, 1/9	Introduction	Samuels Ch. 1 Diez Ch. 1						
	Week 1	Wed, 1/14	Data and Data Summaries	Samuels Ch. 2						
		Fri, 1/16	Axioms of Probability	Samuels Ch. 3.1 - 3.3 Diez Ch. 2						
	Week 2	Wed, 1/21	More Conditional Probability							
		Fri, 1/23	Discrete distributions	Samuels Ch. 3.6 - 3.7 Diez Ch. 3						

http://stat.duke.edu/~cr173/Sta102_Sp15/ or via Sakai

Sta 102 / BME 102 (Co	olin Rundel) Lecture 1 - Introduction	January 9, 2014	4 / 34	Sta 102 / BME	102 (Colin Rundel)	Lecture 1 - Int	troduction	January 9, 2014	5 / 34
Support	Syllabus & Policies Syllabus Redux			Grading	-	Syllabus & Policies	Syllabus Redux		
Office hours SECC	Tuesdays 1:00 - 3:00 pm or by appoin Sundays - Thursdays 4 - 9 pm (Old 211A)				Homework Labs Project 1 Project 2	- 10% - 10% - 10% - 10%	Midterm 1 Midterm 2 Final	- 15% - 15% - 30%	
	The statistics education center has upper tics students available to help you. For m tion and a schedule see http://stat.duke.e resources-students.	nore informa-		have • .	been calculate Average of > 90 Average of > 80			after overall avera	iges
about the • Homework	ighly encouraged to stop by with any qu class, or just to say hi and introduce yo will be due on Wednesdays - I strongly g all problems to make the most of OH	ourself. • recommend at le		the n	nore generous	there is that tl the curve will l des will be assi	be.	nastered the mate idterm 1	rial,

Homework

Objective: Help you develop a more in-depth understanding of the material and help you prepare for exams and the project.

- Questions from the textbooks and outside sources. (Full questions will be downloadable as a PDF from course website)
- Due at the beginning of class on the due date.
- 11 homeworks planned lowest score will be dropped.
- Show all your work to receive credit.
- You are encouraged to work with others, but turn in your own work.
- Excused absences do not excuse homework.

Labs

Objective: Give you hands on experience with data analysis using statistical software, provide you with tools for the projects.

https://vm-manage.oit.duke.edu/containers/rstudio

- 12 labs planned lowest score will be dropped.
- Write ups due the following week most can be completed in class, turned in via Sakai.
- You must attend the lab you are enrolled in, if you do not attend in a given week you are eligible for at most 50% credit on that lab.

Sta 102 / BME 102 (Colin Rundel)	troduction January 9, 2014	8 / 34	Sta 102 / BME 102 (Colin Rundel)	Lecture 1 - Introduction	January 9, 2014 9 / 34
Syllabus & Policies	Syllabus Redux			Syllabus & Policies Syllabus Redux	
Research Projects			Exams		
<i>Objective:</i> Give you independent applied data	ed research experience using rea	I	 Midterm 1: <i>Friday, I</i> Midterm 2: <i>Friday, I</i> 	2 · · · · · · · · · · · · · · · · · · ·	
 Project 1: Pick data and research question(s Analyze the data, write up your research 	,			I 28 th from 2 - 5 pm (Cur be changed. No make-up	,
Project 2:Open ended research project.			you cannot take the	exams on these dates you	ı should drop this class.
 You choose a research question, f up your results. 	ind relevant data, analyze it, wri	ite	and you may also br sheet must be no lar	culator to the exams (no eigen one sheet of notes ("congoing one sheet of notes ("congoing than $8\frac{1}{2}$ " $ imes$ 11" and n	cheat sheet"). This nust be prepared by you
More details on both in the weeks to c	come.		(no photocopies). Ye	ou may use both sides of	the sheet.

Students with disabilities

Late Work Policy

Students with disabilities who believe they may need accommodations in this class are encouraged to contact the Student Disability Access Office at (919) 668-1267 as soon as possible to better ensure that such accommodations can be made.

• For homework and lab write ups:

- late but during class: -10%
- after class on due date: -20%
- next day or later: -100%
- $\bullet\,$ For research projects: -10% / day late

Sta 102 / BME 102 (Colin Rundel)	Lecture 1 - Introduction	January 9, 2014	12 / 34	Sta 102 / BME 102 (Colin Rundel)	Lecture 1 - Introduction	January 9, 2014	13 / 34
	Syllabus & Policies Syllabus Redux				Syllabus & Policies Syllabus Redux		
Other Policies				Academic Dishones	ty		

- The final exam must be taken at the stated time and you cannot pass this class if you do not take the final exam.
- $\bullet\,$ You must score at least ${>}30\%$ on both research projects to pass this class.
- Regrade requests must be made within one week of when the assignment is returned, and must be submitted in writing.

Any form of academic dishonesty will result in an immediate 0 on the given assignment and will be reported to the Office of Student Conduct. Additional penalties may also be assessed if deemed appropriate. If you have any questions about whether something is or is not allowed, ask me beforehand.

Some examples:

- Use of disallowed materials (including any form of communication with classmates or looking at a classmate's work) during exams.
- Plagiarism of any kind.
- Use of outside answer keys or solution manuals for the homework.

Why (Bio)Statistics Scientific Method

Tips for success

- Complete the reading before each lecture, and review again at the end of each chapter.
- 2 Be an active participant during lectures and labs.
- Ask questions during class or office hours, or by email. Ask me, the TAs, and your classmates.
- O the problem sets start early and make sure you attempt and understand all questions.
- Start your project early and allow adequate time to complete the necessary components.
- Give yourself plenty of time time to prepare a good cheat sheet for exams. This requires going through the material and taking the time to review the concepts that you're not comfortable with.
- O not procrastinate don't let a week go by with unanswered questions as it will just make the following week's material even more difficult to follow.

Lecture 1 - Introduction

Sta 102 / BME 102	(Colin Rundel)
-------------------	----------------

Why (Bio)Statistics Historical Connections

INTRODUCTION

Charles Darwin

ON

THE ORIGIN OF SPECIES

BY MEANS OF NATURAL SELECTION.

OR THE

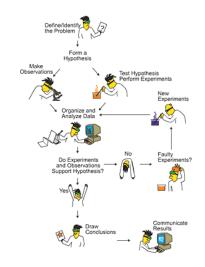
PRESERVATION OF FAVOURED RACES IN THE STRUGGLE FOR LIFE.

BY CHARLES DARWIN, M.A.,

FELLOW OF THE ROYAL, GEOLOGICAL, LINNÆAN, ETC., SOCIETIES; AUTHOR OF 'JOURNAL OF RESEARCHES DURING H. M. S. BEAGLE'S VOYAGE ROUND THE WORLD.'

CHAPTER I.

VARIATION UNDER DOMESTICATION


.. Page 1

CHAPTER II.

VARIATION UNDER NATURE.

Variability — Individual differences — Doubtful species — Wide ranging, much diffused, and common species vary most—Species of the larger genera in any country vary more than the species of the smaller genera—Many of the species of the larger genera resemble varieties in being very closely, but unequally, related to each other, and in having restricted ranges . . . 44–69

Statistics and the Scientific Method

From Universe Today - http://www.universetoday.com/74036/what-are-the-steps-of-the-scientific-method/

Sta 102 / BME 102 (Colin Rundel)	Lecture 1 - Introduction	January 9, 2014 17 / 34
----------------------------------	--------------------------	-------------------------

Why (Bio)Statistics Historical Connections

Charles Darwin

vi CONTENTS.

CHAPTER III.

STRUGGLE FOR EXISTENCE.

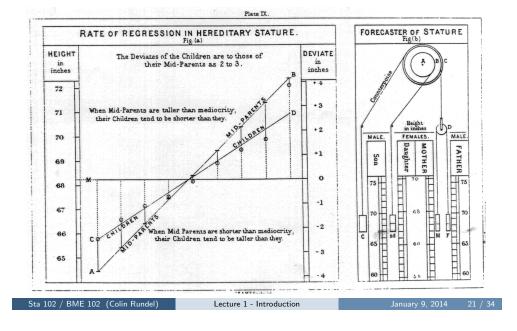
Bears on natural selection—The term used in a wide sense—Geometrical powers of increase — Rapid increase of naturalised animals and plants—Mature of the checks to increase—Competition universal — Effects of climate — Protection from the number of individuals—Complex relations of all animals and plants throughout nature—Struggle for life most severe between individuals and varieties of the same species; often severe between species of the same genus—The relation of organism to organism the most important of all relations . Page 60-79

CHAPTER IV.

NATURAL SELECTION.

CHAPTER V. Laws of Variation.

Why (Bio)Statistics


Francis Galton

Neights of the Mid-		Heights of the Adult Children. Total Number of						Medians.									
parents in inches.	Below	62.2	63.2	64.2	65.2	66·2	67.2	68·2	69·2	70.2	71.2	72-2	73.2	Above	Adult Children.	Mid- parents.	
Above												1	32		4	5	
72.5								1 3	2 5 18	1	2	7	2	4	19	6	72.2
71.5					1	3	4		5	10	47	9	2	2	43	11	69.9
70.5	1	i ••	1	: ::.	1	1	3	12	18	14	7	4	3	3	68	22	69.5
69.5	•:		11	16	4	17	27	20	33	25	20	11	4	5	183	41	68.9
65.5	1	1	17	11	16	25	31 38	34 28	48	21 19	1S 11	4	3	••	219	49	68.2
67·5 66·5		3	53	14		1 17	38	14	13			4	••	••	211	33	67.6
65.5	ï	1.00	9	5	27	11	11		13	45	2		••	•••••	78 66	20 12	67.2
64.5	1	l'i	4	. 4	lí	5	5		2	Ð	- 4	-		••	23	12	66·7 65·8
Below	i	1.	2	4	i	2	2	ï	ĩ					::	14	1	
Totals	5	7	32	59	45	117	135	120	167	99	61	41	17	14	928	205	
Medians		1	66.3	67·S	67.9	67.7	67.9	68.3	68.5	69.0	69.0	70.0					

Sta 102	/ BME 102	(Colin Rundel)
---------	-----------	----------------

Lecture 1 - Introduction

Francis Galton

Why (Bio)Statistics

R.A. Fisher

"I occasionally meet geneticists who ask me whether it is true that the great geneticist R.A. Fisher was also an important statistician." - L.J. Savage (Annals of Statistics, 1976)

Source: http://www.swlearning.com/quant/kohler/stat/biographical_sketches/Fisher_3.jpeg

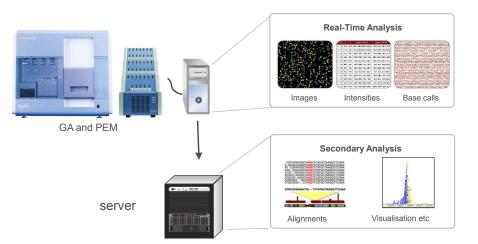
Why (Bio)Statistics

R.A. Fisher cont.

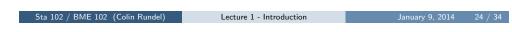
Biology:

- Heterozygote advantage
- Population genetics (Modern evolutionary synthesis)
- Fisherian runaway selection
- ...

Statistics:

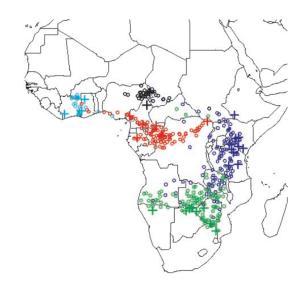

- Analysis of Variance
- Null hypothesis
- Maximum Likelihood
- F distribution
- Fisher's Exact test
- Fisher Information
- Randomization testing
- ...

Next Gen Sequencing

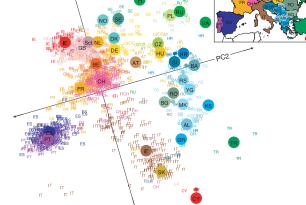


Source: Irish Elk - Fiddler Crab - Peafowl

Why (Bio)Statistics Selected Biology Applications

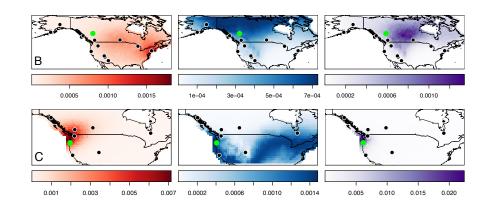

Lecture 1 - Introduction

http://www.ebi.ac.uk/industry/Documents/workshop-materials/newsequence291009/Basecalling-Klaus_Maisinger.pdf


Why (Bio)Statistics Selected Biology Applications

Wasser et al. - PNAS 2004

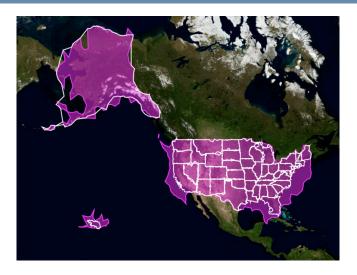
Sta 102 / BME 102 (Colin Rundel)


Novembre et al. - Nature 2008

Analysis of 197,146 SNPs in 1,387 Europeans with known family origins

Why (Bio)Statistics Selected Biology Applications

Migratory Connectivity

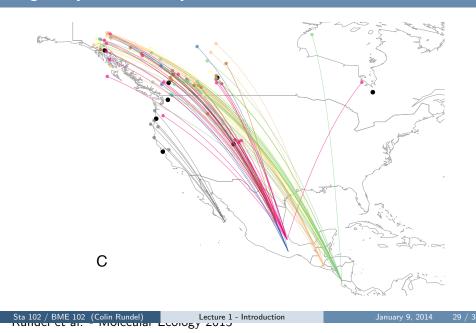


Rundel et al. - Molecular Ecology 2013

Sta 102 / BME 102 (Colin Rundel)	Lecture 1 - Introduction	January 9, 2014	28 / 34

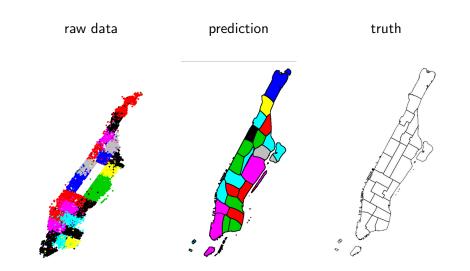
Other Applications Flikr Geotags

Map based on Flickr tags


Lecture 1 - Introduction

http://aaronstraupcope.com

Sta 102 / BME 102 (Colin Rundel)

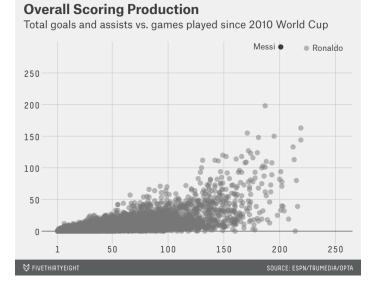

/ 34

Migratory Connectivity

Other Applications Flikr Geotags

Manhattan - Parking Tickets and Police Precincts

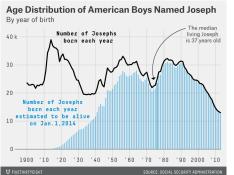
Other Applications 538


The most famous statistician in the world ...

	resident . 6 Forecas	st	President Now-cast		Senat Nov. 6 Fore	
Bara	ack Obam	а			Mitt Ro	mney
	13.0) since Oct.		Electoral vote		225	
			270 to win			
330				~	~ ~	,
270 210			~~~~	~~	~	`
	June	July	Aug	Sept	Oct	Nov
).9% 5 since Oct.		Chance of Winning		9.1	

Five Thirty Eight Forecast

538 - Lionel Messi Is Impossible


Sta 102 / BME 102 (Colin Rundel)

Lecture 1 - Introduction

ta 102 / BME 102 (Colin Rundel)		
	ita 102 / BME 102 (Colin Rundel)	Lecture 1 - Introduction

Other Applications 538

538 - How to Tell Someone's Age When All You Know Is Her Name

Age Distribution of American Girls Named Violet By year of birth Number of Violets 5k The median living Violet is 47 years old born each year Number of Violets born each year estimated to be alive on Jan.1,201 1900 '10 '20 '30 '40 '50 '60 '70 '80 '90 2000 '10 SOCIAL SECURITY ADMINISTRATION