Lecture 18 - Correlation and Regression

Sta102 / BME102

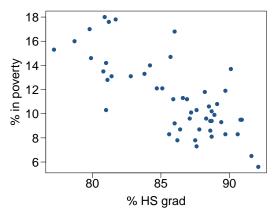
Colin Rundel

April 1, 2015

Modeling numerical variables

Poverty vs. HS graduate rate

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?

Predictor?

Relationship?

Modeling numerical variables

- So far we have worked with single numerical and categorical variables, and explored relationships between numerical and categorical, and two categorical variables.
- Today we will learn to quantify the relationship between two numerical variables.
- Next week we will learn to model numerical variables using many predictor (independent) variables (including both numerical and categorical) at once.

Sta102 / BME102 (Colin Rundel)

Lec 18

April 1 2015 2 /

Correlation

Quantifying the relationship

- Correlation describes the strength of the linear association between two variables.
- ullet It takes values between -1 (perfect negative) and +1 (perfect positive).
- A value of 0 indicates no linear association.
- We use ρ to indicate the population correlation coefficient, and R or r to indicate the sample correlation coefficient.

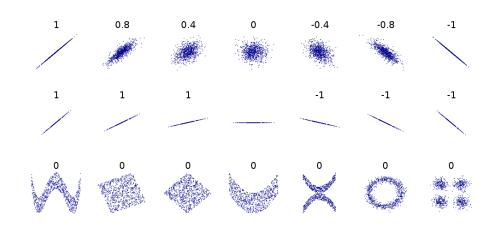
Sta102 / BME102 (Colin Rundel) Lec 18 April 1, 2015 3 / 33

Sta102 / BME102 (Colin Rundel)

Lec 18

pril 1, 2015 4

Correlation Examples



From http://en.wikipedia.org/wiki/Correlation

Sta102 / BME102 (Colin Rundel)

Lec 18

April 1, 2015

Correlation

Covariance and Correlation

Covariance, cont.

The magnitude of the covariance is not very informative since it is affected by the magnitude of both X and Y. However, the sign of the covariance tells us something useful about the relationship between X and Y.

Consider the following conditions:

- $x_i > \mu_X$ and $y_i > \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i < \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i > \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be negative.
- $x_i < \mu_X$ and $y_i > \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be negative.

Covariance

We have previously discussed the variance as a measure of uncertainty of a random variable:

$$Var(X) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)^2$$

In order to define correlation we first need to define covariance, which is a generalization of variance to two random variables

$$Cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)$$

Covariance is not a measure of uncertainly but rather a measure of the degree to which X and Y tend to be large (or small) at the same time or the degree to which one tends to be large while the other is small.

Sta102 / BME102 (Colin Rundel)

Lec 18

April 1, 2015 6 / 3

Cauralatia

Covariance and Correlation

Properties of Covariance

- Cov(X,X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, Y) = 0 if X and Y are independent
- Cov(X, c) = 0
- Cov(aX, bY) = ab Cov(X, Y)
- Cov(X + a, Y + b) = Cov(X, Y)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

Correlation

Since Cov(X, Y) depends on the magnitude of X and Y we would prefer to have a measure of association that is not affected by changes in the scales of the variables.

The most common measure of *linear* association is correlation which is defined as

$$\rho(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$
$$-1 < \rho(X, Y) < 1$$

Where the magnitude of the correlation measures the strength of the *linear* association and the sign determines if it is a positive or negative relationship.

Sta102 / BME102 (Colin Rundel)

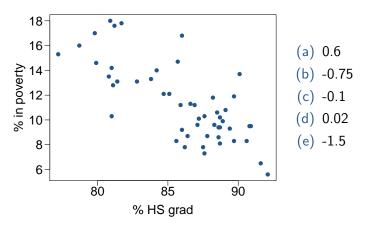
Lec 18

Sta102 / BME102 (Colin Rundel)

Lec 18

Guessing the correlation

Which of the following is the best guess for the correlation between % in poverty and % HS grad?



Given random variables X and Y

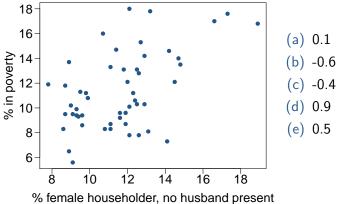
Correlation and Independence

$$X$$
 and Y are independent \implies $Cov(X,Y) = \rho(X,Y) = 0$

$$Cov(X, Y) = \rho(X, Y) = 0 \implies X$$
 and Y are independent

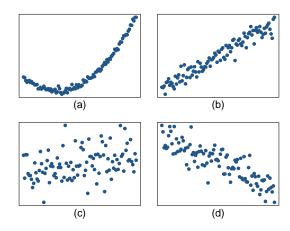
Guessing the correlation

Which of the following is the best guess for the correlation between % in poverty and % single mother household?



Assessing the correlation

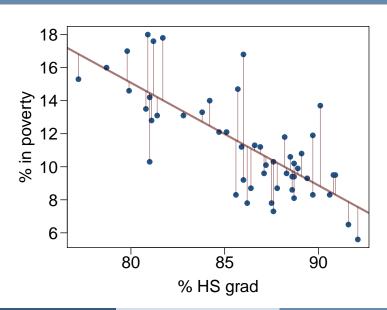
Which of the following is has the strongest correlation, i.e. correlation coefficient closest to +1 or -1?



Lec 18

Best fit line - least squares regression

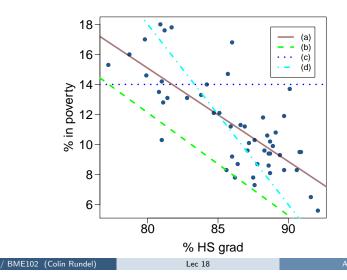
Quantifying best fit



Best fit line - least squares regression

Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between % in poverty and % HS grad?

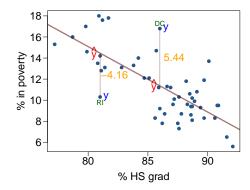


Best fit line - least squares regression

Residuals

A residual is the difference between the observed and predicted y.

$$y_i = \hat{y}_i + e_i \quad \Rightarrow \quad e_i = y_i - \hat{y}_i$$



- % living in poverty in DC is 5.44% more than predicted.
- % living in poverty in RI is 4.16% less than predicted.

Sta102 / BME102 (Colin Runde

Lec 18

Sta102 / BME102 (Colin Rundel

Lec 18

A measure for the best line

- We want a line that has small residuals:
 - Option 1: Minimize the sum of magnitudes (absolute values) of residuals

$$|e_1| + |e_2| + \cdots + |e_n|$$

Option 2: Minimize the sum of squared residuals – least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
 - Most commonly used
 - 2 Square is a nicer function than absolute value
 - In many applications, a residual twice as large as another is more than twice as bad

Sta102 / BME102 (Colin Rundel)

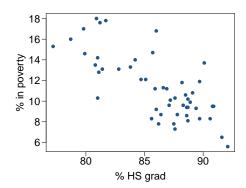
Lec 18

Sta102 / BME102 (Colin Rundel)

Lec 18

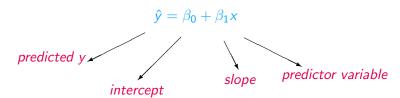
Best fit line - least squares regression

Given...



	% HS grad	% in poverty
	(x)	(y)
mean	$\bar{x} = 86.01$	$\bar{y} = 11.35$
sd	$s_x = 3.73$	$s_y = 3.1$
	correlation	R = -0.75

The least squares line



Notation:

- Intercept:
 - Parameter: β_0 • Point estimate: b₀
- Slope:
 - Parameter: β_1

• Point estimate: *b*₁

Best fit line - least squares regression

Slope

The slope of the regression line is calculated as

$$b_1 = \frac{s_y}{s_x} R$$

In context...

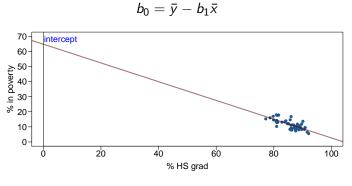
$$b_1 = \frac{3.1}{3.73} \times -0.75 = -0.62$$

Interpretation

For each % point increase in HS graduate rate, we would expect the % living in poverty to decrease on average by 0.62% points.

Intercept

The intercept is where the regression line intersects the *y*-axis. The calculation of the intercept uses the fact the a regression line must pass through (\bar{x}, \bar{y}) .



 $b_0 = 11.35 - (-0.62) \times 86.01 = 64.68$

Sta102 / BME102 (Colin Rundel)

Lec 18

April 1, 2015

21 /

Sta102 / BME102 (Colin Rundel)

Lec 18

April 1 2015 22

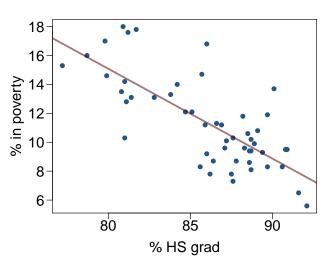
22 / 22

Best fit line - least squares regression

The least squares line

Regression line

$$[\% \ \widehat{in \ poverty}] = 64.68 - 0.62 \ [\% \ HS \ grad]$$



Interpreting Intercepts

Which of the following is the correct interpretation of the intercept?

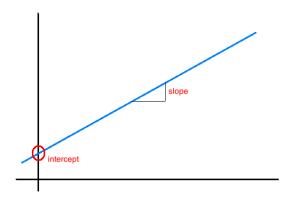
- (a) For each % point increase in HS graduate rate, % living in poverty is expected to increase on average by 64.68%.
- (b) For each % point decrease in HS graduate rate, % living in poverty is expected to increase on average by 64.68%.
- (c) Having no HS graduates leads to 64.68% of residents living below the poverty line.
- (d) States with no HS graduates are expected on average to have 64.68% of residents living below the poverty line.
- (e) In states with no HS graduates % living in poverty is expected to increase on average by 64.68%.

The least surreuse li

Interpretation of slope and intercept

Best fit line - least squares regression

- Intercept: When x = 0, y is expected to equal the intercept.
- *Slope:* For each *unit* increase in x, y is expected to *increase/decrease* on average by *the slope*.



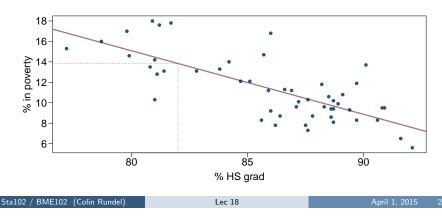
Sta102 / BME102 (Colin Rundel)

Lec 18

April 1, 2015

Prediction

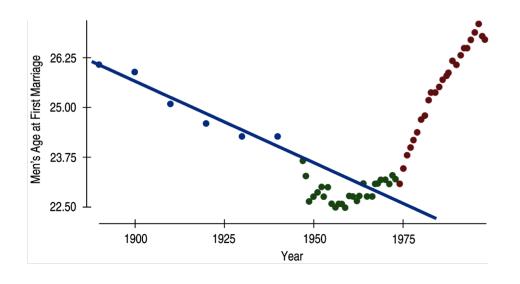
- Using the linear model to predict the value of the response variable for a given value of the predictor variable is called *prediction*, simply by plugging in the value of x in the linear model equation.
- There will be some uncertainty associated with the predicted value we'll talk about this next time.



Best fit line - least squares regression

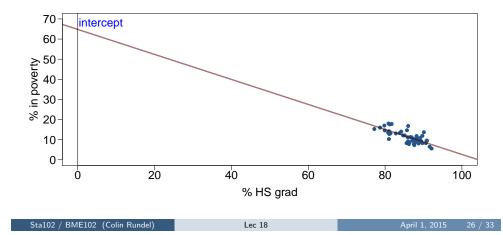
Prediction & extrapolation

Examples of extrapolation



Extrapolation

- Applying a model estimate to values outside of the realm of the original data is called extrapolation.
- Sometimes the intercept might be an extrapolation.



Best fit line - least squares regression

Prediction & extrapolation

Examples of extrapolation

Examples of extrapolation

Momentous sprint at the 2156 Olympics?

Women sprinters are closing the gap on men and may one day overtake them.

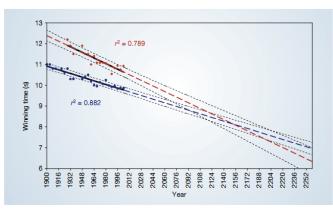


Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regresion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men at

Sta102 / BME102 (Colin Rundel) Lec 18 April 1, 2015 29 / 3:

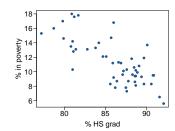
ect just before the 2156 Olympics, when the winning women's 100-metre sprint time of 8.079 s will be faster than the men's at 8.098 s

Best fit line - least squares regression

Interpretation of R^2

Which of the below is the correct interpretation of R = -0.75, $R^2 = 0.5625$?

- (a) 56% of the variability in the % of HG graduates among the 51 states is explained by the model.
- (b) 56% of the variability in the % of residents living in poverty among the 51 states is explained by the model.
- (c) 56% of the time % HS graduates predict % living in poverty correctly.
- (d) 75% of the variability in the % of residents living in poverty among the 51 states is explained by the model.



 R^2

- The strength of the fit of a linear model is most commonly evaluated using R^2 .
- R^2 is calculated as the square of the correlation coefficient.
- It tells us what percent of variability in the response variable (y) is explained by the predictor variables (x).
- The remainder of the variability is "unexplained".
- Sometimes referred to as the coefficient of determination.
- For the model we've been working with, $R^2 = (-0.75)^2 = 0.5625$.

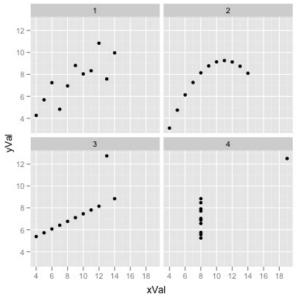
Sta102 / BME102 (Colin Rundel)

Lec 18

April 1, 2015 30 / 33

Best fit line - least squares regression

Anscombe's Quartet



Sta102 / BMF102 (Colin Rundel)

April 1 2015

Anscombe's Quartet - Data

×1	y1	×2	y2	×3	уЗ	×4	y4
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	0.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

All four datasets have the same regression line:

$$y = 3 + 0.5x$$

Sta102 / BME102 (Colin Rundel) Lec 18 April 1, 2015 33 / 33