
Lecture 19 - Regression: Inference, Outliers, and
Intervals
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Inference for linear regression Understanding regression output from software

Nature vs. nurture?

In 1966 Cyril Burt published a paper called “The genetic determination of

differences in intelligence: A study of monozygotic twins reared apart” The data

consist of IQ scores for [an assumed random sample of] 27 identical twins, one

raised by foster parents, the other by the biological parents.
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Inference for linear regression Understanding regression output from software

Finding the regression line

Foster IQ Biological IQ
(y) (x)

mean ȳ = 95.11 x̄ = 95.30
sd sy = 16.08 sx = 15.73

correlation R = 0.8819

b1 =
sy
sx
R =

16.08

15.73
0.8819 = 0.90

b0 = ȳ − b1 x̄ = 95.11− 0.90 95.30 = 9.2
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Inference for linear regression Understanding regression output from software

Regression Output

summary(lm(twins$Foster ~ twins$Biological))

## Call:

## lm(formula = twins$Foster ~ twins$Biological)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.3512 -5.7311 0.0574 4.3244 16.3531

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.20760 9.29990 0.990 0.332

## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 7.729 on 25 degrees of freedom

## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769

## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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Inference for linear regression Conditions for inference

Conditions for inference

In order to perform inference, the following conditions must be met:

1 Linearity

2 Nearly normal residuals

3 Constant variability
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Inference for linear regression Conditions for inference

Conditions: (1) Linearity

The relationship between the explanatory and the response variable
should be linear.
Methods for fitting a model to non-linear relationships exist, but are
beyond the scope of this class.
Check using a scatterplot or a residual plot.
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Inference for linear regression Conditions for inference

Anatomy of a residuals plot
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∗ Rhode Island:

% HS grad = 81 % in poverty = 10.3

̂% in poverty = 64.68− 0.62 ∗ 81 = 14.46

eRI = % in poverty − ̂% in poverty

= 10.3− 14.46 = −4.16

� Washington, DC:

% HS grad = 86 % in poverty = 16.8

̂% in poverty = 64.68− 0.62 ∗ 86 = 11.36

eDC = % in poverty − ̂% in poverty

= 16.8− 11.36 = 5.44
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Inference for linear regression Conditions for inference

Conditions: (2) Nearly normal residuals

The residuals should be nearly normal.
This condition may not be satisfied when there are unusual
observations that don’t follow the trend of the rest of the data.
Checked using a histogram or normal probability plot of residuals.
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Inference for linear regression Conditions for inference

Conditions: (3) Constant variability
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The variability of points around
the least squares line should be
roughly constant.

This implies that the variability
of residuals around the 0 line
should be roughly constant as
well.

Also called homoscedasticity.

Check using a residuals plot.
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Inference for linear regression Conditions for inference

Checking conditions

What condition is this linear model violating?
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Inference for linear regression Conditions for inference

Checking conditions (II)

What condition is this linear model obviously violating?
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Inference for linear regression HT for the slope

Back to Nature vs nurture
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000
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Inference for linear regression HT for the slope

Testing for the slope

Assuming that these 27 twins comprise a representative sample of all twins
separated at birth, we would like to test if these data provide convincing
evidence that the IQ of the biological twin is a significant predictor of IQ
of the foster twin.

What are the appropriate hypotheses?

First consider what the null hypothesis should be, if there is no relationship
between the two variables what value of the slope would we expect to see?

H0: β1 = 0

HA: β1 6= 0
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Inference for linear regression HT for the slope

Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

We always use a t-test in inference for regression parameters.
Remember: Test statistic, T = point estimate−null value

SE

Point estimate is b1, the calculated slope for the observed data.

SEb1 , is the standard error associated with that slope.

SEb1 =

√
1

n−2

∑n
i=1 ε

2
i∑n

i=1(xi − x̄)2

Degrees of freedom associated with the slope is df = n − 2, where n
is the sample size.
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Inference for linear regression HT for the slope

Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

T =
0.9014− 0

0.0963
= 9.36

df = 27− 2 = 25

p-value = P(|T | > 9.36) < 0.01

Sta102 / BME102 (Colin Rundel) Lec 19 April 3, 2015 15 / 43

Inference for linear regression CI for the slope

Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate ±ME and

the degrees of freedom associated with the slope in a simple linear regression is

n− 2. What is the correct 95% confidence interval for the slope parameter? Note

that the model is based on observations from 27 twins.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000
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Inference for linear regression CI for the slope

Recap

Inference for the slope for a SLR model (only one explanatory
variable):

Hypothesis test:

T =
b1 − null value

SEb1

df = n − 2

Confidence interval:
b1 ± t?df =n−2 × SEb1

The null value is usually 0, since we are usually checking for any
relationship between the explanatory and the response variable.

The regression output gives b1, SEb1 , and the two-tailed p-value for
the t-test of the slope where the null value is 0.

We rarely do inference on the intercept (since it is rarely meaningful),
so we will be focus on the estimates and inference for the slope.
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Inference for linear regression CI for the slope

Caution

Always be aware of the type of data you’re working with: random
sample, non-random sample, or population.

Statistical inference, and the resulting p-values, are meaningless when
you have population data.

If you have a sample that is non-random (biased), the results will be
unreliable.

The ultimate goal is to have independent observations – and you
know how to check for those by now.
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Inference for linear regression An alternative statistic

Variability partitioning

We considered the t-test as a way to evaluate the strength of evidence
for a hypothesis test for the slope of relationship between x and y .

However, we can also consider the variability in y explained by x ,
compared to the unexplained variability.

Partitioning the variability in y to explained and unexplained
variability requires analysis of variance (ANOVA).
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Inference for linear regression An alternative statistic

ANOVA output - Sum of squares

Df Sum Sq Mean Sq F value Pr(>F)
bioIQ 1 5231.13 5231.13 87.56 0.0000
Residuals 25 1493.53 59.74
Total 26 6724.66

Sum of squares: SSTot =
∑

(yi − ȳ)2 = 6724.66 (total variability in y)

SSErr =
∑
i

(yi − ŷi )
2 =

∑
i

e2
i

= 1493.53 (unexplained variability in residuals)

SSReg =
∑
i

(ŷi − ȳ)2

= SSTot − SSErr (explained variability in y)

= 6724.66− 1493.53 = 5231.13

Degrees of freedom: dfTot = n − 1 = 27− 1 = 26

dfReg = 2− 1 = 1 (there are 2 coefficients)

dfRes = dfTot − dfReg = 26− 1 = 25
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Inference for linear regression An alternative statistic

ANOVA output - F-test

Df Sum Sq Mean Sq F value Pr(>F)

bioIQ 1 5231.13 5231.13 87.56 0.0000
Residuals 25 1493.53 59.74

Total 26 6724.66

Mean sq.: MSReg =
SSReg
dfReg

=
5231.13

1
= 5231.13

MSErr =
SSErr
dfErr

=
1493.53

25
= 59.74

F-statistic: F(1,25) =
MSReg
MSErr

= 87.56 (ratio of explained to unexplained variability)

The null hypothesis is β0 = β1 = 0 and the alternative is βj 6= 0 for some
j . With a large F-statistic, and a small p-value, we reject H0 and conclude
that the linear model is significant.
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Inference for linear regression An alternative statistic

Regression Output

summary(lm(twins$Foster ~ twins$Biological))

## Call:

## lm(formula = twins$Foster ~ twins$Biological)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.3512 -5.7311 0.0574 4.3244 16.3531

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.20760 9.29990 0.990 0.332

## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***

## ---

## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

##

## Residual standard error: 7.729 on 25 degrees of freedom

## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769

## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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Inference for linear regression An alternative statistic

ANOVA output - R2 calculation
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Df Sum Sq Mean Sq F value Pr(>F)

bioIQ 1 5231.13 5231.13 87.56 0.0000
Residuals 25 1493.53 59.74
Total 26 6724.66

R2 =
explained variability

total variability
=

SSReg
SSTot

=
5231.13

6724.66
= 0.7779
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Types of outliers in linear regression

Types of outliers

How does one or more
outliers influence the least
squares line?

To answer this question think
of where the regression line
would be with and without
the outlier(s). ●
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Types of outliers in linear regression

Types of outliers

How does the following
outlier influence the least
squares line?
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Types of outliers in linear regression

Some terminology

Outliers are points that fall away from the cloud of points.

Outliers that fall horizontally away from the center of the cloud are
called leverage points.

High leverage points that actually influence the slope of the
regression line are called influential points.

In order to determine if a point is influential, visualize the regression
line with and without the point. Does the slope of the line change
considerably? If so, then the point is influential. If not, then it’s not.
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Types of outliers in linear regression

Influential points

Data are available on the log of the surface temperature and the log of the
light intensity of 47 stars in the star cluster CYG OB1.
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Types of outliers in linear regression

Hertzsprung-Russell Diagram
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Types of outliers in linear regression

Types of outliers

Which type of outlier is displayed below?
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Types of outliers in linear regression

Types of outliers

Which type of outlier is displayed below?
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Types of outliers in linear regression

Recap

Are following statements true or false?

(1) Influential points always change the intercept of the regression line.

(2) Influential points always reduce R2.

(3) It is much more likely for a high leverage point to be influential, than
a low leverage point.

(4) When the data set includes an influential point, the relationship
between the explanatory variable and the response variable is always
nonlinear.
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Types of outliers in linear regression

Recap (cont.)

R = −0.091,R2 = 0.0083
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R = 0.72,R2 = 0.522
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Confidence intervals and Prediction intervals Confidence intervals

Confidence intervals for average values

A confidence interval for the average (expected) value of y for a given x?,
is given by

ŷ ± t?n−2se

√
1

n
+

1

n − 1

(x? − x̄)2

s2
x

where s is the standard deviation of the residuals

se =

√∑
(yi − ŷi )2

n − 1

Note that when x? = x̄ this reduces to

ŷ ± t?n−2

se√
n
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Confidence intervals and Prediction intervals Confidence intervals

Example Calculation

Calculate a 95% confidence interval for the average IQ score of foster twins whose

biological twins have IQ scores of 100 points. Note that the average IQ score of

27 biological twins in the sample is 95.3 points, with a standard deviation is 15.74

points.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.20760 9.29990 0.990 0.332

bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom
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ŷ = 9.2076 + 0.90144× 100 ≈ 99.35

df = n − 2 t? = 2.06

ME = 2.06× 7.729×
√

1

27
+

(100− 95.3)2

26× 15.742

≈ 3.2

CI = 99.35± 3.2

= (96.15, 102.55)

Sta102 / BME102 (Colin Rundel) Lec 19 April 3, 2015 34 / 43

Confidence intervals and Prediction intervals Confidence intervals

Distance from the mean

How would you expect the width of the 95% confidence interval for the
average IQ score of foster twins whose biological twins have IQ scores of
130 points (x? = 130) to compare to the previous confidence interval
(where x? = 100)?
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Confidence intervals and Prediction intervals Confidence intervals

How do the confidence intervals where x? = 100 and x? = 130 compare in
terms of their widths?

x? = 100

x? = 130

ME100 = 2.06× 7.729×

√
1

27
+

(100− 95.3)2

26× 15.742
= 3.2

ME130 = 2.06× 7.729×

√
1

27
+

(130− 95.3)2

26× 15.742
= 7.53
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Confidence intervals and Prediction intervals Confidence intervals

Recap

The width of the confidence interval for E (y) increases as x? moves away
from the center.

Conceptually: We are much more certain of our predictions at the
center of the data than at the edges (and our level of certainty
decreases even further when predicting outside the range of the data
– extrapolation).
Mathematically: As (x? − x̄)2 term increases, the margin of error of
the confidence interval increases as well.

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

● ●

●

70 80 90 100 110 120 130

60

80

100

120

140

biological IQ

fo
st

er
 IQ

Sta102 / BME102 (Colin Rundel) Lec 19 April 3, 2015 37 / 43

Confidence intervals and Prediction intervals Prediction intervals

Predicting a value, not an average

Earlier we learned how to calculate a confidence interval for average y ,
E (y), for a given x?.

Suppose that we are not interested in the average, but instead we want to
predict a future value of y for a given x?.

Would you expect there to be more uncertainty around an average or a
specific predicted value?
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Prediction intervals

A prediction interval for y for a given x? is

ŷ ± t?n−2se

√
1 +

1

n
+

(x? − x̄)2

(n − 1)s2
x

where s is the standard deviation of the residuals.

The formula is very similar, except the variability is higher since there
is a 1 added in the formula.

Prediction level: If we repeat the study of obtaining a regression data
set many times, each time forming a XX% prediction interval at x?,
and wait to see what the future value of y is at x?, then roughly
XX% of the prediction intervals will contain the corresponding actual
value of y .
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Confidence intervals and Prediction intervals Recap - CI vs. PI

Confidence interval for E (y) vs. prediction interval for y
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Confidence intervals and Prediction intervals Recap - CI vs. PI

CI for E (y) vs. PI for y
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Confidence intervals and Prediction intervals Recap - CI vs. PI

CI for E (y) vs. PI for y - differences

A prediction interval is similar in spirit to a confidence interval, except
that

the prediction interval is designed to cover a “moving target”,
the random future value of y
the confidence interval is designed to cover the “fixed target”,
the average (expected) value of y , E (y),

Although both are centered at ŷ , the prediction interval is wider than
the confidence interval, for a given x? and confidence level. This
makes sense, since

the prediction interval must take account of the tendency of y to
fluctuate from its mean value
the confidence interval simply needs to account for the uncertainty in
estimating the mean value.
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Confidence intervals and Prediction intervals Recap - CI vs. PI

CI for E (y) vs. PI for y - similarities

For a given data set, the error in estimating E (y) and ŷ grows as x?

moves away from x̄ . Thus, the further x? is from x̄ , the wider the
confidence and prediction intervals will be.

If any of the conditions underlying the model are violated, then the
confidence intervals and prediction intervals may be invalid as well.
This is why it’s so important to check the conditions by examining
the residuals, etc.
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