Lecture 21 - Model Selection

Sta102 / BME102

Colin Rundel

April 10, 2015

Conditions for MLR

In order to perform inference for multiple regression we require the following conditions:

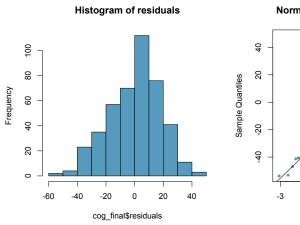
- (1) Nearly normal residuals
- (2) Constant variability of residuals
- (3) Independent residuals

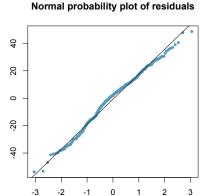
Sta102 / BME102 (Colin Rundel)

Lec 21

Model diagnostics

Nearly normal residuals



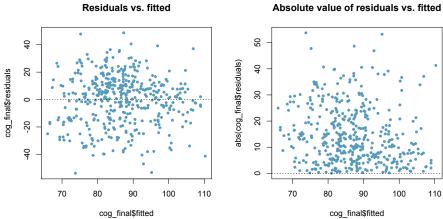


Theoretical Quantiles

Model diagnostics

Constant variability of residuals

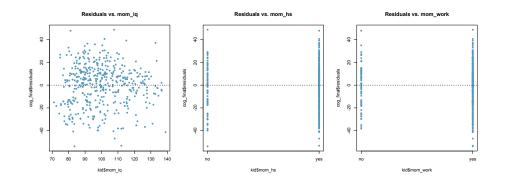
Why do we use the fitted (predicted) values in MLR?



80 90 100 110 cog_final\$fitted

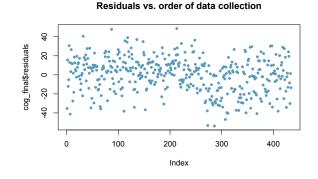
Model diagnostics

Constant variability of residuals (cont.)



Independent residuals

• If we suspect that order of data collection may influence the outcome (mostly in time series data):



• If not, think about how data are sampled.

Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015	5 / 32	Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015 6 / 3	2
1	nference for MLR				Inference for MLR		

Modeling children's test scores

Predicting cognitive test scores of three- and four-year-old children using characteristics of their mothers. Data are from a survey of adult American women and their children - a subsample from the National Longitudinal Survey of Youth.

	kid_score	mom_hs	mom₋iq	mom_work	mom_age
1	65	yes	121.12	yes	27
:					
•					
5	115	yes	92.75	yes	27
6	98	no	107.90	no	18
:					
434	70	yes	91.25	yes	25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.

Model output

##		Estimate	Std. Error t	t value	Pr(> t)	
##	(Intercept)	19.59241	9.21906	2.125	0.0341	
##	mom_hsyes	5.09482	2.31450	2.201	0.0282	
##	mom_iq	0.56147	0.06064	9.259	<2e-16	
##	mom_workyes	2.53718	2.35067	1.079	0.2810	
##	mom_age	0.21802	0.33074	0.659	0.5101	
##						
##	Residual sta	andard er	cor: 18.14 or	n 429 de	egrees of	freedom
##	Multiple R-s	squared: ().2171, Adjus	sted R-s	squared: 0	.2098

Multiple R-squared: 0.2171, Adjusted R-squared: 0.2098
F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16</pre>

Inference for the model as a whole

Is the model as a whole significant?

$$H_0: \beta_0 = \beta_1 = \dots = \beta_k = 0$$

$$H_A: \text{ At least one of the } \beta_i \neq 0$$

F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16

Since p-value < 0.05, the model as a whole is significant.

- The F test yielding a significant result doesn't mean the model fits the data well, it just means at least one of the βs is non-zero.
- The F test not yielding a significant result doesn't mean individuals variables included in the model are not good predictors of *y*, it just means that the combination of these variables doesn't yield a good model.

Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2

Inference for MLR Inference for the slope(s)

Interpreting the slope

What is the correct interpretation of the slope for mom_work?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

Inference for the slope(s)

Is whether or not mom went to high school a significant predictor of kid's cognitive test score, given all other variables in the model?

 H_0 : $\beta_1 = 0$, when all other variables are included in the model

 $H_A: \beta_1 \neq 0$, when all other variables are included in the model

	Estimate	Std. Error	t	value	Pr(> t)
(Intercept)	19.59241	9.21906		2.125	0.0341
mom_hsyes	5.09482	2.31450		2.201	0.0282
mom_iq	0.56147	0.06064		9.259	<2e-16
mom_workyes	2.53718	2.35067		1.079	0.2810
mom_age	0.21802	0.33074		0.659	0.5101

Residual standard error: 18.14 on 429 degrees of freedom

T = 2.201, df = n - k = 434 - 5 = 429, p-value = 0.0282

Since p-value < 0.05, whether or not mom went to high school is a significant predictor of kid's test score, given all other variables in the model.

Sta102 / BME102 (Colin Rundel)

Lec 21

April 10, 2015 10 / 3

Inference for MLR Inference for the slope(s)

CI Recap from last time

Inference for the slope for a SLR model (only one explanatory variable):

• Hypothesis test:

$$T = \frac{b_1 - null \ value}{SE_{b_1}} \qquad df = n - 2$$

• Confidence interval:

$$b_1 \pm t^\star_{df} imes SE_{b_1}$$

The only difference for MLR is that we use b_i instead of b_1 , and use df = n - k

Inference for MLR Inference for the slope(s)

CI for the slope

Construct a 95% confidence interval for the slope of mom_work.

$$egin{array}{rcl} b_k &\pm t^{\star}SE_{b_k} \ df &= n-k = 434-5 = 429
ightarrow 400 \ 2.54 &\pm 1.97 imes 2.35 \ 2.54 &\pm 4.63 \ 2.0895 &, 7.1695) \end{array}$$

Interpretation?

(--

Inference for the slope(s) (cont.)

Given all variables in the model, which variables are significant predictors of kid's cognitive test score?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	19.59241	9.21906	2.125	0.0341
mom_hsyes	5.09482	2.31450	2.201	0.0282
mom_iq	0.56147	0.06064	9.259	<2e-16
mom_workyes	2.53718	2.35067	1.079	0.2810
mom_age	0.21802	0.33074	0.659	0.5101

Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015 13 / 32	Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015 14 / 32

Model selection

Modeling kid's test scores (revisited)

Predicting cognitive test scores of three- and four-year-old children using characteristics of their mothers. Data are from a survey of adult American women and their children - a subsample from the National Longitudinal Survey of Youth.

	kid_score	mom_hs	mom₋iq	mom_work	mom_age
1	65	yes	121.12	yes	27
÷	:	÷	÷	÷	÷
5	115	yes	92.75	yes	27
6	98	no	107.90	no	18
÷	:	:	:	:	÷
434	70	yes	91.25	yes	25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.

Model selection

Model output

##		Estimate	Std. Error t	value	Pr(> t)	
##	(Intercept)	19.59241	9.21906	2.125	0.0341	
##	mom_hsyes	5.09482	2.31450	2.201	0.0282	
##	mom_iq	0.56147	0.06064	9.259	<2e-16	
##	mom_workyes	2.53718	2.35067	1.079	0.2810	
##	mom_age	0.21802	0.33074	0.659	0.5101	
##						
##	Residual sta	andard eri	ror: 18.14 on	. 429 de	egrees of f	ir

Residual standard error: 18.14 on 429 degrees of freedom
Multiple R-squared: 0.2171, Adjusted R-squared: 0.2098
F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16</pre>

Model selection Backward-eliminatic

Backward-elimination

- Adjusted R^2 approach:
 - Start with the full model
 - Drop one variable at a time and record R_{adj}^2 of each smaller model
 - Pick the model with the largest increase in R_{adi}^2
 - Repeat until none of the reduced models yield an increase in R_{adj}^2
- When removing a categorical variable all levels should be included or removed (may not be clear what to do with the p-value approach)

Model selection Backward-elimination

Backward-selection: R_{adi}^2 approach

Step	Variables included	R^2_{adj}
Full	$kid_score~~mom_hs + mom_iq + mom_work + mom_age$	0.2098
Step 1	kid_score ~ mom_iq + mom_work + mom_age	0.2027
	kid_score ~ mom_hs + mom_work + mom_age	0.0541
	kid_score ~ mom_hs + mom_iq + mom_age	0.2095
	kid_score ~ mom_hs + mom_iq + mom_work	0.2109
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_hs + mom_work	0.0546
	kid_score ~ mom_hs + mom_iq	0.2105
Step 3*	kid_score ~ mom_hs	0.2024
	kid_score ~ mom_iq	0.0546

Sta102 / BME102 (Colin Rundel)

Lec 21

April 10, 2015 17 / 3

Model selection Backward-elimination

Backward-selection: R_{adj}^2 approach

Step	Variables included	R^2_{adj}
Full	$kid_score~~mom_hs + mom_iq + mom_work + mom_age$	0.2098
Step 1	kid_score ~ mom_iq + mom_work + mom_age	0.2027
	$kid_score~~mom_hs + mom_work + mom_age$	0.0541
	$kid_score~~mom_hs + mom_iq + mom_age$	0.2095
	kid_score $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.2109
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_hs + mom_work	0.0546
	kid_score ~ mom_hs + mom_iq	0.2105
Step 3*	kid_score ~ mom_hs	0.2024
	kid_score ~ mom₋iq	0.0546

Model selection Forward-selection

Lec 21

Forward-selection

Sta102 / BME102 (Colin Rundel)

• Adjusted R^2 approach:

- Start with regressions of response vs. each explanatory variable
- Pick the model with the highest R_{adi}^2
- Add the remaining variables one at a time to the existing model, and once again pick the model with the highest R^2_{adj}
- Repeat until the addition of any of the remanning variables does not result in a higher R^2_{adi}

April 10, 2015

Forward-selection: R_{adj}^2 approach

Step	Variables included	R^2_{adj}
Step 1	kid_score ~ mom_hs	0.0539
	kid_score ~ mom_work	0.0097
	kid_score ~ mom_age	0.0062
	kid_score ~ mom_iq	0.1991
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_iq + mom_age	0.1999
	kid_score ~ mom_iq + mom_hs	0.2105
Step 3	kid_score ~ mom_iq + mom_hs + mom_age	0.2095
	kid_score ~ mom_iq + mom_hs + mom_work	0.2109
Step 4*	kid_score ~ mom_iq + mom_hs + mom_age + mom_work	0.2098

Lec 21

Model selection Forward-selection

In addition to the quantitative approaches we discussed, variables can be

included in (or eliminated from) the model based on expert opinion.

Expert opinion as criterion for model selection

Forward-selection: R_{adj}^2 approach

Step	Variables included	R^2_{adj}
Step 1	kid_score ~ mom_hs	0.0539
	kid_score ~ mom_work	0.0097
	kid_score ~ mom_age	0.0062
	kid_score ~ mom_iq	0.1991
Step 2	kid_score ~ mom_iq + mom_work	0.2024
	kid_score ~ mom_iq + mom_age	0.1999
	kid_score ~ mom_iq + mom_hs	0.2105
Step 3	kid_score ~ mom_iq + mom_hs + mom_age	0.2095
	kid_score ~ mom_iq + mom_hs + mom_work	0.2109
Step 4*	kid_score ~ mom_iq + mom_hs + mom_age + mom_work	0.2098

April

Sta102 / BME102 (Colin Rundel)

Model selection Forward-selecti

Lec 21

Final model choice

Sta102 / BME102 (Colin Rundel)

cog_final = lm(kid_score ~ mom_hs + mom_iq, data = kid)
summary(cog_final)

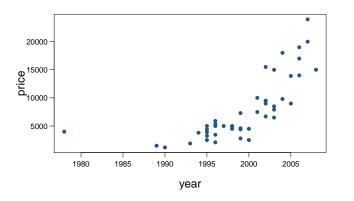
##	Call:					
##	<pre># lm(formula = kid_score ~ mom_hs + mom_iq, data = kid)</pre>					
##						
##	# Coefficients:					
##		Estimate	Std. Error t	value 1	Pr(> t)	
	(Intercept)					
			2.21181			
##	mom_iq	0.56391	0.06057	9.309	< 2e-16	***
##						
##	Residual sta	andard eri	ror: 18.14 or	n 431 de	grees of	freedom
##	Multiple R-s	squared: (0.2141, Adjus	sted R-s	quared: 0	.2105
##	F-statistic	: 58.72 or	n 2 and 431 I	DF, p-v	alue: < 2	.2e-16

Sta102 / BME102 (Colin Rundel)

Transformations

Truck prices

The scatterplot below shows the relationship between year and price of a random sample of 43 pickup trucks. Describe the relationship between these two variables.

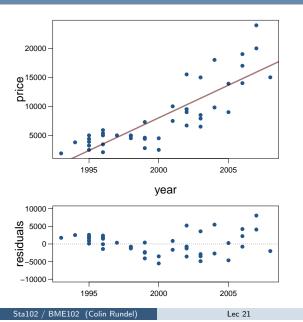


From: http://faculty.chicagobooth.edu/robert.gramacy/teaching.html

Truck prices - linear model?

Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015	25 / 32

Transformations



Model:

 $\widehat{price} = b_0 + b_1$ year

The linear model doesn't appear to be a good fit since the residuals have non-constant variance.

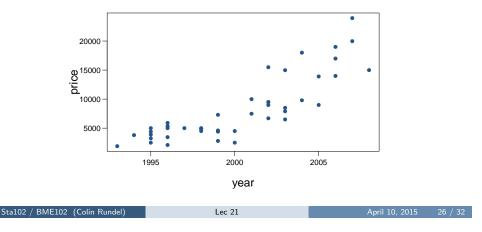
In particular residuals for newer cars (to the right) have a larger variance than the residuals for older cars (to the left).

April 10, 2015

Remove unusual observations

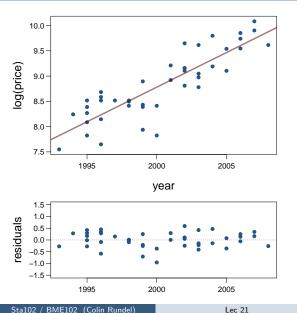
Let's remove trucks older than 20 years, and only focus on trucks made in 1992 or later.

Now what can you say about the relationship?



Transformations

Truck prices - log transform of the response variable



Model:

 $log(price) = b_0 + b_1$ year

We have applied a log transformation to the response variable. The relationship now seems linear, and the residuals have (more) constant variance.

April 10, 2015

Transformations

Interpreting models with log transformation

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-265.07	25.04	-10.59	0.00
pu\$year	0.14	0.01	10.94	0.00

Model:
$$log(price) = -265.07 + 0.14$$
 year

- For each additional year the car is newer (for each year decrease in car's age) we would expect the log price of the car to increase on average by 0.14 log dollars.
- which is not very useful ...

Working with logs

• Subtraction and logs:

$$log(a) - log(b) = log(\frac{a}{b})$$

• Natural logarithm:

 $e^{\log(x)} = x$

• We can use these identities to "undo" the log transformation

Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015 29 / 32	Sta102 / BME102 (Colin Rundel)	Lec 21	April 10, 2015 30 / 32
				_	

Transformations

Interpreting models with log transformation (cont.)

Ŀ

The slope coefficient for the log transformed model is 0.14, meaning the log price difference between cars that are one year apart is predicted to be 0.14 log dollars.

log(price 1) = -265.07 + 0.14 ylog(price 2) = -265.07 + 0.14 (y + 1)

$$\begin{array}{rcl} \log(\operatorname{price}\ 2) - \log(\operatorname{price}\ 1) &=& 0.14\\ \log\left(\frac{\operatorname{price}\ 2}{\operatorname{price}\ 1}\right) &=& 0.14\\ e^{\log\left(\frac{\operatorname{price}\ 2}{\operatorname{price}\ 1}\right)} &=& e^{0.14}\\ \frac{\operatorname{price}\ 2}{\operatorname{price}\ 1} &=& 1.15 \end{array}$$

For each additional year the car is newer (for each year decrease in car's age) we would expect the price of the car to increase on average *by a factor of 1.15*.

Lec 21

Sta102 / BME102 (Colin Rundel)

Transformations

Recap: dealing with non-constant variance

- Non-constant variance is one of the most common model violations, however it is usually fixable by transforming the response (y) variable
- The most common variance stabilizing transform is the log transformation: log(y), especially useful when the response variable is (extremely) right skewed.
- When using a log transformation on the response variable the interpretation of the slope changes:
 - For each unit increase in x, y is expected on average to decrease/increase by a factor of e^{b_1} .
- Another useful transformation is the square root: \sqrt{y} , especially useful when the response variable is counts.
- These transformations may also be useful when the relationship is non-linear, but in those cases a polynomial regression may also be needed (this is beyond the scope of this course, but you're welcomed to try it for your project, and I'd be happy to provide further guidance)

Lec 21