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Model diagnostics

Conditions for MLR

In order to perform inference for multiple regression we require the
following conditions:

(1) Nearly normal residuals

(2) Constant variability of residuals

(3) Independent residuals
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Model diagnostics

Nearly normal residuals

Histogram of residuals
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Model diagnostics

Constant variability of residuals

Why do we use the fitted (predicted) values in MLR?
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Model diagnostics

Constant variability of residuals (cont.)
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Model diagnostics

Independent residuals

If we suspect that order of data collection may influence the outcome
(mostly in time series data):
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If not, think about how data are sampled.
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Inference for MLR

Modeling children’s test scores

Predicting cognitive test scores of three- and four-year-old children using
characteristics of their mothers. Data are from a survey of adult American
women and their children - a subsample from the National Longitudinal
Survey of Youth.

kid score mom hs mom iq mom work mom age
1 65 yes 121.12 yes 27
...
5 115 yes 92.75 yes 27
6 98 no 107.90 no 18
...

434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.
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Inference for MLR

Model output

cog_full = lm(kid_score ~ mom_hs + mom_iq + mom_work + mom_age,

data = cognitive)

summary(cog_full)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.59241 9.21906 2.125 0.0341

## mom_hsyes 5.09482 2.31450 2.201 0.0282

## mom_iq 0.56147 0.06064 9.259 <2e-16

## mom_workyes 2.53718 2.35067 1.079 0.2810

## mom_age 0.21802 0.33074 0.659 0.5101

##

## Residual standard error: 18.14 on 429 degrees of freedom

## Multiple R-squared: 0.2171, Adjusted R-squared: 0.2098

## F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16
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Inference for MLR Inference for the model as a whole

Inference for the model as a whole

Is the model as a whole significant?

H0 : β0 = β1 = · · · = βk = 0

HA : At least one of the βi 6= 0

F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16

Since p-value < 0.05, the model as a whole is significant.

The F test yielding a significant result doesn’t mean the model fits
the data well, it just means at least one of the βs is non-zero.

The F test not yielding a significant result doesn’t mean individuals
variables included in the model are not good predictors of y , it just
means that the combination of these variables doesn’t yield a good
model.
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Inference for MLR Inference for the slope(s)

Inference for the slope(s)

Is whether or not mom went to high school a significant predictor of kid’s
cognitive test score, given all other variables in the model?

H0 : β1 = 0, when all other variables are included in the model

HA : β1 6= 0, when all other variables are included in the model

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.59241 9.21906 2.125 0.0341

mom_hsyes 5.09482 2.31450 2.201 0.0282

mom_iq 0.56147 0.06064 9.259 <2e-16

mom_workyes 2.53718 2.35067 1.079 0.2810

mom_age 0.21802 0.33074 0.659 0.5101

Residual standard error: 18.14 on 429 degrees of freedom

T = 2.201, df = n − k = 434− 5 = 429, p-value = 0.0282

Since p-value < 0.05, whether or not mom went to high school is a
significant predictor of kid’s test score, given all other variables in the
model.
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Inference for MLR Inference for the slope(s)

Interpreting the slope

What is the correct interpretation of the slope for mom work?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03
mom hs:yes 5.09 2.31 2.20 0.03

mom iq 0.56 0.06 9.26 0.00
mom work:yes 2.54 2.35 1.08 0.28

mom age 0.22 0.33 0.66 0.51
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Inference for MLR Inference for the slope(s)

CI Recap from last time

Inference for the slope for a SLR model (only one explanatory variable):

Hypothesis test:

T =
b1 − null value

SEb1

df = n − 2

Confidence interval:
b1 ± t?df × SEb1

The only difference for MLR is that we use bi instead of b1, and use
df = n − k
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Inference for MLR Inference for the slope(s)

CI for the slope

Construct a 95% confidence interval for the slope of mom work.

bk ± t?SEbk

df = n − k = 434− 5 = 429→ 400

2.54 ± 1.97× 2.35

2.54 ± 4.63

(−2.0895 , 7.1695)

Interpretation?
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Inference for MLR Inference for the slope(s)

Inference for the slope(s) (cont.)

Given all variables in the model, which variables are significant predictors
of kid’s cognitive test score?

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.59241 9.21906 2.125 0.0341

mom_hsyes 5.09482 2.31450 2.201 0.0282

mom_iq 0.56147 0.06064 9.259 <2e-16

mom_workyes 2.53718 2.35067 1.079 0.2810

mom_age 0.21802 0.33074 0.659 0.5101
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Model selection

Modeling kid’s test scores (revisited)

Predicting cognitive test scores of three- and four-year-old children using
characteristics of their mothers. Data are from a survey of adult American
women and their children - a subsample from the National Longitudinal
Survey of Youth.

kid score mom hs mom iq mom work mom age
1 65 yes 121.12 yes 27
...

...
...

...
...

...
5 115 yes 92.75 yes 27
6 98 no 107.90 no 18
...

...
...

...
...

...
434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.
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Model selection

Model output

cog_full = lm(kid_score ~ mom_hs + mom_iq + mom_work + mom_age,

data = cognitive)

summary(cog_full)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.59241 9.21906 2.125 0.0341

## mom_hsyes 5.09482 2.31450 2.201 0.0282

## mom_iq 0.56147 0.06064 9.259 <2e-16

## mom_workyes 2.53718 2.35067 1.079 0.2810

## mom_age 0.21802 0.33074 0.659 0.5101

##

## Residual standard error: 18.14 on 429 degrees of freedom

## Multiple R-squared: 0.2171, Adjusted R-squared: 0.2098

## F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16
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Model selection Backward-elimination

Backward-elimination

Adjusted R2 approach:

Start with the full model

Drop one variable at a time and record R2
adj of each smaller model

Pick the model with the largest increase in R2
adj

Repeat until none of the reduced models yield an increase in R2
adj

When removing a categorical variable all levels should be included or
removed (may not be clear what to do with the p-value approach)
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Model selection Backward-elimination

Backward-selection: R2
adj approach

Step Variables included R2
adj

Full kid score ˜ mom hs + mom iq + mom work + mom age 0.2098

Step 1 kid score ˜ mom iq + mom work + mom age 0.2027

kid score ˜ mom hs + mom work + mom age 0.0541

kid score ˜ mom hs + mom iq + mom age 0.2095

kid score ˜ mom hs + mom iq + mom work 0.2109

Step 2 kid score ˜ mom iq + mom work 0.2024

kid score ˜ mom hs + mom work 0.0546

kid score ˜ mom hs + mom iq 0.2105

Step 3∗ kid score ˜ mom hs 0.2024

kid score ˜ mom iq 0.0546
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Model selection Backward-elimination

Backward-selection: R2
adj approach

Step Variables included R2
adj

Full kid score ˜ mom hs + mom iq + mom work + mom age 0.2098

Step 1 kid score ˜ mom iq + mom work + mom age 0.2027

kid score ˜ mom hs + mom work + mom age 0.0541

kid score ˜ mom hs + mom iq + mom age 0.2095

kid score ˜ mom hs + mom iq + mom work 0.2109

Step 2 kid score ˜ mom iq + mom work 0.2024

kid score ˜ mom hs + mom work 0.0546

kid score ˜ mom hs + mom iq 0.2105

Step 3∗ kid score ˜ mom hs 0.2024

kid score ˜ mom iq 0.0546
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Model selection Forward-selection

Forward-selection

1 Adjusted R2 approach:

Start with regressions of response vs. each explanatory variable

Pick the model with the highest R2
adj

Add the remaining variables one at a time to the existing model, and
once again pick the model with the highest R2

adj

Repeat until the addition of any of the remanning variables does not
result in a higher R2

adj
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Model selection Forward-selection

Forward-selection: R2
adj approach

Step Variables included R2
adj

Step 1 kid score ˜ mom hs 0.0539

kid score ˜ mom work 0.0097

kid score ˜ mom age 0.0062

kid score ˜ mom iq 0.1991

Step 2 kid score ˜ mom iq + mom work 0.2024

kid score ˜ mom iq + mom age 0.1999

kid score ˜ mom iq + mom hs 0.2105

Step 3 kid score ˜ mom iq + mom hs + mom age 0.2095

kid score ˜ mom iq + mom hs + mom work 0.2109

Step 4∗ kid score ˜ mom iq + mom hs + mom age + mom work 0.2098
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Model selection Forward-selection

Forward-selection: R2
adj approach

Step Variables included R2
adj

Step 1 kid score ˜ mom hs 0.0539

kid score ˜ mom work 0.0097

kid score ˜ mom age 0.0062

kid score ˜ mom iq 0.1991

Step 2 kid score ˜ mom iq + mom work 0.2024

kid score ˜ mom iq + mom age 0.1999

kid score ˜ mom iq + mom hs 0.2105

Step 3 kid score ˜ mom iq + mom hs + mom age 0.2095

kid score ˜ mom iq + mom hs + mom work 0.2109

Step 4∗ kid score ˜ mom iq + mom hs + mom age + mom work 0.2098
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Model selection Forward-selection

Expert opinion as criterion for model selection

In addition to the quantitative approaches we discussed, variables can be
included in (or eliminated from) the model based on expert opinion.
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Model selection Forward-selection

Final model choice

cog_final = lm(kid_score ~ mom_hs + mom_iq, data = kid)

summary(cog_final)

## Call:

## lm(formula = kid_score ~ mom_hs + mom_iq, data = kid)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 25.73154 5.87521 4.380 1.49e-05 ***

## mom_hsyes 5.95012 2.21181 2.690 0.00742 **

## mom_iq 0.56391 0.06057 9.309 < 2e-16 ***

##

## Residual standard error: 18.14 on 431 degrees of freedom

## Multiple R-squared: 0.2141, Adjusted R-squared: 0.2105

## F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16
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Transformations

Truck prices

The scatterplot below shows the relationship between year and price of a
random sample of 43 pickup trucks. Describe the relationship between
these two variables.
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From: http:// faculty.chicagobooth.edu/robert.gramacy/teaching.html
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Transformations

Remove unusual observations

Let’s remove trucks older than 20 years, and only focus on trucks made in
1992 or later.

Now what can you say about the relationship?

●

● ●

●

●

●

●
●

●

●

●

● ● ●●
●

●

●

●● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1995 2000 2005

5000

10000

15000

20000

year

pr
ic

e

Sta102 / BME102 (Colin Rundel) Lec 21 April 10, 2015 26 / 32

Transformations

Truck prices - linear model?
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Model:

p̂rice = b0 + b1 year

The linear model doesn’t
appear to be a good fit
since the residuals have
non-constant variance.

In particular residuals for
newer cars (to the right)
have a larger variance
than the residuals for
older cars (to the left).
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Transformations

Truck prices - log transform of the response variable
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Model:

̂log(price) = b0 + b1 year

We have applied a log
transformation to the
response variable. The
relationship now seems
linear, and the residuals
have (more) constant
variance.
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Transformations

Interpreting models with log transformation

Estimate Std. Error t value Pr(>|t|)
(Intercept) -265.07 25.04 -10.59 0.00

pu$year 0.14 0.01 10.94 0.00

Model: ̂log(price) = −265.07 + 0.14 year

For each additional year the car is newer (for each year decrease in
car’s age) we would expect the log price of the car to increase on
average by 0.14 log dollars.

which is not very useful ...
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Transformations

Working with logs

Subtraction and logs:

log(a)− log(b) = log(
a

b
)

Natural logarithm:

e log(x) = x

We can use these identities to “undo” the log transformation
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Transformations

Interpreting models with log transformation (cont.)

The slope coefficient for the log transformed model is 0.14, meaning the
log price difference between cars that are one year apart is predicted to be
0.14 log dollars.

log(price 1) = −265.07 + 0.14 y

log(price 2) = −265.07 + 0.14 (y + 1)

log(price 2)− log(price 1) = 0.14

log

(
price 2

price 1

)
= 0.14

e
log

(
price 2
price 1

)
= e0.14

price 2

price 1
= 1.15

For each additional year the car is newer (for each year decrease in car’s
age) we would expect the price of the car to increase on average by a
factor of 1.15.
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Transformations

Recap: dealing with non-constant variance

Non-constant variance is one of the most common model violations,
however it is usually fixable by transforming the response (y) variable

The most common variance stabilizing transform is the log
transformation: log(y), especially useful when the response variable is
(extremely) right skewed.
When using a log transformation on the response variable the
interpretation of the slope changes:

For each unit increase in x , y is expected on average to
decrease/increase by a factor of eb1 .

Another useful transformation is the square root:
√
y , especially

useful when the response variable is counts.

These transformations may also be useful when the relationship is
non-linear, but in those cases a polynomial regression may also be
needed (this is beyond the scope of this course, but you’re welcomed to try it for

your project, and I’d be happy to provide further guidance)
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