
Lecture 6 - Properties of Random Variables

Sta102 / BME102

Colin Rundel

January 28, 2015

Random Variables

Mean and variance of a discrete RVs

Last time we were introduced to some definitions for calculating the
expected value (mean) and variance of a discrete random variable.

Expected Value

E (X ) =
∑
x

x · P(X = x)

Variance (and Standard Deviation)

Var(X ) = E
((

X − E (X )
)2)

=
∑
x

(
x − E (X )

)2 · P(X = x)

SD(X ) =
√
Var(X )
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Random Variables

Bernoulli Random Variables

A Bernoulli random variable describes a trial with only two possible
outcomes, one of which we will label a success and the other a failure and
where the probability of a success is given by the parameter p. (Since it
needs to be numeric) the random variable takes the value 1 to indicate a
success and 0 to indicate a failure.

Let X ∼ Bern(p) then

P(X = x) =

{
1− p if x = 0,

p if x = 1

E (X ) = p

Var(X ) = p(1− p)
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Random Variables

Geometric Random Variables

A Geometric random variable describes the number of (identical) Bernoulli
trials that occur before the first success is observed. The distribution has a
single parameter, the probability of a success p. There is another slightly
different characterization that counts the number of failures before the
first success. We will focus on the former for now.

Let X ∼ Geo(p) then

P(X = x) = p(1− p)x−1

E (X ) = 1/p

Var(X ) =
1− p

p2
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Random Variables

St. Petersburg Lottery

We start with $1 on the table and a coin.

At each step: Toss the coin; if it shows Heads, take the money. If it shows
Tails, I double the money on the table.

How much would you pay me to play this game? i.e. what is the expected
value?
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Random Variables

Binomial Distribution

We define a random variable X that reflects the number of successes in a
fixed number of independent trials, each with the same probability of
success as having a binomial distribution.

By definition there are n trials each with probability p of success.

Let X ∼ Binom(n, p) then

P(X = x |n, p) =

(
n

x

)
px(1− p)n−x

E (X ) = np

Var(X ) = np(1− p)
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Random Variables

Binomial RVs - Example 1

Let X ∼ Binom(n = 10, p = 1/2),
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Random Variables

Binomial RVs - Example 2

Let X ∼ Binom(n = 10, p = 1/8),
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Random Variables

Binomial RVs - Example 3

Let X ∼ Binom(n = 10, p = 7/8),
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Random Variables

Binomial RVs - Example 4

Let X ∼ Binom(n = 100, p = 4/8),
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Random Variables

Binomial RVs - Example 5

Let X ∼ Binom(n = 100, p = 7/8),
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Expected Value

Properties of Expected Value

Constant - E (c) = c if c is constant

Constant Multiplication - E (cX ) = cE (X )

Constant Addition - E (X + c) = E (X ) + c

Addition - E (X + Y ) = E (X ) + E (Y )

Subtraction - E (X − Y ) = E (X )− E (Y )

Multiplication - E (XY ) = E (X )E (Y ) if X and Y are independent.
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Expected Value

Constant & Constant Multiplication

Constant

Imagine there is a random variable C that has the value c 100% of the
time (e.g. P(C = c) = 1)

E (C ) =
∑
c

x P(C = x) = c P(C = c) = c

Constant Multiplication

E (cX ) =
∑
x

cx P(X = x) = c
∑
x

x P(X = x) = cE (X )
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Expected Value

Constant Addition

Assume X is a discrete random variable and c is some constant value then,

E (X + c) =
∑
x

(x + c) P(X = x)

=
∑
x

(
x P(X = x) + cP(X = x)

)
=

(∑
x

x P(X = x)

)
+

(∑
x

c P(X = x)

)
=

(∑
x

x P(X = x)

)
+ c

(∑
x

P(X = x)

)
= E (X ) + c
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Expected Value

Addition?

Assume X and Y are independent discrete random variables then,

E(X + Y ) =
∑
x

∑
y

(x + y) P(X = x ∩ Y = y)

=
∑
x

∑
y

(x + y) P(X = x)P(Y = y)

=
∑
x

∑
y

(
x P(X = x)P(Y = y) + y P(X = x)P(Y = y)

)
=

(∑
x

∑
y

x P(X = x)P(Y = y)

)
+

(∑
x

∑
y

y P(X = x)P(Y = y)

)

=

(∑
x

x P(X = x)
∑
y

P(Y = y)

)
+

(∑
y

y P(Y = y)
∑
x

P(X = x)

)

=

(∑
x

x P(X = x)

)
+

(∑
y

y P(Y = y)

)
= E(X ) + E(Y )
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Variance

Properties of Variance

Constant - Var(c) = 0 if c is constant

Constant Multiplication - Var(cX ) = c2 Var(x)

Constant Addition - Var(X + c) = Var(X )

Addition - Var(X + Y ) = Var(X ) + Var(Y ) if X and Y are
independent.

Subtraction - Var(X − Y ) = Var(X ) + Var(Y ) if X and Y are
independent.
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Variance

Constant & Constant Multiplication

Constant

Imagine there is a random variable C that has the value c 100% of the
time (e.g. P(C = c) = 1)

Var(C) =
∑
x=c

(x − E(C))2 P(C = x)

= (c − E(C))2 P(C = c)

= (c − c) = 0

Constant Multiplication

Var(cX ) =
∑
x

(cx − E(cX ))2 P(X = x)

=
∑
x

(cx − cE(X ))2 P(X = x)

= c2
∑
x

(x − E(X ))2 P(X = x) = c2Var(x)
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Variance

Constant Addition

Assume X is a discrete random variable and c is some constant value then,

Var(X + c) =
∑
x

(x + c − E (X + c))2 P(X = x)

=
∑
x

(x + c − E (X )− c)2 P(X = x)

=
∑
x

(x − E (X ))2 P(X = x)

= Var(X )
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Examples

Example - Coffee

The average price of a small cup of coffee to go is $1.40, with a standard
deviation of 30¢. An 8.5% tax is added if you take your coffee to stay.
Assume that each time you get a coffee to stay you also tip 50¢. What is
the mean, variance, and standard deviation of the amount you spend on
coffee when to take it to stay?

Let X represent the amount you spend on coffee to go (in ¢), and Y
represent the amount you spend on coffee to stay (in ¢). Then,

Y = X + 0.085X + 50

= 1.085X + 50
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Examples

Example - Coffee, cont.

We now know that E (X ) = 140, SD(X ) = 30, and Y = 1.085X + 50,

E (X ) = 140

E (Y ) = E (1.085X + 50)

= 1.085 E (X ) + 50

= 1.085× 140 + 50

= 201.9

Var(X ) = SD(X )2 = 900

Var(Y ) = Var(1.085X + 50)

= 1.0852 Var(X )

= 1.0852 × 900

= 1059.503

SD(Y ) =
√

1059.503 = 32.55

On average you spend $2.02 per day on coffee, with a standard deviation
of $0.33
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Examples

Example - Coffee and a Muffin

The average price of a cup of coffee is $1.40, with a standard deviation of 30¢.

The average price of a muffin is $2.50, with a standard deviation of 15¢. If you

get a cup of coffee and a muffin every day for breakfast, what is the mean,

variance, and standard deviation of the amount you spend on breakfast daily?

Assume that the price of coffee and muffins are independent.

Let X represent the amount you spend on coffee (in ¢), and Y represent the
amount you spend on muffins (in ¢).

E (X ) = 140

E (Y ) = 250

E (X + Y ) = E (X ) + E (Y )

= 140 + 250

= 390

Var(X ) = 302 = 900

Var(Y ) = 152 = 225

Var(X + Y ) = Var(X ) + V (Y )

= 900 + 225

= 1125
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Examples

Simplifying RVs

Random variables do not work like normal algebraic variables:

X1 + X2 6= 2X

If we know that X1 and X2 have the same distribution then,

E (X1 + X2) = E (X1) + E (X2)

= 2E (X1)

E (X1 + X1) = E (2X1)

= 2E (X1)

Var(X1 + X2) = Var(X1) + Var(X2)

= 2 Var(X1)

Var(X1 + X1) = Var(2X1) = 22 Var(X1)

= 4 Var(X1)
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Examples

Town Cars

A company has 5 Lincoln Town Cars in its fleet. Historical data show that
annual fuel cost for each car is on average $2,154 with a standard
deviation of $132. What is the mean and the standard deviation of the
total annual fuel cost for this fleet?

E(X1 + X2 + X3 + X4 + X5) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5)

= 5× E(X ) = 5× 2, 154 = $10, 770

Var(X1 + X2 + X3 + X4 + X5) = Var(X1) + Var(X2) + Var(X3) + Var(X4) + Var(X5)

= 5× V (X ) = 5× 1322 = $287, 120

SD(X1 + X2 + X3 + X4 + X5) =
√

87, 120 = $295.16
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Examples

Iced Tea

A pitcher is filled with exactly 64 onces of iced tea, you proceed to fill 5 glasses with 8
onces each. If the expected amount you added to each glass is 8 onces with a standard
deviation of 0.25 onces, how much iced tea is left in the pitcher (and what is your
uncertainty)?

Let Xi be the amount of iced tea added to the ith glass and P be the amount left in the
pitcher.

P = 64− X1 − X2 − X3 − X4 − X5

E(P) = E(64− X1 − X2 − X3 − X4 − X5)

= E(64)− E(X1)− E(X2)− E(X3)− E(X4)− E(X5)

= 64− 8− 8− 8− 8− 8 = 24

Var(P) = Var(64− X1 − X2 − X3 − X4 − X5)

= Var(64) + Var(X1) + Var(X2) + Var(X3) + Var(X4) + Var(X5)

= 0 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 = 2.5
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Examples

Properties of Binomial RVs (again)

We can also think of a Binomial random variable as the sum of
independent Bernoulli random variables.

Let X ∼ Binom(n, p) then X =
∑n

i=1 Yi where Y1, · · · ,Yn ∼ Bern(p).

E(X ) = E

(
n∑

i=1

Yi

)
=

n∑
i=1

E(Yi )

=
n∑

i=1

p = np

Var(X ) = Var

(
n∑

i=1

Yi

)
=

n∑
i=1

Var(Yi )

=
n∑

i=1

p(1− p) = np(1− p)
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