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Statistical vs. Practical Significance



Example - Sample Size

Suppose X̄ = 50, s = 2, H0 : µ = 49.5, and HA : µ > 49.5.

Will the p-value be lower if n = 100 or n = 10, 000?
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2
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=
0.5
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As n increases - SE ↓, T ↑, p-value ↓
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Example - Sample Size 2

Suppose X̄ = 50, s = 2, H0 : µ = 49.9, and HA : µ > 49.9.

Will the p-value be lower if n = 100 or n = 10, 000?
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Example - Sample Size 2

Suppose X̄ = 50, s = 2, H0 : µ = 49.9, and HA : µ > 49.9.

Will the p-value be lower if n = 100 or n = 10, 000?

Tn=100 =
50− 49.9

2
10

=
0.1
0.2 = 0.5, p-value = 0.309

Tn=10000 =
50− 49.9

2
100

=
0.1
0.02 = 5, p-value = 2.87× 10−7
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Statistical vs. Practical Significance

• Differences between the point estimate and null value are
easier to detect with larger samples

• Large samples can result in statistical significance even
for tiny effect sizes, even when the difference is not
practically significant

• This is particularly important to research: if we conduct a
study, we want to focus on finding meaningful results (we
want observed differences to be real but also large
enough to matter).

“To call in the statistician after the experiment is done
may be no more than asking him to perform a

post-mortem examination: he may be able to say what
the experiment died of.” – R.A. Fisher 5



Decisions and Decision Errors



Decision errors

• Hypothesis Tests and Confidence Intervals both make
mistakes.

• In the court system innocent people are sometimes
wrongly convicted and the guilty sometimes walk free.

• Similarly, we can make a wrong decision using statistical
inference methods as well.

• The difference is that we have the ability to quantify /
adjust how often we make errors using statistical
inference.
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Decision errors for HTs

There are two competing hypotheses: the null and the
alternative. In a hypothesis test, we make a decision about
which might be true, but our choice might be incorrect.

Decision
fail to reject H0 reject H0

H0 true

✓ Type 1 Error

Truth
HA true

Type 2 Error ✓

• A Type 1 Error is rejecting the null hypothesis when H0 is
true.

• A Type 2 Error is failing to reject the null hypothesis when
HA is true.
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Hypothesis Test as a trial

If we again think of a hypothesis test as a criminal trial then it
makes sense to frame the verdict in terms of the null and
alternative hypotheses:

H0 : Defendant is innocent
HA : Defendant is guilty

Which type of error is being committed in the following
cirumstances?

• Declaring the defendant innocent when they are actually
guilty

• Declaring the defendant guilty when they are actually
innocent
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Hypothesis Test as a trial (cont.)

Which error do you think is the worse error to make?

“better that ten guilty persons escape than that one innocent suffer”
– William Blackstone

Implications for statistical inference:

• Both types of errors are bad and we want to avoid them -
but there is a trade off.

• Generally, type I errors are considered to be worse - so we
tune our inference procedures to minimize them.
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Type 1 error rate

As a general rule we reject H0 when the p-value is less than
0.05, i.e. we use a significance level (α) of 0.05.

This means that, for those cases where H0 is actually true, we
will incorrectly reject it at most 5% of the time.

P(Type 1 error) = P(Rejecting H0 | H0 is true) = α

This is why we prefer small values of α – decreasing α
decreases our Type 1 error rate.
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Filling in the table...

Decision
fail to reject H0 reject H0

H0 true

1− α Type 1 Error, α

Truth
HA true

Type 2 Error, β Power, 1− β

Type 1 error rate - α = P(Rejecting H0 | H0 is true)

Type 2 error rate - β = P(Failing to reject H0 | HA is true)

Power - 1− β = P(Rejecting H0 | HA is true)
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Type 2 error rate

The type 2 error is defined as

β = P(Failing to reject H0 | HA is true) = ?

How do we calculate this probability (or its complement)? It is
not immediately obvious but we can come up with some basic
rules:

• If the true population average is very close to the null
hypothesis value (δ likely to be small), it will be difficult to
detect the difference (and reject H0).

• If the true population average is very different from the
null hypothesis value (δ likely to be large), it will be easy
to detect the difference.
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Type 2 error rate - intuition

Intuitively, β depends on

• δ (effect size)
• α (significance level)
• n (sample size)

to increase power / decrease β:

• increase n,
• increase δ, and/or
• increase α

14



Type 2 error rate - intuition

Intuitively, β depends on

• δ (effect size)
• α (significance level)
• n (sample size)

to increase power / decrease β:

• increase n,
• increase δ, and/or
• increase α

14



Power



Example - Blood Pressure

Blood pressure oscillates with the beating of the heart, and the systolic
pressure is defined as the peak pressure when a person is at rest. The
average systolic blood pressure for people in the U.S. is about 130 mmHg
with a standard deviation of about 25 mmHg.

We are interested in finding out if the average blood pressure of employees
at a certain company is greater than the national average, so we collect a
random sample of 100 employees and measure their systolic blood
pressure. What are the hypotheses?
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Example - Blood Pressure

Blood pressure oscillates with the beating of the heart, and the systolic
pressure is defined as the peak pressure when a person is at rest. The
average systolic blood pressure for people in the U.S. is about 130 mmHg
with a standard deviation of about 25 mmHg.

We are interested in finding out if the average blood pressure of employees
at a certain company is greater than the national average, so we collect a
random sample of 100 employees and measure their systolic blood
pressure. What are the hypotheses?

H0 : µ = 130
HA : µ > 130

We’ll start with a very specific question – “What is the power of this
hypothesis test to correctly detect an increase of 2 mmHg in average blood
pressure?” 16



Calculating power

The preceeding question can be rephrased as – How likely is it
that this test will reject H0 when the true average systolic
blood pressure for employees at this company is 132 mmHg?

Let’s break this down into two simpler problems:

1. Problem 1: Which values of x̄ represent sufficient evidence
to reject H0?

2. Problem 2: What is the probability that we would reject H0
if x̄ had come from a distribution with µ = 132, i.e. what is
the probability that we can obtain such an x̄ from this
distribution?
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Problem 1

Which values of x̄ represent sufficient evidence to reject H0?
(Remember H0 : µ = 130, HA : µ > 130)
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Problem 2

What is the probability that we would reject H0 if x̄ came from
a distribution where µ = 132.
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Putting it all together

Systolic blood pressure

120 125 130 135 140

Null
distribution
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Recap - Calculating Power

• Step 0: Pick a meaningful effect size δ and a significance
level α

• Step 1: Calculate the range of values for the point estimate
beyond which you would reject H0 at the chosen α level.

• Step 2: Calculate the probability of observing a value from
preceding step if the sample was derived from a
population where µ = µH0 + δ
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Example - Power for a two sided hypothesis test

Going back to the blood pressure example, what would the power be to
detect a 4 mmHg increase in average blood pressure for the hypothesis that
the population average is different from 130 mmHg at a 95% significance
level for a sample of 625 patients?

Step 0:

H0 : µ = 130, HA : µ ̸= 130, α = 0.05, n = 625, σ = 25, δ = 4, 1− β =?

Step 1:
P(T > t or T < −t) < 0.05 ⇒ t > 1.96

x̄ > 130+ 1.96 25√
625

or x̄ < 130− 1.96 25√
625

x̄ > 131.96 or x̄ < 128.04

Step 2: Assume µ = µH0 + δ = 134

P(x̄ > 131.96 or x̄ < 128.04) = P(T > [131.96− 134]/1) + P(T < [128.04− 134]/1)
= P(T > −2.04) + P(T < −5.96)
= 0.979+ 0 = 0.979
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Example - Using power to determine sample size

Going back to the blood pressure example, how large a sample would you
need if you wanted 90% power to detect a 4 mmHg increase in average
blood pressure for the hypothesis that the population average is different
from 130 mmHg at a 95% significance level?

Step 0:

H0 : µ = 130, HA : µ ̸= 130, α = 0.05, β = 0.10, σ = 25, δ = 4, n =?

Step 1:
P(T > t or T < −t) < 0.05 ⇒ t > 1.96

x̄ > 130+ 1.96 25√
n
or x̄ < 130− 1.96 25√

n

Step 2: Assume µ = µH0 + δ = 134

P
(
x̄ > 130+ 1.96 25√

n
or x̄ < 130− 1.96 25√

n

)
= 0.9

P
(
T > 1.96− 4

√
n
25 or T < −1.96− 4

√
n
25

)
= 0.9
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Example - Using power to determine sample size (cont.)

So we are left with an equation we cannot solve directly, how
do we evaluate it?

24
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Example - Using power to determine sample size (cont.)
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Example - Using power to determine sample size (cont.)

So we are left with an equation we cannot solve directly, how
do we evaluate it?
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For n = 410 the power = 0.8996, therefore we need 411
subjects in our sample to achieve the desired level of power
for the given circumstance. 24
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