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Types of outliers in linear regression



Types of outliers

Is regression robust? Think about how the regression line
would change with and without “outlier(s)”.
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Types of outliers

How does the following
point influence the least
squares line?
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Types of outliers

How does the following
point influence the least
squares line?

Without the outlier there
is no relationship
between X and Y
(Cor(X, Y) = 0).
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Types of outliers

How does the following
point influence the least
squares line?

What would have
happened if the outlier
was directly above the
other points?
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With and without

R = 0.72,R2 = 0.522
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Some terminology

Outliers are points that fall away from the main body of other
points - but not all outliers are created equal.

• Outliers that are horizontally distant from the body of
other points are called leverage points.

• Points with high leverage that actually influence the slope
of the regression line are called influential points.

• In order to determine if a point is influential, visualize the
regression line with and without the point. Does the slope
of the line change considerably? If so, then the point is
influential.
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Influential points

Data are available on the log of the surface temperature and
the log of the light intensity of 47 stars in the star cluster CYG
OB1.
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Hertzsprung-Russell Diagram
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Types of outliers

Which type of outlier is displayed below?
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Types of outliers

Which type of outlier is displayed below?
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Recap

Are following statements true or false?

(1) Influential points always change the intercept of the
regression line.

(2) Influential points always reduce R2.

(3) It is much more likely for a high leverage point to be
influential, than a low leverage point.

(4) When the data set includes an influential point, the
relationship between the explanatory variable and the
response variable is always nonlinear.
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Inference for linear regression



Nature vs. nurture?

In 1966 Cyril Burt published a paper called “The genetic
determination of differences in intelligence: A study of monozygotic
twins reared apart” The data consist of IQ scores for [an assumed
random sample of] 27 identical twins, one raised by foster parents,
the other by the biological parents.
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Finding the regression line

Foster IQ Biological IQ
(y) (x)

mean ȳ = 95.11 x̄ = 95.30
sd sy = 16.08 sx = 15.73
correlation R = 0.8819

b1 =
sy
sx
R =

16.08
15.73 0.8819 = 0.90

b0 = ȳ− b1 x̄ = 95.11− 0.90 95.30 = 9.2
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Regression Output

summary(lm(twins$Foster ~ twins$Biological))

## Call:
## lm(formula = twins$Foster ~ twins$Biological)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.3512 -5.7311 0.0574 4.3244 16.3531
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.20760 9.29990 0.990 0.332
## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.729 on 25 degrees of freedom
## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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Conditions for inference

In order to conduct inference, the following conditions must be
met:

1. Linearity

2. Nearly normal residuals

3. Constant variability

16



Conditions: (1) Linearity

• The relationship between the explanatory and the
response variable should be linear.

• Methods for fitting a model to non-linear relationships
exist, but are beyond the scope of this class.

• Check using a scatterplot (x vs y) or a residual plot (x vs
resid) .
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Conditions: (2) Nearly normal residuals

• The residuals should follow a nearly normal distribution.

• This condition may not be satisfied when there are
unusual observations that don’t follow the trend of the
rest of the data.

• Checked using a histogram or normal probability plot of
residuals.
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• The residuals should follow a nearly normal distribution.
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Conditions: (3) Constant variability
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Checking conditions

What condition is this linear model violating?
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Checking conditions (II)

What condition is this linear model obviously violating?
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Back to Nature vs nurture

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

70 80 90 100 110 120 130

70

80

90

100

110

120

130

biological IQ

fo
st

er
 IQ

R =  0.882

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000
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Testing for the slope

Assuming that these 27 twins comprise a representative
sample of all twins separated at birth, we would like to test if
these data provide convincing evidence that the IQ of the
biological twin is a significant predictor of IQ of the foster twin.

What are the appropriate hypotheses?

First consider what the null hypothesis should be, if there is
no relationship between the two variables what value of the
slope would we expect to see?

H0: β1 = 0
HA: β1 ̸= 0
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Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

We are interested in inference on β1 which we estimate using
the point estimate b1.

It turns out that after normalizing our point estimate has a T
distribution with n− 2 degrees of freedom.

Tdf=n−2 =
b1 − β1
SE

where,

SEb1 =
1√
n− 1

se
sx

=
1√
n− 1

√
1

n−2
∑n

i=1 ϵ
2
i√

1
n−1

∑n
i=1(xi − x̄)2
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Data + Regression Output

Foster IQ Biological IQ
(y) (x)

mean ȳ = 95.11 x̄ = 95.30
sd sy = 16.08 sx = 15.73
n = 27 R = 0.8819

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.20760 9.29990 0.990 0.332
## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.729 on 25 degrees of freedom
## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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Testing for the slope (cont.)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

T =
0.9014− 0
0.0963 = 9.36

df = 27− 2 = 25
p-value = P(|t| > 9.36) < 0.01
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Confidence interval for the slope

Since we know the sampling distribution we can also construct a
confidence interval: point estimate± CV× SE.

What is the correct 95% confidence interval for the slope parameter?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.2076 9.2999 0.99 0.3316

bioIQ 0.9014 0.0963 9.36 0.0000

n = 27 df = 27− 2 = 25 t⋆25 = 2.06

95% CI = PE± CV× SE
= 0.9014± 2.06× 0.0963
= (0.7, 1.1)
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Recap

Inference for the slope for a SLR model (only one explanatory
variable):

• Hypothesis test for β1:

T = b1 − β1
SEb1

df = n− 2

• Confidence interval for β1:

b1 ± t⋆df=n−2 × SEb1
• The null value is almost always 0, since we are usually
checking for any relationship between the explanatory
and the response variable.

• The regression output gives b1, SEb1 , and the two-tailed
p-value for the t-test of the slope when the null
hypothesis is β1 = 0.
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Caution

• Always be aware of the type of data you’re working with:
random sample, non-random sample, or population.

• Statistical inference, and the resulting p-values, are
meaningless when you have population data.

• If you have a sample that is non-random (biased), the
results will be unreliable.

• The ultimate goal is to have independent observations –
and you know how to check for those by now.
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Variability partitioning

• We considered the t-test as a way to evaluate the strength
of evidence for a hypothesis test for the slope of
relationship between x and y.

• However, we can also consider the variability in y
explained by x, compared to the unexplained variability.

• Partitioning the variability in y to explained and
unexplained variability is something we have already
done (ANOVA).

30
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Sums of Squares

∑
i
(yi − ȳ)2 =

∑
i
(ŷi − ȳ)2 +

∑
i
(yi − ŷi)2

ANOVA Model:

ŷij = ȳi

SST =
∑
i

∑
j
(yij − ȳ)2

SSG =
∑
i

∑
j
(ȳi − ȳ)2

SSE =
∑
i

∑
j
(yi − ȳi)2

Regression Model:

ŷi = b0 + b1 xi

SST =
∑
i

∑
j
(yij − ȳ)2

SSG =
∑
i

∑
j
(b0 + b1 xi − ȳ)2

SSE =
∑
i

∑
j
(yi − b0 + b1 xi)2
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ANOVA Table - Linear Regression

Df Sum Sq Mean Sq F value Pr(>F)
bioIQ 1 5231.13 5231.13 87.56 0.0000
Residuals 25 1493.53 59.74
Total 26 6724.66

Sum of Squares: SSTot =
∑
i

(yi − ȳ)2 = 6724.66 (total variability in y)

SSErr =
∑
i

(yi − ŷi)2 =
∑
i

e2i

= 1493.53 (unexplained variability in residuals)

SSReg =
∑
i

(ŷi − ȳ)2 = SSTot − SSErr

= 5231.13 (explained variability in y)
Degrees of freedom: dfTot = n− 1 = 27− 1 = 26

dfReg = 2− 1 = 1
dfRes = dfTot − dfReg = 26− 1 = 25
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ANOVA output - F-test

Df Sum Sq Mean Sq F value Pr(>F)
bioIQ 1 5231.13 5231.13 87.56 0.0000
Residuals 25 1493.53 59.74
Total 26 6724.66

Mean sq.: MSReg =
SSReg
dfReg

=
5231.13
1 = 5231.13

MSErr =
SSErr
dfErr

=
1493.53
25 = 59.74

F-statistic: F(1,25) =
MSReg
MSErr

= 87.56 (ratio of explained to unexplained variability)

This test compares our regression model to an intercept only
model - which is equivalent to a null hypothesis of β1 = 0 and
the alternative of β1 ̸= 0.
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Regression Output

summary(lm(twins$Foster ~ twins$Biological))

## Call:
## lm(formula = twins$Foster ~ twins$Biological)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.3512 -5.7311 0.0574 4.3244 16.3531
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.20760 9.29990 0.990 0.332
## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.729 on 25 degrees of freedom
## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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ANOVA output - R2 calculation

Df Sum Sq Mean Sq F value Pr(>F)
bioIQ 1 5231.13 5231.13 87.56 0.0000
Residuals 25 1493.53 59.74
Total 26 6724.66

R2 = explained variability
total variability =

SSReg
SSTot

=
5231.13
6724.66 = 0.7779

= 1− SSErr
SSTot

= 1− 1493.53
6724.66 = 0.7779
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