Lecture 21 - Introduction to Multiple Regression

Sta102 / BME102

April 18, 2016

Colin Rundel

Linear regression with categorical predictors

```
str(poverty)
   data.frame': ee151 obs. of 8 variables:
##
               : Factor w/ 51 levels "Alabama", "Alaska", ...: 1 2 3 4 5
    $ Metro : num 55.4 65.6 88.2 52.5 94.4 84.5 87.7 80.1 100 89.3
##
##
    $ Caucasian: num 71.3 70.8 87.7 81 77.5 90.2 85.4 76.3 36.2 80.6
    $ Graduates: num 79.9 90.6 83.8 80.9 81.1 88.7 87.5 88.7 86 84.7
##
##
    $ Poverty : num 14.6 8.3 13.3 18 12.8 9.4 7.8 8.1 16.8 12.1 ...
##
    $ FemaleHH : num 14.2 10.8 11.1 12.1 12.6 9.6 12.1 13.1 18.9 12 .
##
    $ region2 : Factor w/ 2 levels "east","west": 1 2 2 2 2 2 1 1 1 1
##
    $ region4 : Factor w/ 4 levels "northeast", "midwest",..: 4 3 3 4
```

```
by(poverty$Poverty, poverty$region2,
  function(x) c(mean=mean(x), med=median(x),
               sd=sd(x), igr=IQR(x)
## poverty$region2: east
##
                 med sd
       mean
                                   igr
  11.170370 10.300000 3.085427 4.600000
##
  poverty$region2: west
##
       mean
                 med
                       sd
                                   iqr
## 11.550000 10.700000 3.168459 4.000000
```

```
##
## Call:
## lm(formula = Poverty ~ region2, data = poverty)
##
## Residuals:
##
     Min 10 Median 30 Max
## -5.5704 -2.2000 -0.8704 2.0398 6.4500
##
## Coefficients:
       Estimate Std. Error t value Pr(>♦t♦)
##
## (Intercept) 11.1704 0.6013 18.576 <2e-16 ***
## region2west 0.3796 0.8766 0.433 0.667
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.125 on 49 degrees of freedom
## Multiple R-squared: 0.003813,001Adjusted R-squared: -0.01652
## F-statistic: 0.1875 on 1 and 49 DF, p-value: 0.6669
```

%
$$\widehat{poverty} = 11.17 + 0.38 \times \mathbb{1}_{west}$$

· Explanatory variable: region

%
$$\widehat{poverty} = 11.17 + 0.38 \times \mathbb{1}_{west}$$

- · Explanatory variable: region
- · Reference level: east

%
$$\widehat{poverty} = 11.17 + 0.38 \times \mathbb{1}_{west}$$

- Explanatory variable: region
- · Reference level: east
- Intercept: estimated average % poverty in eastern states is 11.17%

%
$$\widehat{poverty} = 11.17 + 0.38 \times \mathbb{1}_{west}$$

- · Explanatory variable: region
- · Reference level: east
- Intercept: estimated average % poverty in eastern states is 11.17%
 - This is the value we get if we plug in 0 for the explanatory variable

%
$$\widehat{poverty} = 11.17 + 0.38 \times \mathbb{1}_{west}$$

- · Explanatory variable: region
- · Reference level: east
- Intercept: estimated average % poverty in eastern states is 11.17%
 - This is the value we get if we plug in 0 for the explanatory variable
- *Slope:* estimated average % poverty in western states is 0.38% higher than eastern states.

%
$$\widehat{poverty} = 11.17 + 0.38 \times \mathbb{1}_{west}$$

- · Explanatory variable: region
- · Reference level: east
- Intercept: estimated average % poverty in eastern states is 11.17%
 - This is the value we get if we plug in 0 for the explanatory variable
- *Slope:* estimated average % poverty in western states is 0.38% higher than eastern states.
 - Estimated average % poverty in western states is 11.17 + 0.38 = 11.55%.

```
##
## Call:
## lm(formula = Poverty ~ region4, data = poverty)
##
## Residuals:
     Min 1Q Median 3Q Max
##
## -6.359 -1.559 -0.025 1.574 6.508
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>♦t♦)
## (Intercept) 9.5000 0.8682 10.943 1.62e-14 ***
## region4midwest 0.0250 1.1485 0.022 0.982725
## region4west 1.7923 1.1294 1.587 0.119220
## region4south 4.1588 1.0736 3.874 0.000331 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.604 on 47 degrees of freedom
## Multiple R-squared: 0.3361, eeIAdjusted R-squared: 0.2938
## F-statistic: 7.933 on 3 and 47 DF, p-value: 0.0002205
```

Which region (Northeast, Midwest, West, South) is the reference level?

Estimate	Std. Error	t value	Pr(> t)
9.50	0.87	10.94	0.00
0.03	1.15	0.02	0.98
1.79	1.13	1.59	0.12
4.16	1.07	3.87	0.00
	9.50 0.03 1.79	9.500.870.031.151.791.13	9.500.8710.940.031.150.021.791.131.59

Which region (Northeast, Midwest, West, South) is the reference level?

Estimate	Std. Error	t value	Pr(> t)
9.50	0.87	10.94	0.00
0.03	1.15	0.02	0.98
1.79	1.13	1.59	0.12
4.16	1.07	3.87	0.00
	9.50 0.03 1.79	9.500.870.031.151.791.13	9.50 0.87 10.94 0.03 1.15 0.02 1.79 1.13 1.59

Interpretation:

• Predict 9.50% poverty in Northeast

Which region (Northeast, Midwest, West, South) is the reference level?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

Interpretation:

- Predict 9.50% poverty in Northeast
- Predict 9.53% poverty in Midwest

Which region (Northeast, Midwest, West, South) is the reference level?

Estimate	Std. Error	t value	Pr(> t)
9.50	0.87	10.94	0.00
0.03	1.15	0.02	0.98
1.79	1.13	1.59	0.12
4.16	1.07	3.87	0.00
	9.50 0.03 1.79	9.500.870.031.151.791.13	9.50 0.87 10.94 0.03 1.15 0.02 1.79 1.13 1.59

Interpretation:

- Predict 9.50% poverty in Northeast
- Predict 9.53% poverty in Midwest
- · Predict 11.29% poverty in West

Which region (Northeast, Midwest, West, South) is the reference level?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.50	0.87	10.94	0.00
region4midwest	0.03	1.15	0.02	0.98
region4west	1.79	1.13	1.59	0.12
region4south	4.16	1.07	3.87	0.00

Interpretation:

- Predict 9.50% poverty in Northeast
- Predict 9.53% poverty in Midwest
- Predict 11.29% poverty in West
- Predict 13.66% poverty in South

```
by(poverty$Poverty, poverty$region4,
  function(x) c(mean=mean(x),med=median(x),sd=sd(x),igr=IQR(x)))
## poverty$region4: northeast
## mean med sd iqr
## 9.500000 9.600000 2.381701 2.500000
## poverty$region4: midwest
## mean med sd igr
## 9.525000 9.550000 1.415579 1.550000
## poverty$region4: west
## mean med sd igr
## 11.292308 10.800000 2.647471 3.400000
## poverty$region4: south
## mean med sd igr
## 13.658824 14.200000 3.233431 3.900000
```

```
summary(lm(Poverty ~ region4, data=poverty))

...
## Residual standard error: 2.604 on 47 degrees of freedom
## Multiple R-squared: 0.3361, Adjusted R-squared: 0.2938
## F-statistic: 7.933 on 3 and 47 DF, p-value: 0.0002205
```

Linear models with multiple predic-

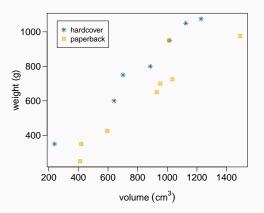
tors

Weights of books

	weight (g)	volume (cm³)	cover
1	800	885	hc
2	950	1016	hc
3	1050	1125	hc
4	350	239	hc
5	750	701	hc
6	600	641	hc
7	1075	1228	hc
8	250	412	pb
9	700	953	pb
10	650	929	pb
11	975	1492	pb
12	350	419	pb
13	950	1010	pb
14	425	595	pb
15	725	1034	pb

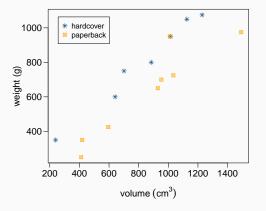
Weights of hard cover and paperback books

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?



Weights of hard cover and paperback books

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?



Paperbacks generally weigh less than hardcover books.

Modeling weights of books using volume <u>and</u> cover type

```
book mlr = lm(weight ~ volume + cover, data = allbacks)
summary(book mlr)
## Coefficients:
                Estimate Std. Error t value Pr(>♦t♦)
##
## (Intercept) 197.96284 59.19274 3.344 0.005841 **
## volume 0.71795 0.06153 11.669 6.6e-08 ***
## cover:pb -184.04727 40.49420 -4.545 0.000672 ***
##
##
## Residual standard error: 78.2 on 12 degrees of freedom
## Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154
## F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \text{ volume} - 184.05 \text{ cover:pb}$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \text{ volume} - 184.05 \text{ cover:pb}$$

1. For hardcover books: plug in 0 for cover

weight =
$$197.96 + 0.72 \text{ volume} - 184.05 \times 0$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \text{ volume} - 184.05 \text{ cover:pb}$$

1. For hardcover books: plug in 0 for cover

$$\widehat{\text{weight}}$$
 = 197.96 + 0.72 volume - 184.05 × 0
= 197.96 + 0.72 volume

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \text{ volume} - 184.05 \text{ cover:pb}$$

1. For hardcover books: plug in 0 for cover

$$\widehat{\text{weight}}$$
 = 197.96 + 0.72 volume - 184.05 × 0
= 197.96 + 0.72 volume

2. For paperback books: plug in 1 for cover

$$weight = 197.96 + 0.72 \text{ volume} - 184.05 \times 1$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \text{ volume} - 184.05 \text{ cover:pb}$$

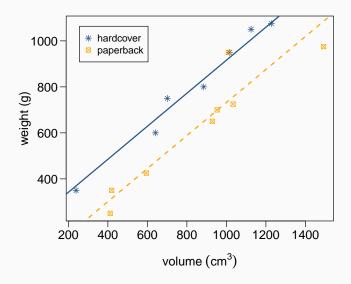
1. For hardcover books: plug in 0 for cover

$$\widehat{\text{weight}}$$
 = 197.96 + 0.72 volume - 184.05 × 0
= 197.96 + 0.72 volume

2. For paperback books: plug in 1 for cover

$$\widehat{\text{weight}}$$
 = 197.96 + 0.72 volume - 184.05 × 1
= 13.91 + 0.72 volume

Visualising the linear model



	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

• Slope of volume: All else held constant, for each 1 cm³ increase in volume we would expect weight to increase on average by 0.72 grams.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, for each 1 cm³ increase in volume we would expect weight to increase on average by 0.72 grams.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams less than hardcover books, on average.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, for each 1 cm³ increase in volume we would expect weight to increase on average by 0.72 grams.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams less than hardcover books, on average.
- *Intercept*: Hardcover books with no volume are expected on average to weigh 198 grams.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, for each 1 cm³ increase in volume we would expect weight to increase on average by 0.72 grams.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams less than hardcover books, on average.
- *Intercept*: Hardcover books with no volume are expected on average to weigh 198 grams.
 - Obviously, the intercept does not make sense in context. It only serves to adjust the height of the line.

Prediction

What is the correct calculation for the predicted weight of a paperback book that has a volume of 600 cm³?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

Prediction

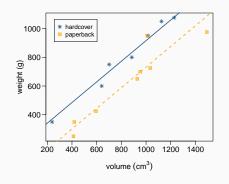
What is the correct calculation for the predicted weight of a paperback book that has a volume of 600 cm³?

97.96	59.19	3.34	0.01
			0.01
0.72	0.06	11.67	0.00
84.05	40.49	-4.55	0.00
	0.7 2	0.7 2	017 2 010 0 22107

$$197.96 + 0.72 \times 600 - 184.05 \times 1 = 445.91$$
 grams

A note on interactions

$$\widehat{\text{weight}} = 197.96 + 0.72 \text{ volume} - 184.05 \text{ cover:pb}$$



This model assumes that hardcover and paperback books have the same slope for the relationship between their volume and weight. If this isn't reasonable, then we would include an "interaction" variable in the model.

Example of an interaction

 $weight = 161.58 + 0.76 \text{ volume} - 120.21 \text{ cover:pb} - 0.076 \text{ volume} \times \text{cover:pb}$

Example of an interaction - interpretation

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	161.5865	86.5192	1.87	0.0887
volume	0.7616	0.0972	7.84	0.0000
coverpb	-120.2141	115.6590	-1.04	0.3209
volume:coverpb	-0.0757	0.1280	-0.59	0.5661

Regression equations for hardbacks:

$$weight = 161.58 + 0.76 \text{ volume} - 120.21 \times 0 - 0.076 \text{ volume} \times 0$$

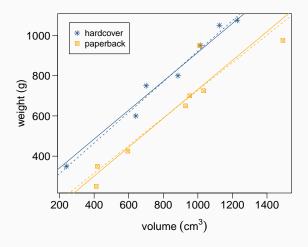
= 161.58 + 0.76 volume

Regression equations for paperbacks:

$$weight = 161.58 + 0.76 \text{ volume} - 120.21 \times 1 - 0.076 \text{ volume} \times 1$$

= 41.37 + 0.686 volume

Example of an interaction - Results



 R^2 and Adjusted R^2

Another look at R

For a linear regression we have defined the correlation coefficient to be

$$R = Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

This definition works fine for the simple linear regression case where *X* and *Y* are numeric variables, but does not work for regression with a categorical predictor or for multiple regression.

A more useful, and equivalent, definition is $R = \text{Cor}(Y, \hat{Y})$, which will work for all regression examples we will see in this class.

Another look at R, cont.

Claim: $Cor(X, Y) = Cor(Y, \hat{Y})$

Another look at R, cont.

Claim:
$$Cor(X, Y) = Cor(Y, \hat{Y})$$

Remember: $Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$, $\hat{Y} = b_0 + b_1 X$, $Var(aX + b) = a^2 Var(X)$, $Cov(aX + b, Y) = a Cov(X, Y)$

Another look at R, cont.

Claim:
$$Cor(X, Y) = Cor(Y, \hat{Y})$$

Remember: $Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$, $\hat{Y} = b_0 + b_1 X$, $Var(aX + b) = a^2 Var(X)$, $Cov(aX + b, Y) = a Cov(X, Y)$

$$Cor(Y, \hat{Y}) = \frac{Cov(Y, \hat{Y})}{\sqrt{Var(Y)Var(\hat{Y})}}$$

$$= \frac{Cov(Y, b_0 + b_1 X)}{\sqrt{\sigma_Y^2 Var(b_0 + b_1 X)}}$$

$$= \frac{b_1 Cov(Y, X)}{\sigma_Y \sqrt{b_1^2 Var(X)}}$$

$$= \frac{b_1 Cov(Y, X)}{b_1 \sigma_Y \sigma_X}$$

$$= Cor(X, Y)$$

Another look at R²

So how can we claim that R^2 is a measure of variability "explained" by the model?

Another look at R²

So how can we claim that R^2 is a measure of variability "explained" by the model?

Remember, in an ANOVA we can partition total uncertainty into model (group) uncertainty and residual (error) uncertainty.

$$SST = SSG + SSE$$

$$\sum_{i=1}^{k} \sum_{i=1}^{n_i} (y_{ij} - \bar{y})^2 = \sum_{i=1}^{k} \sum_{i=1}^{n_i} (\bar{y}_i - \bar{y})^2 + \sum_{i=1}^{k} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

For a regression we can do the same thing, just replacing \bar{y}_i with \hat{y}_i

$$SST = SSR + SSE$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Another look at R²

After a fair bit of algebra we can show that,

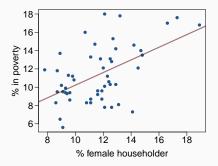
$$R^{2} = \operatorname{Cor}(Y, \hat{Y})^{2} = \frac{\operatorname{Cov}(Y, \hat{Y})^{2}}{\operatorname{Var}(Y)\operatorname{Var}(\hat{Y})}$$
$$= \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\operatorname{SSR}}{\operatorname{SST}}$$
$$= \frac{\operatorname{SST} - \operatorname{SSE}}{\operatorname{SST}} = 1 - \frac{\operatorname{SSE}}{\operatorname{SST}}$$

Revisit: Modeling poverty

Predicting poverty using % female householder

summary(lm(poverty ~ female_house, data = poverty))

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.31	1.90	1.74	0.09
female_house	0.69	0.16	4.32	0.00



$$R = 0.53$$
$$R^2 = 0.53^2 = 0.28$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

$$SS_{Tot} = \sum (y - \bar{y})^2 = 480.25 \rightarrow total \ variability$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

$$SS_{Tot} = \sum (y - \bar{y})^2 = 480.25 \rightarrow total \ variability$$

 $SS_{Err} = \sum e_i^2 = 347.68 \rightarrow unexplained \ variability$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

$$SS_{Tot} = \sum (y - \bar{y})^2 = 480.25 \rightarrow \text{total variability}$$

 $SS_{Err} = \sum e_i^2 = 347.68 \rightarrow \text{unexplained variability}$
 $SS_{Reg} = SS_{Total} - SS_{Error} \rightarrow \text{explained variability}$
 $= 480.25 - 347.68 = 132.57$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

$$SS_{Tot} = \sum (y - \bar{y})^2 = 480.25 \rightarrow \text{total variability}$$

 $SS_{Err} = \sum e_i^2 = 347.68 \rightarrow \text{unexplained variability}$
 $SS_{Reg} = SS_{Total} - SS_{Error} \rightarrow \text{explained variability}$
 $= 480.25 - 347.68 = 132.57$

$$R^2 = \frac{\text{explained variability}}{\text{total variability}} = \frac{132.57}{480.25} = 0.28 \checkmark$$

Predicting poverty using % female hh + % metro

pov_mlr = lm(Poverty ~ FemaleHH + Metro, data = poverty)
summary(pov_mlr)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	7.3127	2.0710	3.53	0.0009
FemaleHH	0.8480	0.1516	5.59	0.0000
Metro	-0.0807	0.0234	-3.45	0.0012

anova(pov_mlr)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		

Predicting poverty using % female hh + % metro

pov_mlr = lm(Poverty ~ FemaleHH + Metro, data = poverty)
summary(pov_mlr)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	7.3127	2.0710	3.53	0.0009
FemaleHH	0.8480	0.1516	5.59	0.0000
Metro	-0.0807	0.0234	-3.45	0.0012

anova(pov_mlr)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		

$$R^2 = \frac{\text{explained variability}}{\text{total variability}} = \frac{132.57 + 8.21}{480.25} = 0.29$$

	R^2
Model 1 (poverty vs. female_house)	0.2760
Model 2 (poverty vs. female_house + cauc)	0.4200

 We would like to have some criteria to evaluate if adding an additional variable makes a difference in the explanatory power of the model.

	R^2
Model 1 (poverty vs. female_house)	0.2760
Model 2 (poverty vs. female_house + cauc)	0.4200

- We would like to have some criteria to evaluate if adding an additional variable makes a difference in the explanatory power of the model.
- When <u>any</u> variable is added to the model R^2 increases.

	R^2
Model 1 (poverty vs. female_house)	0.2760
Model 2 (poverty vs. female_house + cauc)	0.4200

- We would like to have some criteria to evaluate if adding an additional variable makes a difference in the explanatory power of the model.
- When <u>any</u> variable is added to the model R^2 increases.
- Adjusted R^2 is based on R^2 but it penalizes the addition of variables.

	R^2	Adjusted R ²
Model 1 (poverty vs. female_house)	0.2760	0.2613
Model 2 (poverty vs. female_house + cauc)	0.4200	0.3958

- We would like to have some criteria to evaluate if adding an additional variable makes a difference in the explanatory power of the model.
- \cdot When <u>any</u> variable is added to the model R^2 increases.
- Adjusted R^2 is based on R^2 but it penalizes the addition of variables.

Adjusted R²

Adjusted R^2

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$

where n is the number of cases and k is the number of predictors / slopes (explanatory variables excluding the intercept) in the model.

- Because k is never negative, R_{adj}^2 will always be less than or equal to R^2 .
- R_{adj}^2 applies a penalty for the number of predictors included in the model.
- \cdot Therefore, we prefer models with higher R^2_{adj}

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		
Total	50	480.25			

$$R_{adj}^2 = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$
$$= 1 - \left(\frac{278.56}{480.25} \times \frac{51-1}{51-2-1}\right)$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$
$$= 1 - \left(\frac{278.56}{480.25} \times \frac{51-1}{51-2-1}\right)$$
$$= 1 - \left(\frac{278.56}{480.25} \times \frac{50}{48}\right)$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$

$$= 1 - \left(\frac{278.56}{480.25} \times \frac{51-1}{51-2-1}\right)$$

$$= 1 - \left(\frac{278.56}{480.25} \times \frac{50}{48}\right)$$

$$= 1 - 0.60$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FemaleHH	1	132.57	132.57	22.84	0.0000
Metro	1	69.12	69.12	11.91	0.0012
Residuals	48	278.56	5.80		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$

$$= 1 - \left(\frac{278.56}{480.25} \times \frac{51-1}{51-2-1}\right)$$

$$= 1 - \left(\frac{278.56}{480.25} \times \frac{50}{48}\right)$$

$$= 1 - 0.60$$

$$= 0.40$$