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Model diagnostics



Modeling children’s test scores

Predicting cognitive test scores of three- and four-year-old children

using characteristics of their mothers. Data are a subsample from

the National Longitudinal Survey of Youth.

kid score mom hs mom iq mom work mom age

1 65 yes 121.12 yes 27
...

5 115 yes 92.75 yes 27

6 98 no 107.90 no 18
...

434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007)

Cambridge University Press.
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Model output

summary(lm(kid_score ~ mom_hs + mom_iq + mom_work + mom_age, data = cognitive))

##

## Call:

## lm(formula = kid_score ~ mom_hs + mom_iq + mom_work + mom_age,

## data = cognitive)

##

## Residuals:

## Min 1Q Median 3Q Max

## -53.134 -12.624 2.293 11.250 50.206

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 20.82261 9.18765 2.266 0.0239 *

## mom_hs 5.56118 2.31345 2.404 0.0166 *

## mom_iq 0.56208 0.06077 9.249 <2e-16 ***

## mom_work 0.13373 0.76763 0.174 0.8618

## mom_age 0.21986 0.33231 0.662 0.5086

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 18.17 on 429 degrees of freedom

## Multiple R-squared: 0.215,Adjusted R-squared: 0.2077

## F-statistic: 29.38 on 4 and 429 DF, p-value: < 2.2e-16

4



Conditions for MLR Inference

In order to conduct inference for multiple regression we require the

following conditions:

(1) Unstructured / nearly normal residuals

(2) Constant variability of residuals

(3) Independent residuals
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Nearly normal residuals

Histogram of residuals
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Unstructured / Constant variability of residuals

Why do we use the fitted (predicted) values in MLR?
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Constant variability of residuals (cont.)
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Independent residuals

• If we suspect that order of data collection may influence the

outcome (mostly in time series data):
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• If not, think about how data are sampled.
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Inference for MLR



Model output

summary(lm(kid_score ~ mom_hs + mom_iq + mom_work + mom_age, data = cognitive))

##

## Call:

## lm(formula = kid_score ~ mom_hs + mom_iq + mom_work + mom_age,

## data = cognitive)

##

## Residuals:

## Min 1Q Median 3Q Max

## -53.134 -12.624 2.293 11.250 50.206

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 20.82261 9.18765 2.266 0.0239 *

## mom_hs 5.56118 2.31345 2.404 0.0166 *

## mom_iq 0.56208 0.06077 9.249 <2e-16 ***

## mom_work 0.13373 0.76763 0.174 0.8618

## mom_age 0.21986 0.33231 0.662 0.5086

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 18.17 on 429 degrees of freedom

## Multiple R-squared: 0.215,Adjusted R-squared: 0.2077

## F-statistic: 29.38 on 4 and 429 DF, p-value: < 2.2e-16
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Inference for the model as a whole

Is the model as a whole significant?

H0 : β1 = · · · = βk = 0

HA : At least one of the βi 6= 0

F-statistic: 29.38 on 4 and 429 DF, p-value: < 2.2e-16

Since p-value < 0.05, the model as a whole is significant.

• The F test yielding a significant result doesn’t mean the

model fits the data well, it just means at least one of the βs is

non-zero. i.e. the combination of these variables overall yields

a model that is better than the intercept only model.
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ANOVA Table

anova(lm(kid_score~.,data=cognitive))

## Analysis of Variance Table

##

## Response: kid_score

## Df Sum Sq Mean Sq F value Pr(>F)

## mom_hs 1 10125 10125.0 30.6763 5.325e-08 ***

## mom_iq 1 28504 28504.1 86.3608 < 2.2e-16 ***

## mom_work 1 18 17.6 0.0533 0.8175

## mom_age 1 144 144.5 0.4377 0.5086

## Residuals 429 141595 330.1

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

MSReg = (18 + 144 + 10125 + 28504)/4 = 9697.75

FReg = 9697.75/330.1 = 29.38

F-statistic: 29.38 on 4 and 429 DF, p-value: < 2.2e-16
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Inference for the slope(s)

Is whether or not a mother graduated from high school a

significant predictor of kid’s cognitive test score, given all other

variables in the model?

H0 : β1 = 0, when all other variables are included in the model

HA : β1 6= 0, when all other variables are included in the model

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.59241 9.21906 2.125 0.0341

mom_hsyes 5.09482 2.31450 2.201 0.0282

mom_iq 0.56147 0.06064 9.259 <2e-16

mom_workyes 2.53718 2.35067 1.079 0.2810

mom_age 0.21802 0.33074 0.659 0.5101

Residual standard error: 18.14 on 429 degrees of freedom

T = 2.201, df = n − k − 1 = 434− 4− 1 = 429, p-value = 0.0282

Since p-value < 0.05, whether or not mom went to high school is a significant

predictor of kid’s test score, given all other variables in the model.
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Interpreting the slope

What is the correct interpretation of the slope for mom work?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03

mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28

mom age 0.22 0.33 0.66 0.51
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Interpreting the slope

What is the correct interpretation of the slope for mom work?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03

mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28

mom age 0.22 0.33 0.66 0.51

All else being equal, children whose mothers worked during the

first three years of the child’s life are estimated to score 2.54 points

higher than those whose mothers did not work.
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CI Recap from last time

Inference for the slope for a SLR model (only one explanatory

variable):

• Hypothesis test:

T =
b1 − null value

SEb1

df = n − 2

• Confidence interval:

b1 ± t?df × SEb1

The only difference for MLR is that we use bi instead of b1, and

use df = n − k − 1. Not that the formular for SEbi also changes,

but you will not be responsible for it in this class.
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CI for the slope

Construct a 95% confidence interval for the slope of mom work.

bk ± t?SEbk

df = n − k − 1 = 434− 4− 1 = 429→ 400

2.54 ± 1.97× 2.35

2.54 ± 4.63

(−2.0895 , 7.1695)

Interpretation?

We are 95% confident that, all else being equal, children whose

mothers worked during the first three years of the child’s life are

estimated to score between -2.0895 and 7.1695 points higher than

those whose mothers did not work.
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Inference for the slope(s) (cont.)

Given all variables in the model, which variables are significant

predictors of kid’s cognitive test score?

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.59241 9.21906 2.125 0.0341

mom_hsyes 5.09482 2.31450 2.201 0.0282

mom_iq 0.56147 0.06064 9.259 <2e-16

mom_workyes 2.53718 2.35067 1.079 0.2810

mom_age 0.21802 0.33074 0.659 0.5101

mom hs and mom iq are significant

mom work and mom age are not.
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Model selection



Modeling kid’s test scores (revisited)

Predicting cognitive test scores of three- and four-year-old children

using characteristics of their mothers. Data are from a survey of

adult American women and their children - a subsample from the

National Longitudinal Survey of Youth.

kid score mom hs mom iq mom work mom age

1 65 yes 121.12 yes 27
...

...
...

...
...

...

5 115 yes 92.75 yes 27

6 98 no 107.90 no 18
...

...
...

...
...

...

434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University

Press.
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Model output

cog_full = lm(kid_score ~ mom_hs + mom_iq + mom_work + mom_age,

data = cognitive)

summary(cog_full)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.59241 9.21906 2.125 0.0341

## mom_hsyes 5.09482 2.31450 2.201 0.0282

## mom_iq 0.56147 0.06064 9.259 <2e-16

## mom_workyes 2.53718 2.35067 1.079 0.2810

## mom_age 0.21802 0.33074 0.659 0.5101

##

## Residual standard error: 18.14 on 429 degrees of freedom

## Multiple R-squared: 0.2171, Adjusted R-squared: 0.2098

## F-statistic: 29.74 on 4 and 429 DF, p-value: < 2.2e-16
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Backward-elimination

Adjusted R2 approach:

• Start with the full model

• Drop one variable at a time and record R2
adj of each smaller

model

• Pick the model with the largest increase in R2
adj

• Repeat until none of the reduced models yield an increase in

R2
adj

When removing a categorical variable all levels should be included

or removed at the same time

22



Backward-elimination

Adjusted R2 approach:

• Start with the full model

• Drop one variable at a time and record R2
adj of each smaller

model

• Pick the model with the largest increase in R2
adj

• Repeat until none of the reduced models yield an increase in

R2
adj

When removing a categorical variable all levels should be included

or removed at the same time
22



Backward-selection: R2
adj approach

Step Variables included R2
adj

Full kid score ˜ mom hs + mom iq + mom work + mom age 0.2098

Step 1 kid score ˜ mom iq + mom work + mom age 0.2027

kid score ˜ mom hs + mom work + mom age 0.0541

kid score ˜ mom hs + mom iq + mom age 0.2095

kid score ˜ mom hs + mom iq + mom work 0.2109

Step 2 kid score ˜ mom iq + mom work 0.2024

kid score ˜ mom hs + mom work 0.0546

kid score ˜ mom hs + mom iq 0.2105

Step 3∗ kid score ˜ mom hs 0.2024

kid score ˜ mom iq 0.0546
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Forward-selection

Adjusted R2 approach:

• Start with regression of response vs. each explanatory variable

• Pick the model with the highest R2
adj

• Add the remaining variables one at a time to the existing

model, and once again pick the model with the highest R2
adj

• Repeat until the addition of any of the remaining variables

does not result in a higher R2
adj
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Forward-selection: R2
adj approach

Step Variables included R2
adj

Step 1 kid score ˜ mom hs 0.0539

kid score ˜ mom work 0.0097

kid score ˜ mom age 0.0062

kid score ˜ mom iq 0.1991

Step 2 kid score ˜ mom iq + mom work 0.2024

kid score ˜ mom iq + mom age 0.1999

kid score ˜ mom iq + mom hs 0.2105

Step 3 kid score ˜ mom iq + mom hs + mom age 0.2095

kid score ˜ mom iq + mom hs + mom work 0.2109

Step 4∗ kid score ˜ mom iq + mom hs + mom age + mom work 0.2098
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Final model choice

cog_final = lm(kid_score ~ mom_hs + mom_iq, data = kid)

summary(cog_final)

## Call:

## lm(formula = kid_score ~ mom_hs + mom_iq, data = kid)

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 25.73154 5.87521 4.380 1.49e-05 ***

## mom_hsyes 5.95012 2.21181 2.690 0.00742 **

## mom_iq 0.56391 0.06057 9.309 < 2e-16 ***

##

## Residual standard error: 18.14 on 431 degrees of freedom

## Multiple R-squared: 0.2141, Adjusted R-squared: 0.2105

## F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16
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Odds

Odds are another way of quantifying the probability of an event,

commonly used in gambling (and logistic regression).

For some event E ,

odds(E ) =
P(E )

P(E c)
=

P(E )

1− P(E )

Similarly, if we are told the odds of E are x to y then

odds(E ) =
x

y
=

x/(x + y)

y/(x + y)

which implies

P(E ) = x/(x + y), P(E c) = y/(x + y)
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Example - Donner Party

In 1846 the Donner and Reed families left Springfield, Illinois, for

California by covered wagon. In July, the Donner Party, as it

became known, reached Fort Bridger, Wyoming. There its leaders

decided to attempt a new and untested route to the Sacramento

Valley. Having reached its full size of 87 people and 20 wagons, the

party was delayed by a difficult crossing of the Wasatch Range and

again in the crossing of the desert west of the Great Salt Lake. The

group became stranded in the eastern Sierra Nevada mountains

when the region was hit by heavy snows in late October. By the

time the last survivor was rescued on April 21, 1847, 40 of the 87

members had died from famine and exposure to extreme cold.

From Ramsey, Schafer (2002). The Statistical Sleuth
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Example - Donner Party - Data

Age Sex Status

1 23.00 Male Died

2 40.00 Female Survived

3 40.00 Male Survived

4 30.00 Male Died

5 28.00 Male Died
...

...
...

...

43 23.00 Male Survived

44 24.00 Male Died

45 25.00 Female Survived
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Example - Donner Party - EDA

Status vs. Gender:

Male Female

Died 20 5

Survived 10 10

Status vs. Age:

Died Survived

20
30

40
50

60

A
ge
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Example - Donner Party - ???

It seems clear that both age and gender have an effect on

someone’s survival, how do we come up with a model that will let

us explore this relationship?

Even if we set Died to 0 and Survived to 1, this isn’t something we

can reasonably fit a linear model to - we need something more.

One way to think about the problem - we can treat Survived and

Died as successes and failures arising from a Bernoulli trial where

the probability of a success (survival) is given by a transformation

of a linear model of the predictors.
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Generalized linear models

It turns out that this is a very general way of addressing this type

of problem in regression, and the resulting models are called

generalized linear models (GLMs). Logistic regression is just one

example of this type of model.

All generalized linear models have the following three

characteristics:

1. A probability distribution describing the outcome variable

2. A linear model

η = β0 + β1X1 + · · ·+ βnXn

3. A link function that relates the linear model to the parameter

of the outcome distribution

g(p) = η or p = g−1(η)
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Logistic Regression

Logistic regression is a GLM used to model a binary categorical

variable using numerical and categorical predictors.

We assume a binomial distribution produced the outcome variable

and we therefore want to model p the probability of success for a

given set of predictors.

To finish specifying the Logistic model we just need to establish a

reasonable link function that connects η to p. There are a variety

of options but the most commonly used is the logit function.

Logit function:

logit(p) = log

(
p

1− p

)
, for 0 ≤ p ≤ 1
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Properties of the Logit

The logit function takes a value between 0 and 1 and maps it to a

value between −∞ and ∞.

Inverse logit (logistic) function:

g−1(x) =
exp(x)

1 + exp(x)
=

1

1 + exp(−x)

The inverse logit function takes a value between −∞ and ∞ and

maps it to a value between 0 and 1.

This formulation is also useful for interpreting the model, since the

logit can be interpreted as the log odds of a success - more on this

later.
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The logistic regression model

The three GLM criteria give us:

yi ∼ Bern(pi )

ηi = β0 + β1x1,i + · · ·+ βnxn,i

logit(pi ) = ηi

From which we get,

pi =
exp(β0 + β1x1,i + · · ·+ βnxn,i )

1 + exp(β0 + β1x1,i + · · ·+ βnxn,i )
37



Example - Donner Party - Model

In R we fit a GLM in the same was as a linear model except we use

glm instead of lm. (We specify the type of GLM to fit using the

family argument)

summary(glm(Status ~ Age, data=donner, family=binomial))

## Call:

## glm(formula = Status ~ Age, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.81852 0.99937 1.820 0.0688 .

## Age -0.06647 0.03222 -2.063 0.0391 *

##

## Null deviance: 61.827 on 44 degrees of freedom

## Residual deviance: 56.291 on 43 degrees of freedom

## AIC: 60.291

##

## Number of Fisher Scoring iterations: 4
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Example - Donner Party - Prediction

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8185 0.9994 1.82 0.0688

Age -0.0665 0.0322 -2.06 0.0391

Model:

log

(
p

1− p

)
= 1.8185− 0.0665× Age

Odds / Probability of survival for a newborn (Age=0):

log

(
p

1− p

)
= 1.8185− 0.0665× 0

p

1− p
= exp(1.8185) = 6.16

p = 6.16/7.16 = 0.86
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Example - Donner Party - Prediction (cont.)

Model:
log

(
p

1− p

)
= 1.8185− 0.0665× Age

Odds / Probability of survival for a 25 year old:

log

(
p

1− p

)
= 1.8185− 0.0665× 25

p

1− p
= exp(0.156) = 1.17

p = 1.17/2.17 = 0.539

Odds / Probability of survival for a 50 year old:

log

(
p

1− p

)
= 1.8185− 0.0665× 0

p

1− p
= exp(−1.5065) = 0.222

p = 0.222/1.222 = 0.181
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Example - Donner Party - Prediction (cont.)
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= 1.8185− 0.0665× 0

p

1− p
= exp(−1.5065) = 0.222

p = 0.222/1.222 = 0.181
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Example - Donner Party - Prediction (cont.)
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Example - Donner Party - Prediction (cont.)
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Example - Donner Party - Interpretation

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8185 0.9994 1.82 0.0688

Age -0.0665 0.0322 -2.06 0.0391

Simple interpretation is only possible in terms of log odds and log

odds ratios for intercept and slope terms.

Intercept: The log odds of survival for a party member with an age

of 0. From this we can calculate the odds or probability, but

additional calculations are necessary.

Slope: For a unit increase in age (being 1 year older) how much

will the log odds ratio change, not particularly intuitive. More

often than not we care only about sign and relative magnitude.
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Example - Donner Party - Interpretation - Slope

log

(
p1

1− p1

)
= 1.8185− 0.0665(x + 1)

= 1.8185− 0.0665x − 0.0665

log

(
p2

1− p2

)
= 1.8185− 0.0665x

log

(
p1

1− p1

)
− log

(
p2

1− p2

)
= −0.0665

log

(
p1

1− p1

/
p2

1− p2

)
= −0.0665

p1

1− p1

/
p2

1− p2
= exp(−0.0665) = 0.94
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Example - Donner Party - Age and Gender

summary(glm(Status ~ Age + Sex, data=donner, family=binomial))

## Call:

## glm(formula = Status ~ Age + Sex, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.63312 1.11018 1.471 0.1413

## Age -0.07820 0.03728 -2.097 0.0359 *

## SexFemale 1.59729 0.75547 2.114 0.0345 *

## ---

Gender slope: When the other predictors are held constant this is

the log odds ratio between the contrast (Female) and the reference

level (Male).
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Example - Donner Party - Gender Models

Just like MLR we can plug in gender to arrive at two status vs age

models for men and women respectively.

General model:

log

(
p1

1− p1

)
= 1.63312 +−0.07820× Age + 1.59729× Sex

Male model:

log

(
p1

1− p1

)
= 1.63312 +−0.07820× Age + 1.59729× 0

= 1.63312 +−0.07820× Age

Female model:

log

(
p1

1− p1

)
= 1.63312 +−0.07820× Age + 1.59729× 1

= 3.23041 +−0.07820× Age 45



Example - Donner Party - Gender Models (cont.)
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Example - Donner Party - Gender Models (cont.)
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Hypothesis test for the model

summary(glm(Status ~ Age + Sex, data=donner, family=binomial))

## Call:

## glm(formula = Status ~ Age + Sex, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.63312 1.11018 1.471 0.1413

## Age -0.07820 0.03728 -2.097 0.0359 *

## SexFemale 1.59729 0.75547 2.114 0.0345 *

## ---

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 61.827 on 44 degrees of freedom

## Residual deviance: 51.256 on 42 degrees of freedom

## AIC: 57.256

##

## Number of Fisher Scoring iterations: 4

Note that the model output does not include any F-statistic, as a

general rule there are not single model hypothesis tests for GLM

models.

47



Hypothesis test for the model

summary(glm(Status ~ Age + Sex, data=donner, family=binomial))

## Call:

## glm(formula = Status ~ Age + Sex, family = binomial, data = donner)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.63312 1.11018 1.471 0.1413

## Age -0.07820 0.03728 -2.097 0.0359 *

## SexFemale 1.59729 0.75547 2.114 0.0345 *

## ---

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 61.827 on 44 degrees of freedom

## Residual deviance: 51.256 on 42 degrees of freedom

## AIC: 57.256

##

## Number of Fisher Scoring iterations: 4

Note that the model output does not include any F-statistic, as a

general rule there are not single model hypothesis tests for GLM

models.

47



Hypothesis tests for a coefficient

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6331 1.1102 1.47 0.1413

Age -0.0782 0.0373 -2.10 0.0359

SexFemale 1.5973 0.7555 2.11 0.0345

We can still perform inference for individual coefficients, the basic

framework is the same as SLR/MLR except we use a Z test instead

of a t test.

Note the only tricky bit, which is beyond the scope of this course,

is how the standard error is calculated.
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Testing for the slope of Age

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6331 1.1102 1.47 0.1413

Age -0.0782 0.0373 -2.10 0.0359

SexFemale 1.5973 0.7555 2.11 0.0345

H0 : βage = 0

HA : βage 6= 0

Z =
ˆβage − βage
SEage

=
-0.0782− 0

0.0373
= -2.10

p-value = P(|Z | > 2.10) = P(Z > 2.10) + P(Z < -2.10)

= 2× 0.0178 = 0.0359
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Testing for the slope of Age
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Confidence interval for age slope coefficient

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6331 1.1102 1.47 0.1413

Age -0.0782 0.0373 -2.10 0.0359

SexFemale 1.5973 0.7555 2.11 0.0345

Remember, the interpretation for a slope is the change in log odds

ratio per unit change in the predictor.

Log odds ratio:

CI = PE±CV×SE = −0.0782±1.96×0.0373 = (−0.1513,−0.0051)

Odds ratio:

exp(CI ) = (exp(−0.1513), exp(−0.0051) = (0.8596, 0.9949)
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