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Variability of Estimates



Mean

Sample mean (X̄):

X̄ = 1
n (x1 + x2 + x3 + · · ·+ xn) =

1
n

n∑
i=1

xi

Population mean (µ):

µ =
1
N (x1 + x2 + x3 + · · ·+ xN) =

1
N

N∑
i=1

xi

The sample mean (X̄) is a point estimate of the population
mean (µ) - this estimate may not be perfect, but if the sample
is good (representative of the population) it should be close -
today we will discuss how close.
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Variance

Sample Variance (s2)

s2 = 1
n− 1

n∑
i=1

(xi − X̄)2

Population Variance (σ2) -

σ2 =
1
N

N∑
i=1

(xi − µ)2

Similarly, the sample variance (s2) is a point estimate of the
population variance (σ2). For a decent sample, this should also
be close to the population variance.
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Parameter estimation

We are usually interested in knowing something about
population parameters.

Since full populations are difficult (or impossible) to collect
data on, we use sample statistics as point estimates for
unknown population parameters of interest.

• Sample statistics vary from sample to sample.
• Quantifying how much sample statistics vary provides a
way to estimate the margin of error associated with our
point estimates.

• First we will look at how much point estimates vary from
sample to sample.
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Estimate the avg. # of drinks it takes to get drunk

We would like to estimate the average (self reported from
students in a Duke Statistics class) number of drinks it takes a
person get drunk, we will assume that this is population data:

Number of drinks to get drunk
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Activity

• Use RStudio to generate 10 random numbers between 1
and 146 (with replacement)

sample(1:146, size = 10, replace = TRUE)

• If you don’t have a computer, ask a neighbor to generate a
sample for you.

• Using the handout find the 10 data points associated with
your sampled values then

• Calculate the sample mean of these 10 values
• Round this mean to 1 decimal place
• Report it using http://bit.ly/Sta102_CLT
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sample(1:146, size = 10, replace = TRUE)

## [1] 17 91 89 92 126 94 2 34 98 76

1 7 21 6 41 6 61 10 81 6 101 4 121 6 141 4
2 5 22 2 42 10 62 7 82 5 102 7 122 5 142 6
3 4 23 6 43 3 63 4 83 6 103 6 123 3 143 6
4 4 24 7 44 6 64 5 84 8 104 8 124 2 144 4
5 6 25 3 45 10 65 6 85 4 105 3 125 2 145 5
6 2 26 6 46 4 66 6 86 10 106 6 126 5 146 5
7 3 27 5 47 3 67 6 87 5 107 2 127 10
8 5 28 8 48 3 68 7 88 10 108 5 128 4
9 5 29 0 49 6 69 7 89 8 109 1 129 1
10 6 30 8 50 8 70 5 90 5 110 5 130 4
11 1 31 5 51 8 71 10 91 4 111 5 131 10
12 10 32 9 52 8 72 3 92 0.5 112 4 132 8
13 4 33 7 53 2 73 5.5 93 3 113 4 133 10
14 4 34 5 54 4 74 7 94 3 114 9 134 6
15 6 35 5 55 8 75 10 95 5 115 4 135 6
16 3 36 7 56 3 76 6 96 6 116 3 136 6
17 10 37 4 57 5 77 6 97 4 117 3 137 7
18 8 38 0 58 5 78 5 98 4 118 4 138 3
19 5 39 4 59 8 79 4 99 2 119 4 139 10
20 10 40 3 60 4 80 5 100 5 120 8 140 4
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Sampling distribution

What we just constructed is called a sampling distribution - it
is an empirical distribution of sample statistics (X̄ in this case).
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Increasing number of samples

If we increase the number of X̄s we calculated to 1000 the
sampling distribution looks like:

Sampling Distribution
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Average number of Duke games attended

Next let’s look at the population data for the number of
basketball games attended:

number of Duke games attended
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Sampling distribution of x̄ when n = 10

sample means from samples of n = 10
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Sampling distribution of x̄ when n = 30

sample means from samples of n = 30
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Sampling distribution of x̄ when n = 70

sample means from samples of n = 70
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General Patterns

As the sample size, n, increases the sampling distribution of x̄:
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Sums of iid Random Variables

Let X1, X2, · · · , Xn
iid∼ D where D is some distribution with

E(Xi) = µ and Var(Xi) = σ2.

If we define Sn = X1 + X2 + · · ·+ Xn then what is expected value
and variance of Sn?
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Average of iid Random Variables

Let X1, X2, · · · , Xn
iid∼ D where D is some distribution with

E(Xi) = µ and Var(Xi) = σ2.

If we define Xn = (X1 + X2 + · · ·+ Xn)/n = Sn/n then what is the
expected value and variance of Xn?
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Central Limit Theorem

Central limit theorem - sum of iid RVs (Sn)

The distribution of the sum of n independent and
identically distributed random variables X is
approximately normal when n is large.

Sn ∼ N
(
µ = n E(X), σ2 = n Var(X)

)

Central limit theorem - avergae of iid RVs (X̄)

The distribution of the average of n independent and
identically distributed random variables X is
approximately normal when n is large.

X̄ ∼ N
(
µ = E(X), σ2 = Var(X)/n

)
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Standard Error

We will be seeing the Central Limit Theorem throughout the
rest of the course in a variety of different guises (different
summary statistics / point estimates - depending on the data
and mode of inference).

One common feature we will be looking at is the uncertainty of
the sampling distribution. This is given a special name when
we discuss the standard deviation, which we call the Standard
Error.

SE =
√
Var(X)
n =

SD(X)√
n
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CLT - Conditions

Certain conditions are required for the CLT to apply:

1. Independence: Sampled observations must be
independent and identically distributed.

Not true for samples collected without replacement, but
approximately correct if

• random sampling/assignment is used, and
• n < 10% of the population.

2. Sample size/skew: the population distribution must be
nearly normal or the sample size must be large (the less
normal the population distribution, the larger the sample
size needs to be).

Usually checked using the sample data - assume that the
distribution of the sample is similar to the population
distribution. 20



CLT - Simulation

https://gallery.shinyapps.io/CLT_mean/
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Review

To the right is a plot of a population
distribution. Match each of the following
descriptions to one of the three plots below.

1. a single random sample of 100
observations from this population

2. a distribution of 100 sample means
from random samples with size 7

3. a distribution of 100 sample means
from random samples with size 49
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Confidence intervals



Confidence intervals

Using only a point estimate to estimate a parameter is like
fishing in a murky lake with a spear, while a confidence
interval is like a fishing net.

If we report a point estimate, we probably will not hit the exact
population parameter. If we report a range of plausible values
– a confidence interval – we have a good shot at capturing the
parameter.
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Confidence intervals and the CLT

We have a point estimate, X̄, for the population mean µ, but we
want to design a “net” to have a reasonable chance of
capturing µ.

• The CLT tells us that X̄ is a sample from N(µ, σ/
√
n).

• Therefore, 95% of the time a sample’s mean (X̄) will be
within 2 SEs (2σ/

√
n) of µ.

• Then for 95% of samples from the population, µ will be
with in 2 SEs of X̄.
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Example - Cardinals

A transect was sampled 50 times by counting the number of
cardinals seen when walking a 1 mile path in the Duke forest. The
mean of these samples was 13.2. Estimate the true average number
of cardinals along this path, assuming the population distribution is
nearly normal with a population standard deviation of 1.74.

The 95% confidence interval is defined as

point estimate± 2× SE

X̄ = 13.2 σ = 1.74 SE = σ√
n
=
1.74√
50

= 0.25
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What does 95% confident mean?

Suppose we took many samples and built a confidence interval
from each sample using the equation point estimate± 2× SE.

Then about 95% of those intervals would contain the true
population mean (µ).

The figure on the right
shows this process with 25
samples, in this case 24 of
the calculated confidence
intervals contain the true
population average.

µ = 3.207
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A more general confidence interval

A Confidence interval is constructed using the general formula:

point estimate± CV× SE

Conditions when the point estimate is X̄:

1. Independence: Observations in the sample must be
independent

• random sample/assignment
• n < 10% of population

2. Normality: nearly normal population distribution or large
enough sample

3. Population Variance: so far we’ve assumed this is known,
this is almost never true. We’ll talk about a more general
approach next time.
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Changing the confidence level

In general,
point estimate± CV× SE

• In order to change the confidence level all we need to do
is adjust the critical value in the above formula.

• Commonly used confidence levels in practice are 90%,
95%, 98%, and 99%.

If the conditions for the CLT are met then,

• For a 95% confidence interval, CV = Z⋆ = 1.96.
• Using the Z table it is possible to find the appropriate Z⋆

for any desired confidence level.
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Example - Calculating Z⋆

What is the appropriate value for Z⋆ when calculating a 98%
confidence interval?
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Width of an interval

If we want to be very certain that we capture the population
parameter, i.e. increase our confidence level, should we use a
wider interval or a smaller interval?

A wider interval.

Can you see any drawbacks to using a wider interval?

If the interval is too wide it may not be very informative.
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Example - Sample Size

Coca-Cola wants to estimate the per capita number of Coke products
consumed each year in the United States, in order to properly forecast
market demands they need their margin of error to be 5 items at the 95%
confidence level. From previous years they know that σ ≈ 30. How many
people should they survey to achieve the desired accuracy? What if the
requirement was at the 99% confidence level?

32



Example - Sample Size

Coca-Cola wants to estimate the per capita number of Coke products
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market demands they need their margin of error to be 5 items at the 95%
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At the 95% and 99% confidence levels Z⋆ is 1.96 and 2.58 respectively.
Therefore,
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Common Misconceptions

1. The confidence level of a confidence interval is the
probability that the interval contains the true population
parameter.

This is incorrect, CIs are part of the frequentist paradigm
and as such the population parameter is fixed but
unknown. Consequently, the probability any given CI
contains the true value must be 0 or 1 (it does or does not).
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Common Misconceptions

2. A narrower confidence interval is always better.

This is incorrect since the width is a function of both the
confidence level (CV) and the standard error.
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Common Misconceptions

3. A wider interval means less confidence.

This is incorrect since it is possible to make very precise
statements with very little confidence.
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