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v* test of GOF



- Walter Frank Raphael Weldon (1860 -
1906), was an English evolutionary
biologist and a founder of biometry. He
was the joint founding editor of
Biometrika, with Francis Galton and
Karl Pearson.

- In 1894, he rolled 12 dice 26,306 times,
and recorded the number of 55 or 65s
(which he considered to be a success).
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- 55 or 6s occurred more often than expected - Pearson
hypothesized that since inexpensive dice have
hollowed-out pips the face with 6 pips Is lighter than its
opposing face, which has only 1 pip. 5



Weldon’s Data

Theoretical
Frequency,
p=1/3 Deviation
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Labby’s dice

In 2009, Zacariah Labby (U of
Chicago), repeated Weldon's
experiment using a homemade ( |
dice-throwing, pip counting 1
machine.
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http://www.youtube.com/
watch?v=95EErdouO2w

- Able to recreate Weldon's experiment in about six days
(with complete data).

- Further reading: http://news.uchicago.edu/static/
newsengine/pdf/labby09dice.pdf



Labby’s dice (cont.)

Labby did not actually observe the same phenomenon that
Weldon observed (higher frequency of 5s and 6s).

Automation allowed Labby to collect more data than Weldon
did 1n 1894, Instead of recording “successes” and “failures’,
Labby recorded the individual number of pips on each die.

Overall Prabability

|

0,60 0162 0,164 0166 0168 010 0172 0174
J
|

L
b
(e
£
s
cr
o)



Summarizing Labby’s results

Labby rolled 12 dice 26,306 times. If each side I1s equally likely
to come up, how many 1s, 2s, - - -, 6s would he expect to have
observed?



Summarizing Labby’s results

Labby rolled 12 dice 26,306 times. If each side I1s equally likely
to come up, how many 1s, 2s, - - -, 6s would he expect to have

observed?
12 x 26,3006

0

= 52612




Summarizing Labby’s results

Labby rolled 12 dice 26,306 times. If each side I1s equally likely

to come up, how many 1s, 2s, - - -, 6s would he expect to have
observed?
12 % 266,306 61D
Outcome | Observed Expected
1 53,222 52,612
2 52,118 52,612
3 52,465 52,0612
4 52,338 52,0612
5 52,244 52,0612
o 53,285 52,612
Total 315,672 315,672




Setting the hypotheses

Do these data provide convincing evidence to suggest an
Inconsistency between the observed and expected counts?
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Setting the hypotheses

Do these data provide convincing evidence to suggest an
Inconsistency between the observed and expected counts?

Ho: There Is no Inconsistency between the observed and the
expected counts.

HO: PL‘:I/é \/ C:{('.. C}
Ha: There Is an Inconsistency between the observed and the
expected counts. do not

(There is a bias
in which side comes up on the roll of a die)



Evaluating the hypotheses

To evaluate these hypotheses, we quantify how different the
observed counts are from the expected counts.
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Large deviations from what would be expected based on

sampling variation (chance) alone provide strong evidence
against the null hypothesis.




Evaluating the hypotheses

To evaluate these hypotheses, we quantify how different the
observed counts are from the expected counts.

Large deviations from what would be expected based on
sampling variation (chance) alone provide strong evidence
against the null hypothesis.

This I1s called a goodness of fit test since we're evaluating how
well the observed data fit the expected distribution.



Anatomy of a test statistic

The general form of the test statistics we've seen this far Is

point estimate — null value
SE of point estimate
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The general form of the test statistics we've seen this far Is

point estimate — null value
SE of point estimate

This construction I1s based on

1. measure the effect size - I.e. the difference between the
point estimate and the null value, and

2. standardizing that difference using the standard error of
the point estimate.

10



Anatomy of a test statistic

The general form of the test statistics we've seen this far Is

point estimate — null value
SE of point estimate

This construction I1s based on

1. measure the effect size - I.e. the difference between the
point estimate and the null value, and

2. standardizing that difference using the standard error of
the point estimate.

These two 1deas will help in the construction of an appropriate
test statistic for count data.
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v* statistic

When dealing with counts and investigating how far the
observed counts are from the expected counts, we will use a
new test statistic called the * (chi-squared) statistic.
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v* statistic

When dealing with counts and investigating how far the
observed counts are from the expected counts, we will use a
new test statistic called the * (chi-squared) statistic.

The v? statistic is defined to be
Y

|
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where k = total number of cells/categories
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Calculating the y? statistic

Outcome | Observed Expected (O£
53,222—52,612)*
1 53,222 52,612 | 22228k 707
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Calculating the y? statistic

Outcome | Observed Expected (O_EE)Z
53,222—52,612)*
1 53,222 52,612 | 22228k 707
(52,118—52,612)2
2 52,118 52,612 5612 — 4.64
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Calculating the \* statistic

Outcome | Observed Expected (O_EE)Z
1 53222 52,612 | (3225280) _ 77
, 52,118 52,612 | CRIES2OR _ 46y
3 52,465 52,612 | BRASSAORN _ g4
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Calculating the \* statistic

Outcome | Observed Expected (O_EE)Z
1 53222 52,612 | (3225280) _ 77
2 52,118 52,612 | CRIES2OR _ 46y
3 52,465 52,612 | BRASSAORN _ g4
4 52338 52,612 | C2EE226R) _ q 43
5 52244 52,612 | B22e2262) 557
6 53285 52,612 | (BEE02ORN _ g4y
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Calculating the \* statistic

Outcome | Observed Expected (O_EE)Z
1 53222 52,612 | (3225280) _ 77
2 52,118 52,612 | CRIES2OR _ 46y
3 52,465 52,612 | BRASSAORN _ g4
4 52338 52,612 | C2EE226R) _ q 43
5 52244 52,612 | B22e2262) 557
6 53285 52,612 | (BEE02ORN _ g4y
Total | 315672 315,672 24.73 12




Why square?

Squaring the difference between the observed and the
expected outcome does two things:
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Why square?

Squaring the difference between the observed and the
expected outcome does two things:

- Any standardized difference that is squared will now be
poSslItive.

- Differences that already looked unusual will become
much larger after being squared.

Where have we seen this before?

/%7\/0\’”4] el

Voo (ameq
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Conditions for the \* test

1. Fach case that contributes a count to the
table must be independent of all the other cases in the
table.
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Conditions for the \* test

1 Fach case that contributes a count to the
table must be independent of all the other cases in the
table.

2. Fach particular scenario (i.e. cell) must have

at least 5 expected cases.
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Conditions for the y* test

1 Fach case that contributes a count to the
table must be independent of all the other cases in the
table.

2. Fach particular scenario (i.e. cell) must have

at least 5 expected cases.

Failing to check conditions may unintentionally effect the
test’s error rates.

14



The v distribution

The v? distribution has one parameter, df, which influences
the shape, center, and spread of the distribution.
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The v? distribution has one parameter, df, which influences
the shape, center, and spread of the distribution.

- For a goodness of fit test the degrees of freedom 1Is the
number of categories - 1(df = k —1).
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The v distribution

The v? distribution has one parameter, df, which influences
the shape, center, and spread of the distribution.

- For a goodness of fit test the degrees of freedom 1Is the
number of categories - 1(df = k —1).

So far we've seen three other continuous distributions:

- Normal - unimodal and symmetric with two parameters:
1 (center) and o (spread)

- T - unimodal and symmetric with one parameter:
df (spead, kurtosis)

F- % - unimodal and non-symmetric with two parameters:
dfs, df

15



The y* distribution (Theory)

Where does the y? distribution come from?
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Where does the y? distribution come from?

- Like the T and the Z, the y? distribution is an example of a
continuous probability distribution (it is actually a special
case of another distribution called the Gamma

distribution)
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The y* distribution (Theory)

Where does the y? distribution come from?

- Like the T and the Z, the y? distribution is an example of a
continuous probability distribution (it is actually a special
case of another distribution called the Gamma

distribution)

- If we define Z ~ N(0,1) then the quantity,

2 2
L~ Xgf=1
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The y* distribution (Theory)

Where does the y? distribution come from?

- Like the T and the Z, the y? distribution is an example of a
continuous probability distribution (it is actually a special
case of another distribution called the Gamma

distribution) (0 _E\)L 5
SV

- |If we define Z ~ N(0, 1) then the quantity, .
C

2 2
£~ Xgf=1

- If we have 74,...,Z, ~ N(0,1) then the quantity,

16



The y* distribution (cont.)

Degrees of Freedom

0 S 10 15 20 25

1/



The y* distribution (cont.)

Degrees of Freedom

As the df Increases:

- the center of the y? distribution increases

- the variability of the y* distribution increases

1/



The y* distribution (cont.)

Degrees of Freedom
- 50

| | | | | |
0 20 40 60 80 100

Also, for large df the y? distribution converges to the normal
distribution with

N(u = df, o2 = 24df).

13



Finding areas under the y? curve

- p-value = tail area under the y# distribution (as usual)
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Finding areas under the y? curve

- p-value = tail area under the y# distribution (as usual)
- For this we can use technology, or a y* table.
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Finding areas under the y? curve

- p-value = tail area under the y# distribution (as usual)

- For this we can use technology, or a y* table.

- This table 1s similar to the t table, it provides upper tail

probabilities. /\m

¢

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 | 1.07 1.64 2.71 3.84 5.41 0.63 /.88  10.83

2 | 241  3.22 461 5.99 /.82 9.21 10.60 13.82

3 | 3.606 4.04 0.25 /.81 9.84 1134 12.84 16.27

4 | 488 5.99 /.78 9.49 | 116/ 1328 1480 13.47

5 | 6.06 /.29 924 1107 | 1339 1509 16./5 20.52

o | /723 856 1064 1259 | 1503 16.81 18.55 22.40

/| 838 9.80 1202 1407 | lo.62 18.48 20.28 24.32
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Fstimate the shaded area under the x? curve with df = 6.

Finding areas under the y? curve (cont.)

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1] 107 1.64 2.71 3.84 5.41 0.63 /.88  10.83

2 | 241 3.22 4.61 5.99 /.82 9.21 10.60 13.82

3 | 3.006 4.64 0.25 /.81 9.84 1134 1284 16.27

4 | 438 5.99 /.78 9.49 | 11.6/ 1328 1486 18.47

5 | 6.06 /.29 9.24 1107 | 13.39 1509 16./5 20.52

o | /.23 8.56 10.64 1259 | 1503 16.81 18.55 22.46

/| 838 9.80 12.02 140/ | 16.62 18438 2028 24.32
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Finding areas under the y? curve (cont.)

Fstimate the shaded area under the y? curve with df = 6.

Uppertail | 03 |02 N\ 0 005 | 002 001 0005 0.001
df 1| 107 164 271 384 | 541 663 7.88 10.83

2 | 241 3.22 61 599 | 782 921 1060 13.82
3|1366 464 /625 781 | 984 1134 1284 1627

4L | 488 599 /778 949 | 11.67 1328 1486 18.47
51606 729/ 924 1107 | 1339 1509 16.75 20.52

8.38

9.380

12.02

14.07

16.62

13.48

20.28

24.32
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Finding areas under the y? curve (cont.)

Fstimate the shaded area under the y? curve with df = 6.

Uppertail | 03 0.2 01 005]| 002 001 0005 0.001
df 11]107 164 271 384 | 541 663 788 10.83

2 | 241 322 461 599 | 782 921 1060 13.82
31366 464 625 781 | 984 1134 1284 1627

4 | 488 599 778 949 | 11.67 1328 1486 1847

5| 606 729 924 1107 | 1339 1509 1675 20.52

8.38

9.80

12.02

14.07

16.62

13.48

20.28

24.32




Finding areas under the y? curve (cont.)

Fstimate the shaded area under the y? curve with df = 6.

P(Xéf:ea > 10)
di =6 Is between 0.1 and 0.2
0 10

Upper tail 0.3
di 1| 1.07




Finding areas under the y* curve (cont.)

Estimate the shaded area (above 17) under the y? curve with

df = 9.
df = 9
0 w
Upper tail 0.3 0.2 0.1 Qﬁ>m 0.01 0.005 0.001
df 7 3.33 980 12.02 18 48  20.28  24.32
3 952 1103 13.36 1>5. 51 20.09 2195 206.12
9 | 10.66 1224 1468  16. 92 19 68 21.6/7 2359 27.88
10 | 11./78 13.44  15.99 18 3 21.16 23.21 2519 29.59
11 | 1290 1463 17.28 19.68 | 22.62 24.72 20./6 31.26
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Finding areas under the y? curve (cont.)

Estimate the shaded area (above 17) under the y? curve with
df = 9.

df =9

0 17

Upper tail 0.3
df 7 8.38 980 12. 02

0.01 0.005 0.001

18.48  20.28 24.32
20.09 2195 26.12

952 1103 13.30

11.78  13.44  15.99
11 | 1290 1463 17.28

2321 2519  29.59
24.72  26.76  31.26
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Finding areas under the y? curve (cont.)

Estimate the shaded area (above 17) under the y? curve with
df = 9.

ID(Xé,f:9 > 17)
di =9 IS between 0.02 and 0.05

0 17

Upper tail 0.3
df 7 8.38 980 12. 02

0.01 0.005 0.001

18.48  20.28 24.32
20.09 2195 26.12

952 1103 13.30

11.78  13.44  15.99
11 | 1290 1463 17.28

2321 2519  29.59
24.72  26.76  31.26
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Finding areas under the y? curve (one more)

Fstimate the shaded area (above 30) under the y? curve with

df =10.
df = 10
0 30
Upper tail 0.3 0.2 01 005 | 002 001 0005 0001
df 7 | 838 980 12.02 1407 | 1662 1848 2028 2432
8 | 952 1103 1336 1551 | 1817 2009 2195 26.12
o0 | 1066 1224 1468 1692 | 19.68 2167 2359 27.88
10 | 11.78 1344 1599 1831 | 21.16 2321 2519 2959
11 | 1290 1463 1728 19.68 | 22.62 2472 26.76 3126

22



Finding areas under the y? curve (one more)

Estimate the shaded area (above 30) under the y? curve with

df =10.
df = 10
0 30
Upper tail 0.3 0.2 0.1  0.05 002 001 0.005

df 7 3.38 9.80 1202 1407 | 16.62 1848  20.28
3 9.52 1103 1336 1551 | 181/ 20.09 2195
9 | 10.66 1224 1468 1692 | 1968 216/ 23.59

J

11 | 1290 1463 1728 19.68 | 22.62 2472 26.76

22



Finding areas under the y? curve (one more)

Estimate the shaded area (above 30) under the y? curve with

df = 10.
P(X§r—10 > 30)
df =10 is less than 0.007
0 30
Upper tail 03 0.2 01 005 | 002 001 0.005

df 7 3.38 9.80 1202 1407 | 16.62 1848  20.28
3 9.52 1103 1336 1551 | 181/ 20.09 2195
9 | 10.66 1224 1468 1692 | 1968 216/ 23.59

J

11 | 1290 1463 1728 19.68 | 22.62 2472 26.76

22






Finding the tail areas using computation

As with previous distributions, we can also use a computer to
calculate the probabilities exactly:
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Finding the tail areas using computation

As with previous distributions, we can also use a computer to
calculate the probabilities exactly:

- Using R:

pchisq(g = 30, df = 10, lower.tall = FALSE)

[1] 0.0008566412
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Finding the tail areas using computation

As with previous distributions, we can also use a computer to
calculate the probabilities exactly:

- Using R:

pchisq(g = 30, df = 10, lower.tall = FALSE)

[1] 0.0008566412

- Using a web applet -
https://gallery.shinyapps.io0/dist _calc/

23



Back to Labby’s dice

Our original question was: Does Labby's data provide
convincing evidence to suggest an inconsistency between the
observed and expected counts (assuming the dice are fair)?
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Our original question was: Does Labby's data provide
convincing evidence to suggest an inconsistency between the
observed and expected counts (assuming the dice are fair)?

The hypotheses were:

Ho: All six die faces are equally likely.
Ha: All six die faces are not equally likely.

Our test statistic was y* = 24.67.
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Back to Labby’s dice

Our original question was: Does Labby's data provide
convincing evidence to suggest an inconsistency between the
observed and expected counts (assuming the dice are fair)?

The hypotheses were:

Ho: All six die faces are equally likely.
Ha: All six die faces are not equally likely.

Our test statistic was y* = 24.67.

All we need is the df and we can calculate the tail area (the
p-value) and make a decision on the hypotheses.

24



Degrees of freedom for a goodness of fit test

When conducting a goodness of fit test to evaluate how well
the observed data follow an expected distribution, the degrees
of freedom are calculated as the number of cells (k) minus 1.

df = k — 1
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Degrees of freedom for a goodness of fit test

When conducting a goodness of fit test to evaluate how well
the observed data follow an expected distribution, the degrees
of freedom are calculated as the number of cells (k) minus 1.

df = k — 1

For the dice, R = 6 therefore

df=6—1=5

25



Finding a p-value for a y* test

p-value = P(x5_s > 24.67)

df =5

; — (L oy < oF [ .
Uppertail | 03 02 01 005] 002 001 0005 0.001
df 1] 107 164 271 384 | 541 663 7.88 1083
2 | 241 322 461 599 | 7.82 921 1060 13.82
3366 464 625 781 | 984 1134 1284 1627
4| 488 599 778 949 | 1167 1328 1486 18.47
—— 5| 606 729 924 1107 | 1339 1509 16.75 20.5@
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Finding a p-value for a y* test

p-value = P(x 55 > 24.67)

df =5

0 24.67

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001 —
df 1] 107 164 271 3.84 5.41 0.63 /.88 10.83
2 | 241 3.22 4601 5.99 /.82 921 10.60 13.82
3 | 3.66 4.64 6.25 /.81 984 1134 1284 16.27
4 | 488 599 /.78 949 | 116/ 13.28 1486 18.47
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Finding a p-value for a y* test

p-value = P(x5_s > 24.67) < 0.007

df =5

0 24.67

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001 —
df 1] 107 164 271 3.84 5.41 0.63 /.88 10.83
2 | 241 3.22 4601 5.99 /.82 921 10.60 13.82
3 | 3.66 4.64 6.25 /.81 984 1134 1284 16.27
4 | 488 599 /.78 949 | 116/ 13.28 1486 18.47

26



Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At the 5% significance
level, what Is the conclusion of the hypothesis test?
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Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At the 5% significance
level, what Is the conclusion of the hypothesis test?

Reject Hp, the data provide convincing evidence that the dice
are blased.

So what does this mean?
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Conclusion of the hypothesis test

We calculated a p-value less than 0.001. At the 5% significance
level, what Is the conclusion of the hypothesis test?

Reject Hp, the data provide convincing evidence that the dice
are blased.

So what does this mean?

Overall Prabability
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Turns out...

Pearson’s claim that 5s and 6s appear more often due to the
carved-out pips Is not supported by these data.

Dice used In casinos have flush faces, where the pips are filled
In with a plastic of the same density as the surrounding
material and are precisely balanced.
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Turns out...

Pearson’s claim that 5s and 6s appear more often due to the
carved-out pips Is not supported by these data.

Dice used In casinos have flush faces, where the pips are filled
In with a plastic of the same density as the surrounding
material and are precisely balanced.

Labby found that the 1-6 axis I1s consistently shorter than the
other two (2-5 and 3-4), the faces with one and six pips are

larger than the other faces. 26



v’ test of independence




Popular kids

Students In grades 4-6 were asked whether good grades,
athletic ability, or popularity was most important to them. A
two-way table separating the students by grade and by choice
of most iImportant factor 1s shown below. Do these data
provide evidence to suggest that goals vary by grade?

L

-+ -+

< g

6th

Grades

Grades Popular Sports

4th 63 31 25
5th 88 55 33 oPu
pth 96 55 32 Sports

30



v* test of independence

Our hypotheses are:

Ho: Grade and goals are independent. Goals do not vary by
ograde.

H,: Grade and goals are dependent. Goals vary by grade.
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v* test of independence

Our hypotheses are:

Ho: Grade and goals are independent. Goals do not vary by
ograde.

H,: Grade and goals are dependent. Goals vary by grade.

Conditions for the y* test of independence

Fach case that contributes a count to the
table must be independent of all the other cases in the
table.
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v* test of independence

Our hypotheses are:

Ho: Grade and goals are independent. Goals do not vary by
ograde.

H,: Grade and goals are dependent. Goals vary by grade.

Conditions for the y* test of independence

Fach case that contributes a count to the
table must be independent of all the other cases in the
table.

Fach cell must have at least 5 expected
counts.

3



v* test of independence

The test statistic I1s calculated using
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v* test of independence

The test statistic I1s calculated using

R ,
»  ~ (0—E)
de_z =

=1

where R Is the number of cellsand df = (R—1) x (C—1).

The p-value is the area under the y? distribution curve to the
right of the calculated test statistic,

pvatueP(de>Z (08 )

|=]

32



v’ test of independence (cont.)

Expected counts in two-way tables:

(row total) x (column total)
table total

Expected Counts =
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v’ test of independence (cont.)

Expected counts in two-way tables:

(row total) x (column total)
table total

Expected Counts =

Grades Popular Sports | Total

4th 63 31 25 119
cth 38 55 33 176
6Lh 96 55 32 183

Total 247 141 90 478
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v’ test of independence (cont.)

Expected counts in two-way tables:

(row total) x (column total)
table total

Expected Counts =

Grades Popular Sports | Total
4t 63 31 25 119
5t 88 55 33 176
6! 96 55 32 183
Total 247 141 90 478

33



v’ test of independence (cont.)

Expected counts in two-way tables:

(row total) x (column total)

Expected Counts =
%P - table total

Grades Popular Sports | Total
4t 63 31 25 119
5t 88 55 33 176
6! 96 55 32 183
Total 247 141 90 478
110 « QL7 A
Erow 1.col 1 = - _,i (Q: — =6 E row 1,col 2 — 1 4>7< 81 1 = 39

33



Expected counts in two-way tables

What Is the expected count for the highlighted cell?

Grades Popular Sports | Total

4t 63 31 25 119
5th 88 55 33 176
6th 96 55 32 183

Total 247 141 90 4738
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Expected counts in two-way tables

What Is the expected count for the highlighted cell?

Grades Popular Sports | Total
4t 63 31 25 119
5t 88 55 33 176
6! 96 55 32 183
Total 247 141 90 478
Fs pop — 1764>7<8141 _ )

more 5th graders than expected have a goal of being popular

34



Calculating the test statistic in two-way tables

Expected counts are shown In (blue) next to the observed
counts.

Grades Popular Sports | Total

4t 63 (61) 31(35) 25(23) | 119
5th88(91) 55(52) 33(33)| 176
6" 96(95) 55(54) 32(34) | 183
Total 247 141 90 478

35



Calculating the test statistic in two-way tables

Expected counts are shown In (blue) next to the observed

counts.
Grades Popular Sports | Total
4t 63 (61) 31(35) 25(23) | 119
5th 88 (91) 55(52) 33(33) | 176
6" 96 (95) 55(54) 32 (34) | 183
Total 247 141 90 478
} (63 — 61)? (31— 35)° (32 — 34)7
X )3 61 35 34
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Calculating the test statistic in two-way tables

Expected counts are shown In (blue) next to the observed

counts.
Grades Popular Sports | Total
4t 63 (61) 31(35) 25(23) | 119
5th 88 (91) 55(52) 33(33) | 176
6" 96 (95) 55(54) 32 (34) | 183
Total 247 141 90 478
} (63 — 61)? (31— 35)° (32 — 34)7
_ , L — 1.3121
X )3 61 35 34

df = (R-1)x(C=1)=@B—-1)x(3-1)=2x2=4
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Calculating the p-value

What Is the correct p-value for this hypothesis test

Y>=13121  df=4
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Calculating the p-value

What Is the correct p-value for this hypothesis test

X =13121 df=¢4
Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 | 1.07 164 271 3.84 5.41 0.63 /.88  10.83
2 | 241 322 4061 5.99 /.82 9.21 10.60 13.82
2, b6 464 6.25 /.31 984 1134 12.84 16.27
{jSS 599 /.78 949 | 116/ 1328 1486 18.47
5 | 6.06 /729 924 1107 | 13.39 1509 16./75 20.52
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Calculating the p-value

What Is the correct p-value for this hypothesis test

X =13121 df =
Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 | 1.07 164 271 3.84 5.41 0.63 /.83 10.83
2 | 241 322 461 5.99 /.82 921 10.60 13.82
3 | 3.66 464 0625 /.31 984 1134 12.84 16.27
4 | 488 599 /.78 949 | 1167 13.28 1486 18.47
5 | 6.06 /729 924 1107 | 13.39 1509 16./75 20.52

df

0

1.3121
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Calculating the p-value

What Is the correct p-value for this hypothesis test

X =13121 df =
Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 1 | 1.07 164 271 3.84 5.41 0.63 /.83 10.83
2 | 241 322 461 5.99 /.82 921 10.60 13.82
3 | 3.66 464 0625 /.31 984 1134 12.84 16.27
4 | 488 599 /.78 949 | 1167 13.28 1486 18.47
5 | 6.06 /729 924 1107 | 13.39 1509 16./75 20.52

df

0

1.3121

P(Xéf:4 > 1.3121) is more than 0.3

P-value > 0.3
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Conclusion

Do these data provide evidence to suggest that goals vary by
orade’

Ho: Grade and goals are independent. Goals do not vary by
orade.

Ha: Grade and goals are dependent. Goals vary by grade.
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Conclusion

Do these data provide evidence to suggest that goals vary by
orade’

Ho: Grade and goals are independent. Goals do not vary by
orade.

Ha: Grade and goals are dependent. Goals vary by grade.

Since p-value is large, we fail to reject Hy. The data do not
provide convincing evidence that grade and goals are
dependent. It doesn’t appear that goals vary by grade.
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Summary




Summary - y* test of goodness of fit

- Data:
y - categorical variable w/ 3 or more levels,
X - none.

- Hypotheses:

Ho - data follow the given distribution,

H, - data do not follow the given distribution.
- Conditions:
Independent observations, all E; > 5.

- Test statistic:

R

2 (Oi—Ei)2 b
X —Z £ df =R —1

|="1

39



Summary - y* test of independence

- Data:
y - categorical variable w/ 2 or more levels,

X - categorical variable w/ 2 or more levels.

- Hypotheses:
Ho - X and y are independent,

Hy - x and y are dependent.
- Conditions:

Independent observations, all £;; > 5.

- Test statistic:
2

, mo O:.;—E:
=3 = (m = n - 1)

i=1 j=1

/\/,‘). X /\/.,j
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