# Lecture 19 - Correlation and Regression

Sta102 / BME102

April 11, 2016

Colin Rundel

# Modeling numerical variables

## Modeling numerical variables

- So far we have worked with single numerical and categorical variables, and explored relationships between numerical and categorical, and two categorical variables.
- Today we will learn to quantify the relationship between two numerical variables.
- Next week we will learn to model numerical variables using many predictor (independent) variables (including both numerical and categorical) at once.

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

Predictor?

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response? (D-P)
% in poverty

Predictor?  $(\mathcal{T} \wedge d)$ % HS grad

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

Predictor? % HS grad

Relationship?

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

Predictor? % HS grad

Relationship?

— linear

—— negative

— moderately strong

# Covariance and Correlation

#### Covariance

We have previously discussed variance as a measure of uncertainty of a sampled variable

$$Var(X) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)^2$$

we can generalize this to two variables,

$$Cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)$$

This quantity is called Covariance, and it is a measure of the degree to which *X* and *Y* tend to be large (or small) at the same time.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

Consider the following conditions:

•  $x_i > \mu_X$  and  $y_i > \mu_Y$  then  $(x_i - \mu_X)(y_i - \mu_Y)$  will be positive.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

- $x_i > \mu_X$  and  $y_i > \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be positive.
- $x_i < \mu_X$  and  $y_i < \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be positive.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

- $x_i > \mu_X$  and  $y_i > \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be positive.
- $x_i < \mu_X$  and  $y_i < \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be positive.
- $x_i > \mu_X$  and  $y_i < \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be negative.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

- $x_i > \mu_X$  and  $y_i > \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be positive.
- $x_i < \mu_X$  and  $y_i < \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be positive.
- $x_i > \mu_X$  and  $y_i < \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be negative.
- $x_i < \mu_X$  and  $y_i > \mu_Y$  then  $(x_i \mu_X)(y_i \mu_Y)$  will be negative.



#### Properties of Covariance

- Cov(X,X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, Y) = 0 if X and Y are independent
- Cov(X, c) = 0
- Cov(aX, bY) = ab Cov(X, Y)
- Cov(X + a, Y + b) = Cov(X, Y)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

#### Correlation

Since Cov(X, Y) depends on the magnitude of X and Y we prefer to have a measure of association that is independent of the scale of the variables.

#### Correlation

Since Cov(X, Y) depends on the magnitude of X and Y we prefer to have a measure of association that is independent of the scale of the variables.

The most common measure of *linear* association is correlation, which is defined as

$$\rho(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Correlation describes the strength of the linear association between two variables.

• Correlation describes the strength of the linear association between two variables.

• It takes values between -1 (perfect negative) and +1 (perfect positive).

 Correlation describes the strength of the linear association between two variables.

• It takes values between -1 (perfect negative) and +1 (perfect positive).

A value of 0 indicates no linear association.

- Correlation describes the strength of the linear association between two variables.
- It takes values between -1 (perfect negative) and +1 (perfect positive).
- A value of 0 indicates no linear association.
- We use  $\rho$  to indicate the population correlation coefficient, and R or r to indicate the sample correlation coefficient.

$$R = \frac{Cov(x,y)}{S_x S_y}$$

# Correlation Examples



From http://en.wikipedia.org/wiki/Correlation



# Correlation and Independence

Given random variables X and Y

If X and Y are independent 
$$\Longrightarrow$$
  $Cov(X, Y) = \rho(X, Y) = 0$ 

If 
$$Cov(X, Y) = \rho(X, Y) = 0 \implies X$$
 and Y are independent

 $\rho(X,Y)=0$  is necessary but not sufficient for independence.

# Guessing the correlation

Which of the following is the best guess for the correlation between % in poverty and % HS grad?



# Guessing the correlation

Which of the following is the best guess for the correlation between % in poverty and % single mother household?



# Assessing the correlation

Which of the following is has the strongest correlation, i.e. correlation coefficient closest to +1 or -1?



Best fit line - least squares regression

## Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between % in poverty and % HS grad?



## Line Equation

The line shown can be described by an equation of the form  $\hat{y}_i = \beta_0 + \beta_1 x_i$ , we would like a measure of the quality of its fit.



#### Residuals

Just like with ANOVA, we can think about each value  $(y_i)$  as being the result of our model  $(\hat{y}_i)$  and some unexplained error  $(e_i)$  - this error is what we call a residual.

$$y_i = \hat{y}_i + e_i = \beta_0 + \beta_1 x_i + e_i$$



#### Residual Examples

We can think about a residual being the difference between our observed outcome  $(y_i)$  minus our predicted outcome.

$$e_i = y_i - \hat{y}_i = y_i - \beta_0 - \beta_1 x_i$$



#### Residual Examples

We can think about a residual being the difference between our observed outcome  $(y_i)$  minus our predicted outcome.

$$e_i = y_i - \hat{y}_i = y_i - \beta_0 - \beta_1 x_i$$



% living in poverty in DC is 5.44% more than predicted.

#### Residual Examples

We can think about a residual being the difference between our observed outcome  $(y_i)$  minus our predicted outcome.

$$e_i = y_i - \hat{y}_i = y_i - \beta_0 - \beta_1 x_i$$



% living in poverty in DC is 5.44% more than predicted.

% living in poverty in RI is 4.16% less than predicted.

 We want a line that has small residuals - any idea what criteria we should use?

- We want a line that has small residuals any idea what criteria we should use?
  - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- We want a line that has small residuals any idea what criteria we should use?
  - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

Why least squares?

- We want a line that has small residuals any idea what criteria we should use?
  - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
  - 1. Most commonly used

- We want a line that has small residuals any idea what criteria we should use?
  - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
  - 1. Most commonly used
  - 2. Square is a nicer function than absolute value

- We want a line that has small residuals any idea what criteria we should use?
  - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
  - 1. Most commonly used
  - 2. Square is a nicer function than absolute value
  - 3. In many applications, a residual twice as large as another is more than twice as bad

## The least squares line

$$\hat{y_i} = \beta_0 + \beta_1 x_i$$

#### Notation:

- Intercept:
  - Parameter:  $\beta_0$
  - Point estimate:  $b_0$
- Slope:
  - Parameter:  $\beta_1$
  - Point estimate: *b*<sub>1</sub>

## Data / Sample Statistics



|      | % HS grad         | % in poverty      |
|------|-------------------|-------------------|
|      | (x)               | (y)               |
| mean | $\bar{x} = 86.01$ | $\bar{y} = 11.35$ |
| sd   | $s_x = 3.73$      | $s_y = 3.1$       |
|      | correlation       | R = -0.75         |

What values of  $b_0$  and  $b_1$  will minimize the sum of squared residuals?

$$\underset{b_0, b_1}{\operatorname{argmin}} \sum_{i=1}^{n} \epsilon_i^2 = \underset{b_0, b_1}{\operatorname{argmin}} \sum_{i=1}^{2} (y_i - b_0 - b_1 x_i)^2$$

## Slope

The slope of the bivariate least squares regression line is given by

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sigma_X \sigma_y}{\sigma_X^2} Cor(X, Y) = \frac{\sigma_y}{\sigma_X} \rho$$
$$b_1 = \frac{S_y}{S_x} R$$

## Slope

The slope of the bivariate least squares regression line is given by

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sigma_X \sigma_y}{\sigma_X^2} Cor(X, Y) = \frac{\sigma_y}{\sigma_X} \rho$$
$$b_1 = \frac{S_y}{S_X} R$$

In context:

$$b_1 = \frac{3.1}{3.73} \times -0.75 = -0.62$$

## Slope

The slope of the bivariate least squares regression line is given by

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sigma_X \sigma_y}{\sigma_X^2} Cor(X, Y) = \frac{\sigma_y}{\sigma_X} \rho$$
$$b_1 = \frac{S_y}{S_X} R$$

In context:

$$b_1 = \frac{3.1}{3.73} \times -0.75 = -0.62$$

#### Interpretation:

For each % point increase in HS graduate rate, we would *expect* the % living in poverty to decrease *on average* by 0.62% points.

#### Intercept

The intercept is where the line intersects the y-axis. To calculate the intercept for the least squares line we use the fact that the regression line will always pass through  $(\bar{x}, \bar{y})$ .

$$b_0 = \bar{y} - b_1 \bar{x}$$

#### Intercept

The intercept is where the line intersects the y-axis. To calculate the intercept for the least squares line we use the fact that the regression line will always pass through  $(\bar{x}, \bar{y})$ .

$$b_0 = \bar{y} - b_1 \bar{x}$$



#### Intercept

The intercept is where the line intersects the y-axis. To calculate the intercept for the least squares line we use the fact that the regression line will always pass through  $(\bar{x}, \bar{y})$ .

$$b_0 = \bar{y} - b_1 \bar{x}$$



*In context:* 

$$b_0 = 11.35 - (-0.62) \times 86.01 = 64.68$$

## Interpreting Intercepts

Which of the following is the correct interpretation of the intercept?

For each % point increase in HS graduate rate, % living in poverty is expected to increase on average by 64.68%.

For each % point decrease in HS graduate rate, % living in poverty is expected to increase on average by 64.68%.

Having no HS graduates leads to 64.68% of residents living below the poverty line.

- (d) States with no HS graduates are expected on average to have 64.68% of residents living below the poverty line.
- (x) In states with no HS graduates % living in poverty is expected to increase on average by 64.68%.

## Regression line

$$[\% in poverty] = 64.68 - 0.62 [\% HS grad]$$



## Interpretation of slope and intercept

- Intercept: When x = 0, y is expected to equal the intercept on average.
- Slope: For each unit increase in x, y is expected to increase/decrease on average by the slope.



#### Prediction

- Using the linear model we are able to predict the value of the response variable at any arbitrary value of the predictor variable by plugging in the value of x in the linear model equation.
- There will be some uncertainty associated with the predicted value - we'll talk more about this next time.



## Extrapolation

- Applying a model estimate to values outside of the range of the original data is called *extrapolation*.
- Sometimes the intercept might be an extrapolation.



## Examples of extrapolation



#### Examples of extrapolation

Health

Science &

Environment

Technology

Entertainment

-----

Also in the news



However, former British Olympic sprinter Derek Redmond

"I can see the gap closing between men and women but I

can't necessarily see it being overtaken because mens' times

told the BBC: "I find it difficult to believe.

are also going to improve."

32

#### Examples of extrapolation

# Momentous sprint at the 2156 Olympics?

Women sprinters are closing the gap on men and may one day overtake them.



Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regression lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and women, respectively) and 95% confidence intervals (dotted black lines) based on the available points are superimposed. The projections intersect just before the 2156 Olympics, when the winning women's 100-metre sprint time of 8.079 s will be faster than the men's at 8.098 s.

## Anscombe's Quartet



## Anscombe's Quartet - Data

| x1 | у1   | x2 | y2   | x3 | y3    | х4 | у4    |
|----|------|----|------|----|-------|----|-------|
| 10 | 8.04 | 10 | 9.14 | 10 | 7.46  | 8  | 6.58  |
| 8  | 6.95 | 8  | 8.14 | 8  | 6.77  | 8  | 5.76  |
| 13 | 7.58 | 13 | 8.74 | 13 | 12.74 | 8  | 7.71  |
| 9  | 8.81 | 9  | 8.77 | 9  | 7.11  | 8  | 8.84  |
| 11 | 8.33 | 11 | 9.26 | 11 | 7.81  | 8  | 8.47  |
| 14 | 9.96 | 14 | 8.10 | 14 | 8.84  | 8  | 7.04  |
| 6  | 7.24 | 6  | 6.13 | 6  | 6.08  | 8  | 5.25  |
| 4  | 4.26 | 4  | 3.10 | 4  | 5.39  | 19 | 12.50 |
| 12 | 0.84 | 12 | 9.13 | 12 | 8.15  | 8  | 5.56  |
| 7  | 4.82 | 7  | 7.26 | 7  | 6.42  | 8  | 7.91  |
| 5  | 5.68 | 5  | 4.74 | 5  | 5.73  | 8  | 6.89  |
| ,  |      | _  |      | •  |       |    |       |

#### Anscombe's Quartet - Data

| x1 | у1   | x2 | y2   | х3 | уЗ    | х4 | y4    |
|----|------|----|------|----|-------|----|-------|
| 10 | 8.04 | 10 | 9.14 | 10 | 7.46  | 8  | 6.58  |
| 8  | 6.95 | 8  | 8.14 | 8  | 6.77  | 8  | 5.76  |
| 13 | 7.58 | 13 | 8.74 | 13 | 12.74 | 8  | 7.71  |
| 9  | 8.81 | 9  | 8.77 | 9  | 7.11  | 8  | 8.84  |
| 11 | 8.33 | 11 | 9.26 | 11 | 7.81  | 8  | 8.47  |
| 14 | 9.96 | 14 | 8.10 | 14 | 8.84  | 8  | 7.04  |
| 6  | 7.24 | 6  | 6.13 | 6  | 6.08  | 8  | 5.25  |
| 4  | 4.26 | 4  | 3.10 | 4  | 5.39  | 19 | 12.50 |
| 12 | 0.84 | 12 | 9.13 | 12 | 8.15  | 8  | 5.56  |
| 7  | 4.82 | 7  | 7.26 | 7  | 6.42  | 8  | 7.91  |
| 5  | 5.68 | 5  | 4.74 | 5  | 5.73  | 8  | 6.89  |

All four datasets have the same regression line:

$$y = 3 + 0.5x$$

• R<sup>2</sup> is calculated by squaring the correlation coefficient.

- R<sup>2</sup> is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the  $R^2$  equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).

- R<sup>2</sup> is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the  $R^2$  equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).
- $1 R^2$  is therefore the amount variability that is not "explained" by the model.

- R<sup>2</sup> is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the  $R^2$  equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).
- $1 R^2$  is therefore the amount variability that is not "explained" by the model.
- Sometimes referred to as the coefficient of determination.

- R<sup>2</sup> is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the  $R^2$  equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).
- $1 R^2$  is therefore the amount variability that is not "explained" by the model.
- Sometimes referred to as the coefficient of determination.
- · For the model we've been working with,

$$R^2 = (-0.75)^2 = 0.5625$$

## Modeling numerical variables

#### mtcars

Data set from Motor Trend for 1973-74 model year cars.



#### Least Squares fit

Find the least squares line that best describes these data.

|                             |       | mpg     | hp            |               |
|-----------------------------|-------|---------|---------------|---------------|
|                             | mean  | 20.09   | 146.69        |               |
|                             | sd    | 6.03    | 68.56         |               |
|                             |       | R =     |               |               |
| $b_1 = \frac{S_y}{S_x} R =$ | 6.0.  | 3       | (-0.77        | (6)=-0.068    |
| y = bot bix =               | => b. | - 7 -   | b, ×          |               |
| •                           |       | _ LO. C | 0.0°) - (-0.0 | 068) (146.67) |
|                             |       | ~30     |               |               |

## mtcars - line



|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 30.0989  | 1.6339     | 18.42   | 0.0000   |
| hp          | -0.0682  | 0.0101     | -6.74   | 0.0000   |