Lecture 19 - Correlation and Regression

Sta102 / BME102

April 11, 2016

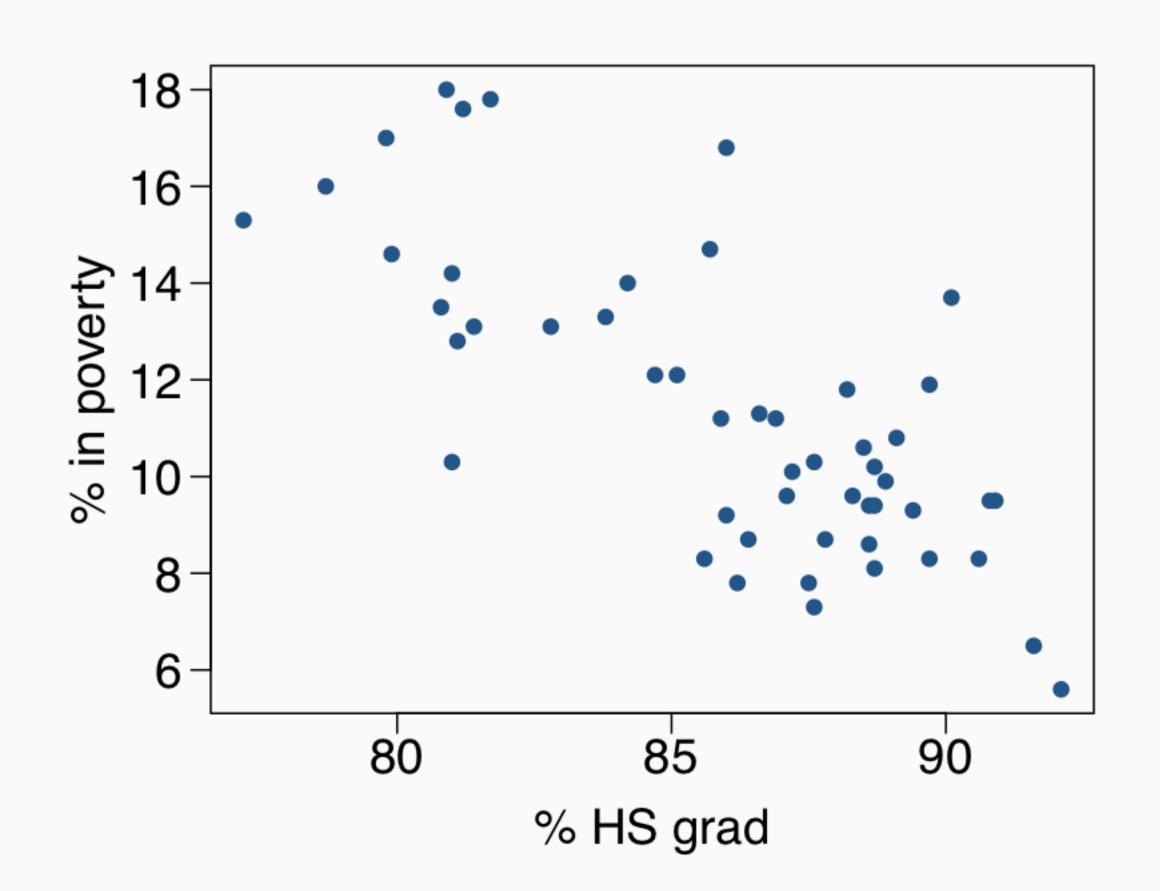
Colin Rundel

Modeling numerical variables

Modeling numerical variables

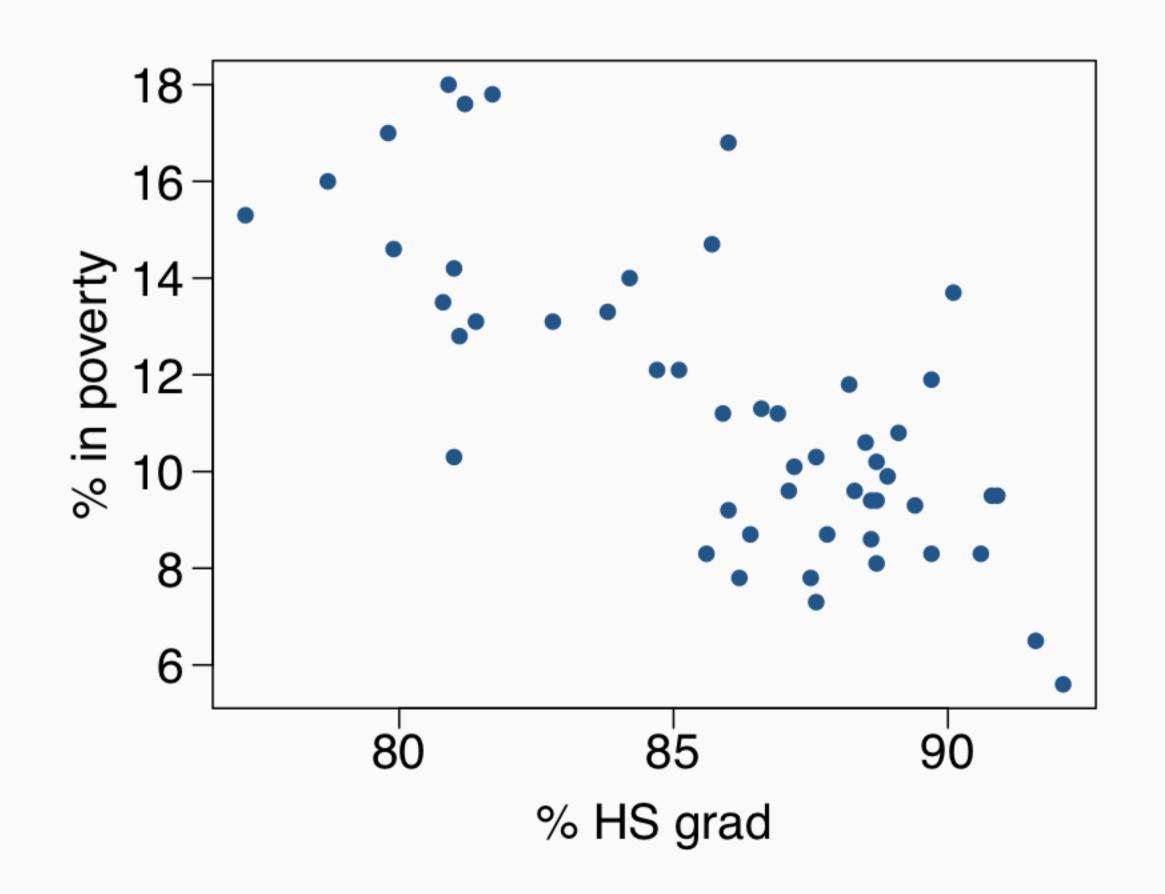
- So far we have worked with single numerical and categorical variables, and explored relationships between numerical and categorical, and two categorical variables.
- Today we will learn to quantify the relationship between two numerical variables.
- Next week we will learn to model numerical variables using many predictor (independent) variables (including both numerical and categorical) at once.

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



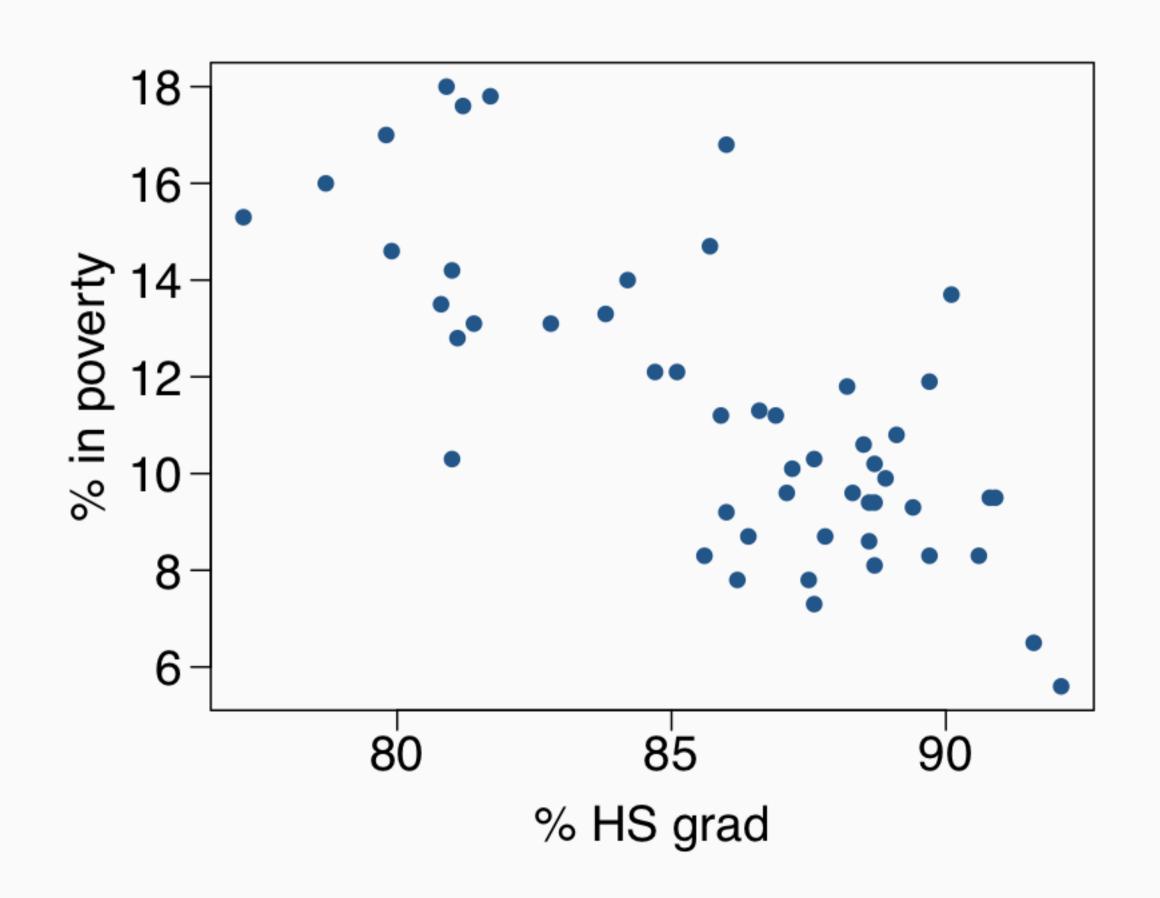
Response?

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

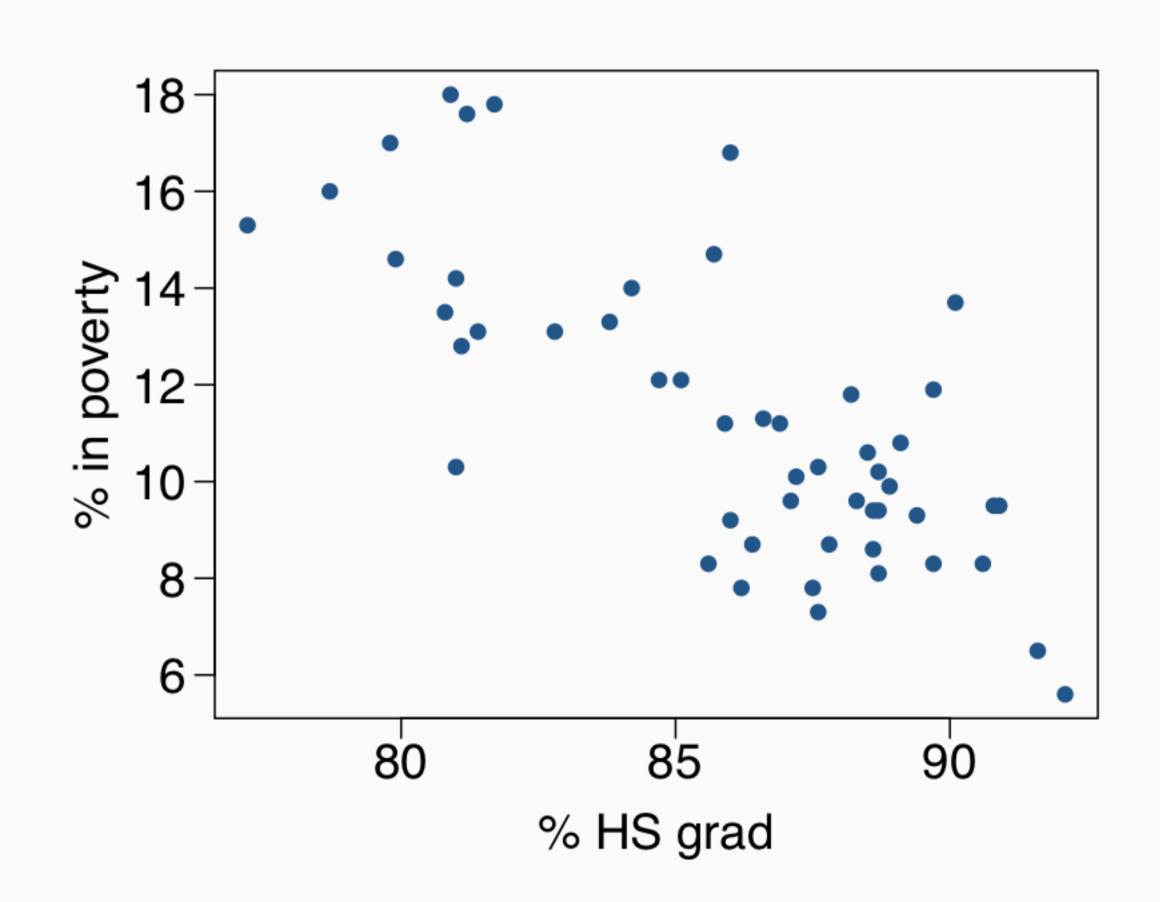
The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

Predictor?

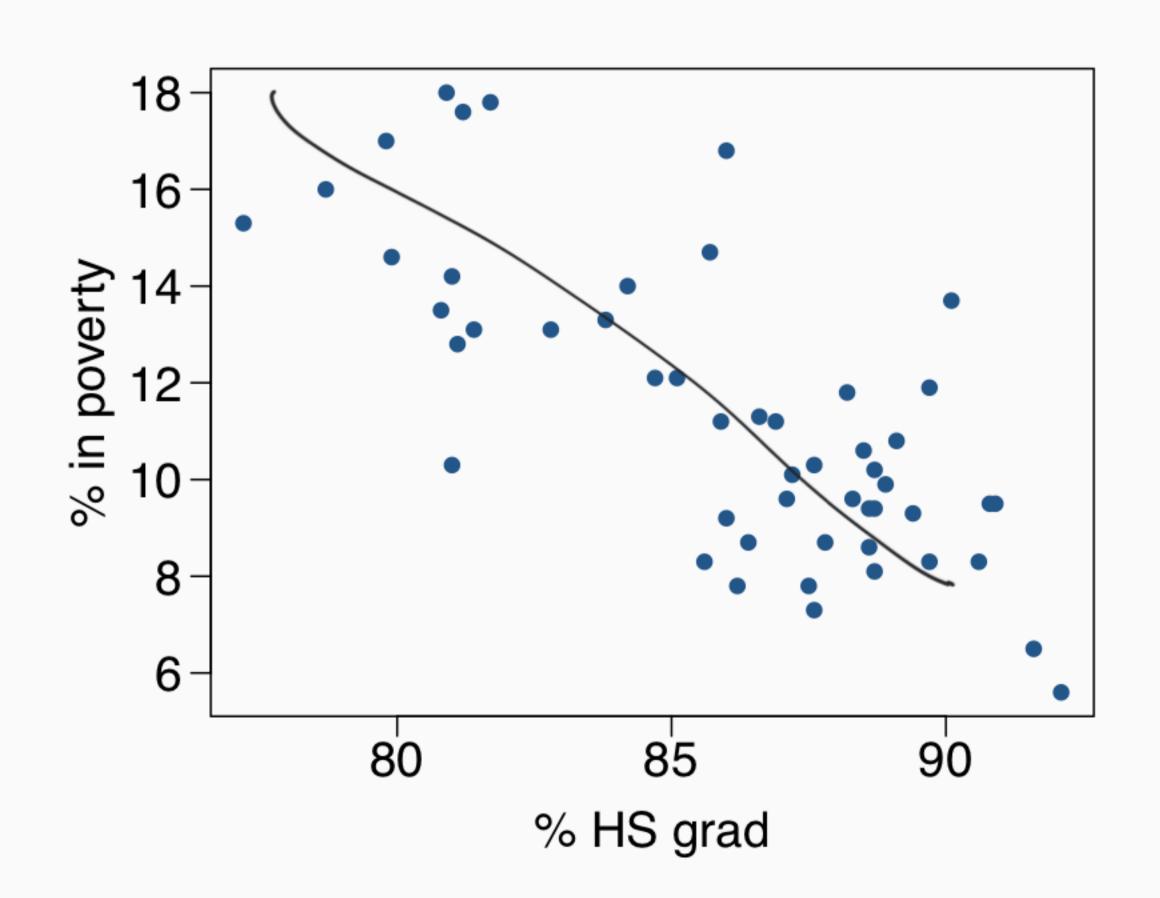
The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response? (D-P)
% in poverty

Predictor? $(\mathcal{T} \wedge d)$ % HS grad

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).

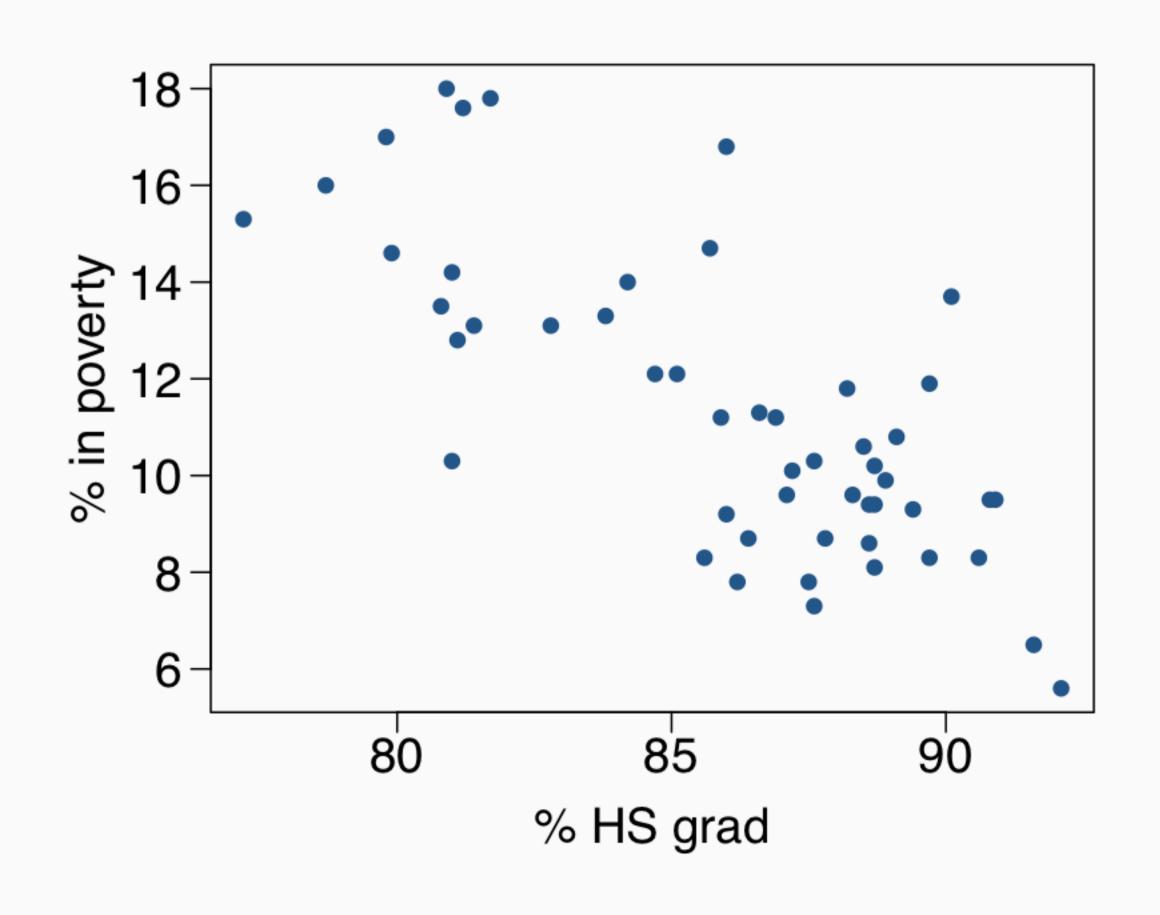


Response?
% in poverty

Predictor? % HS grad

Relationship?

The *scatterplot* below shows the relationship between HS graduate rate in all 50 US states and DC and the % of residents who live below the poverty line (income below \$23,050 for a family of 4 in 2012).



Response?
% in poverty

Predictor? % HS grad

Relationship?

— linear

—— negative

— moderately strong

Covariance and Correlation

Covariance

We have previously discussed variance as a measure of uncertainty of a sampled variable

$$Var(X) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)^2$$

we can generalize this to two variables,

$$Cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)$$

This quantity is called Covariance, and it is a measure of the degree to which *X* and *Y* tend to be large (or small) at the same time.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

Consider the following conditions:

• $x_i > \mu_X$ and $y_i > \mu_Y$ then $(x_i - \mu_X)(y_i - \mu_Y)$ will be positive.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

- $x_i > \mu_X$ and $y_i > \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i < \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

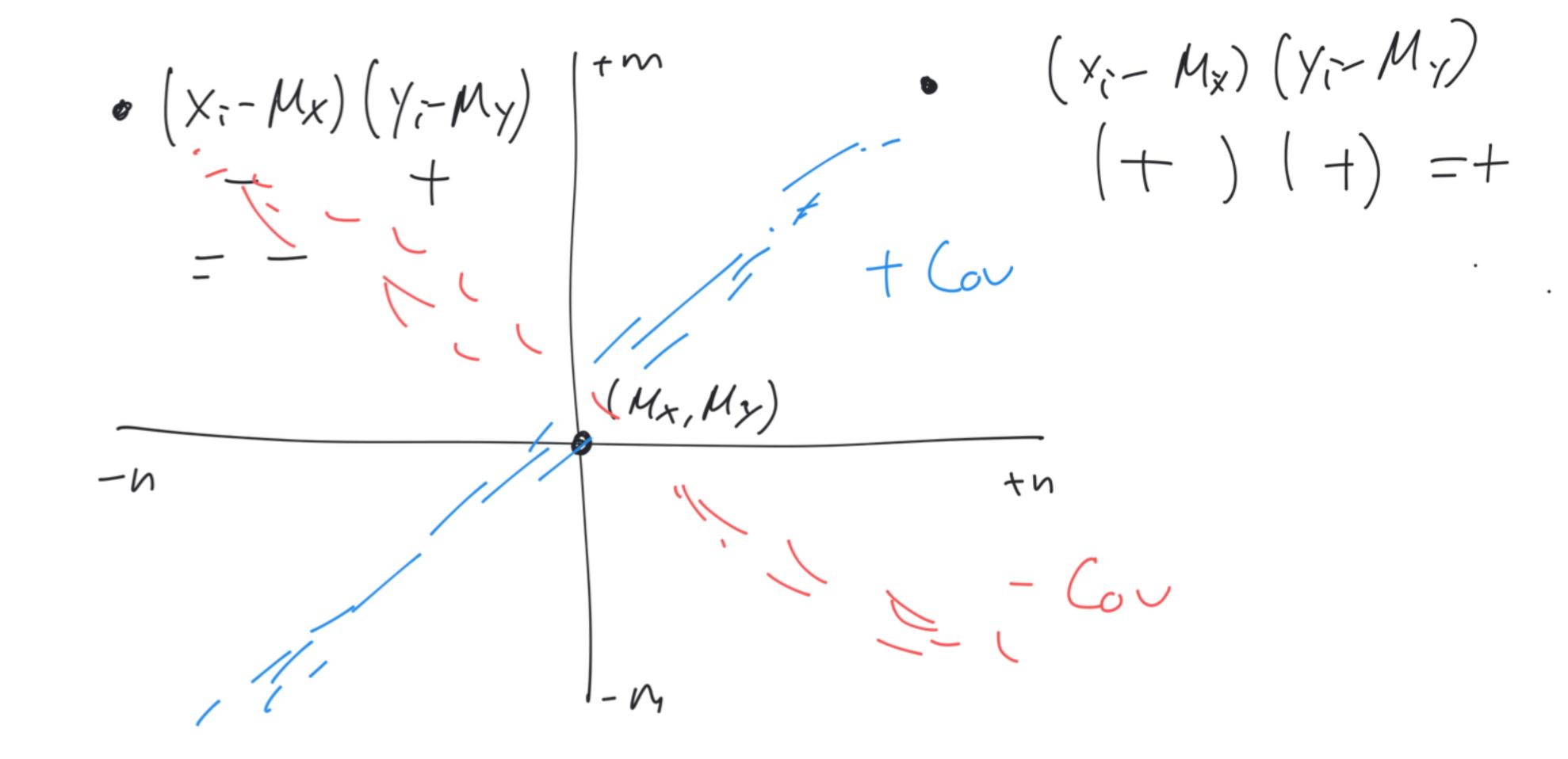
However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

- $x_i > \mu_X$ and $y_i > \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i < \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i > \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be negative.

The magnitude of the covariance is not immediately useful as it is affected by the magnitude of both *X* and *Y*.

However, the sign of the covariance tells us something useful about the relationship between *X* and *Y*.

- $x_i > \mu_X$ and $y_i > \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i < \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be positive.
- $x_i > \mu_X$ and $y_i < \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be negative.
- $x_i < \mu_X$ and $y_i > \mu_Y$ then $(x_i \mu_X)(y_i \mu_Y)$ will be negative.



Properties of Covariance

- Cov(X,X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, Y) = 0 if X and Y are independent
- Cov(X, c) = 0
- Cov(aX, bY) = ab Cov(X, Y)
- Cov(X + a, Y + b) = Cov(X, Y)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

Correlation

Since Cov(X, Y) depends on the magnitude of X and Y we prefer to have a measure of association that is independent of the scale of the variables.

Correlation

Since Cov(X, Y) depends on the magnitude of X and Y we prefer to have a measure of association that is independent of the scale of the variables.

The most common measure of *linear* association is correlation, which is defined as

$$\rho(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Correlation describes the strength of the linear association between two variables.

• Correlation describes the strength of the linear association between two variables.

• It takes values between -1 (perfect negative) and +1 (perfect positive).

 Correlation describes the strength of the linear association between two variables.

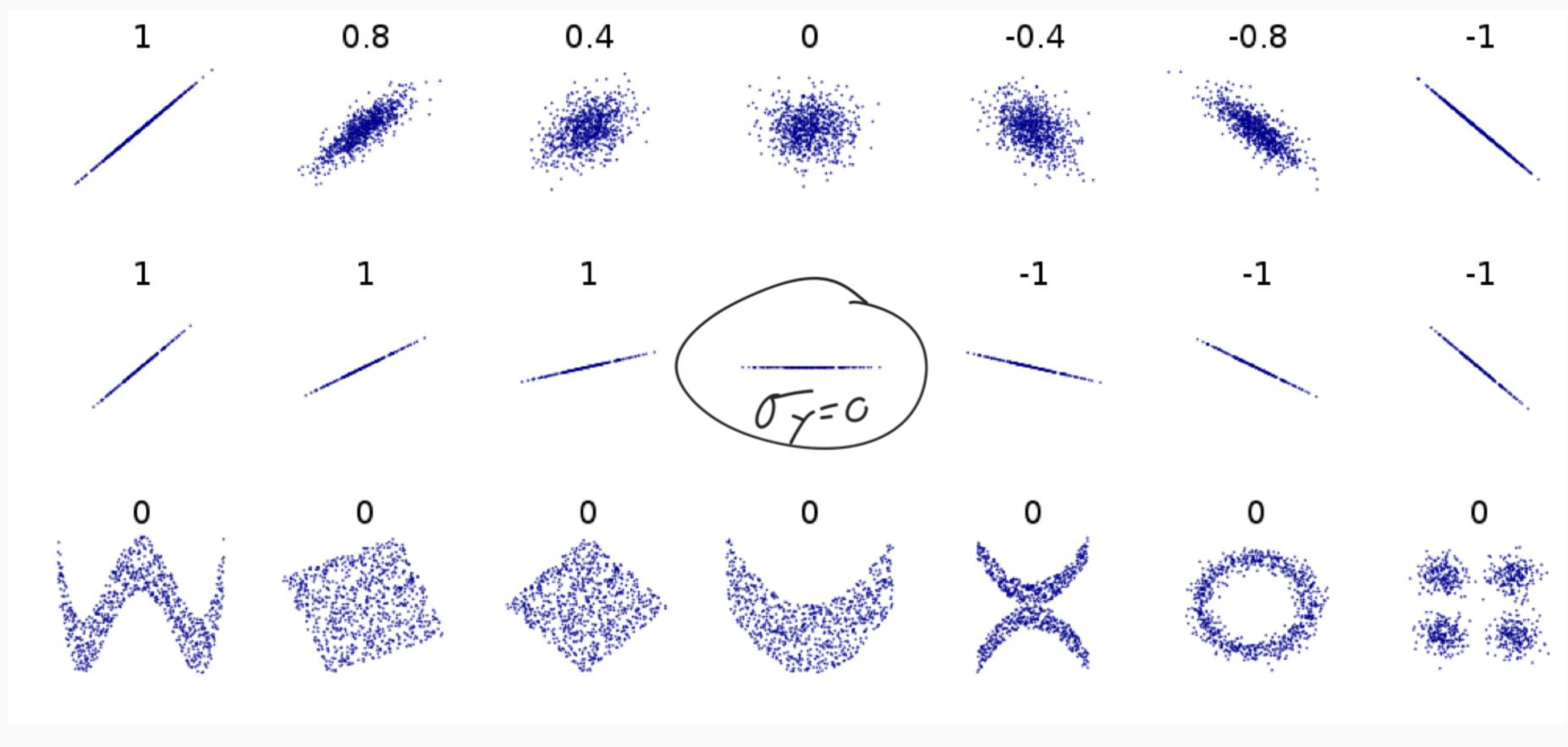
• It takes values between -1 (perfect negative) and +1 (perfect positive).

A value of 0 indicates no linear association.

- Correlation describes the strength of the linear association between two variables.
- It takes values between -1 (perfect negative) and +1 (perfect positive).
- A value of 0 indicates no linear association.
- We use ρ to indicate the population correlation coefficient, and R or r to indicate the sample correlation coefficient.

$$R = \frac{Cov(x,y)}{S_x S_y}$$

Correlation Examples



From http://en.wikipedia.org/wiki/Correlation

Correlation and Independence

Given random variables X and Y

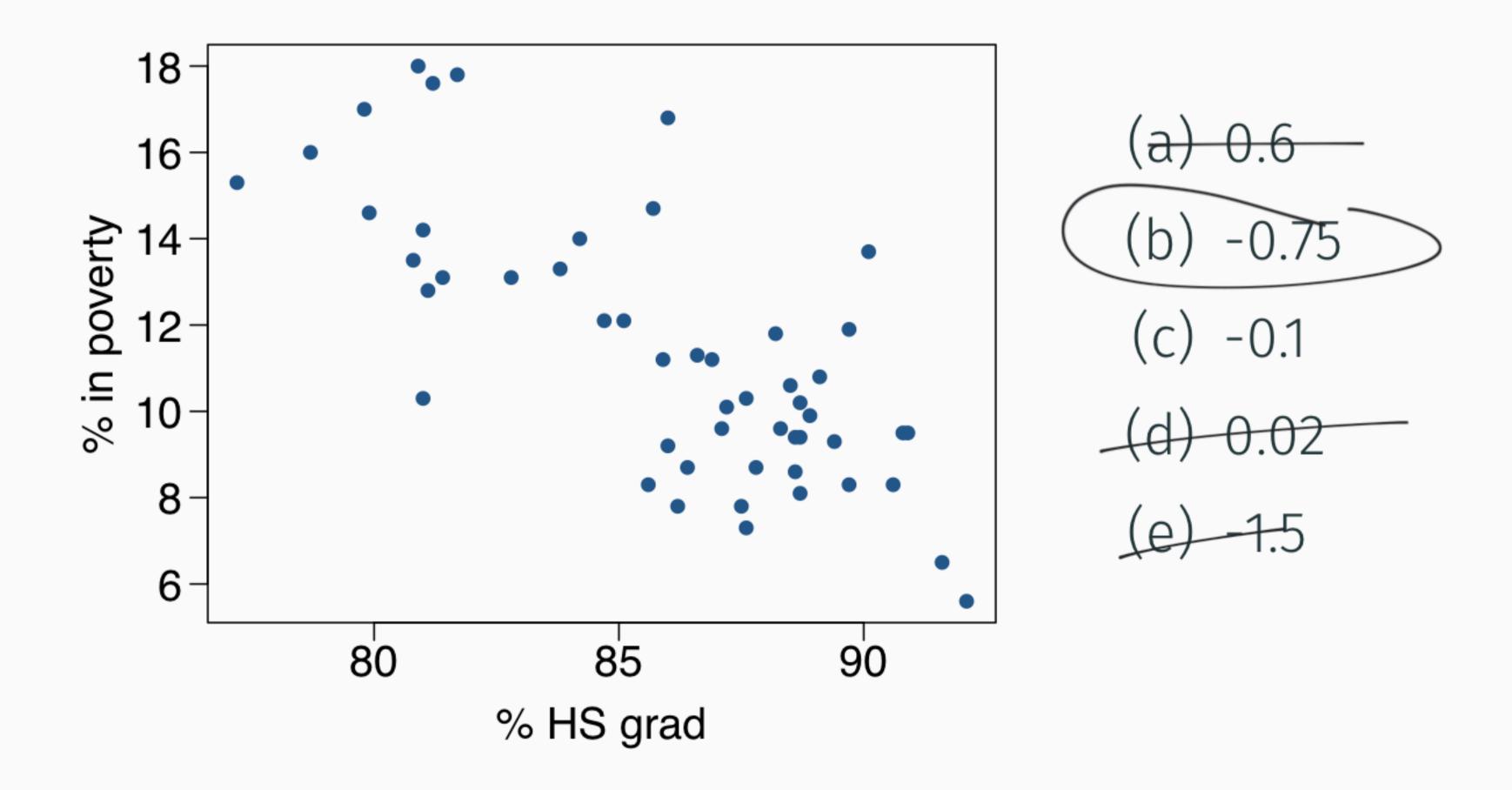
If X and Y are independent
$$\Longrightarrow$$
 $Cov(X, Y) = \rho(X, Y) = 0$

If
$$Cov(X, Y) = \rho(X, Y) = 0 \implies X$$
 and Y are independent

 $\rho(X,Y)=0$ is necessary but not sufficient for independence.

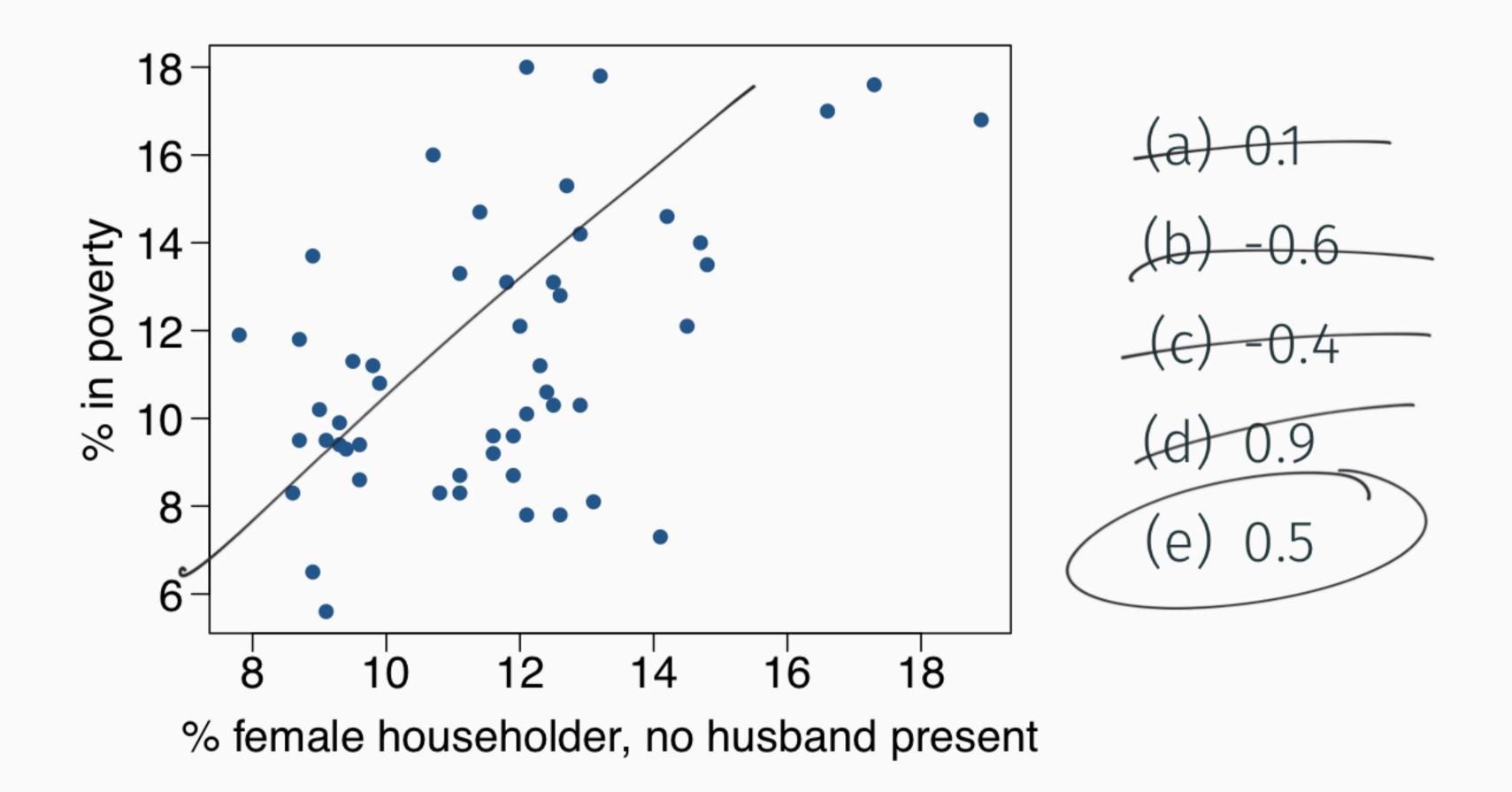
Guessing the correlation

Which of the following is the best guess for the correlation between % in poverty and % HS grad?



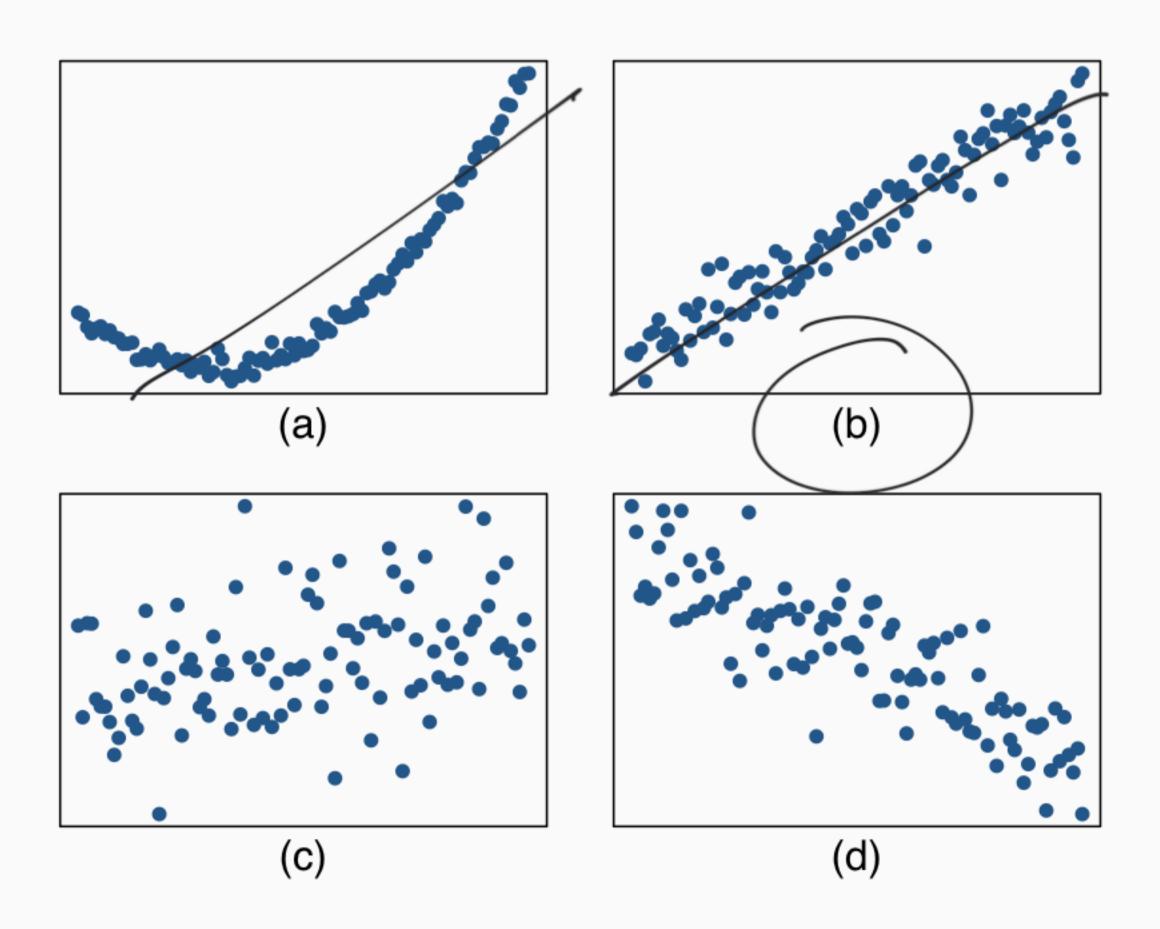
Guessing the correlation

Which of the following is the best guess for the correlation between % in poverty and % single mother household?



Assessing the correlation

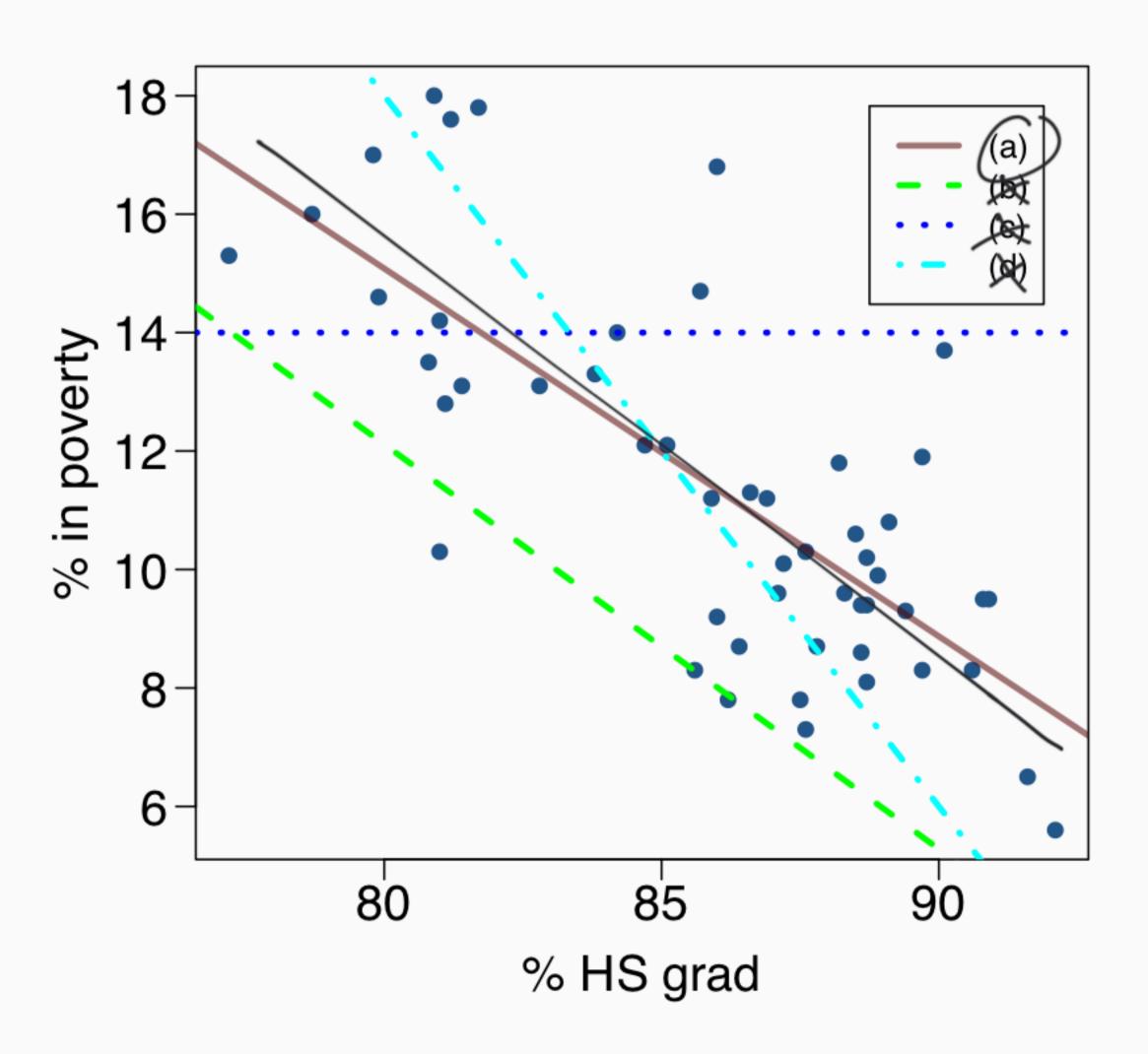
Which of the following is has the strongest correlation, i.e. correlation coefficient closest to +1 or -1?



Best fit line - least squares regression

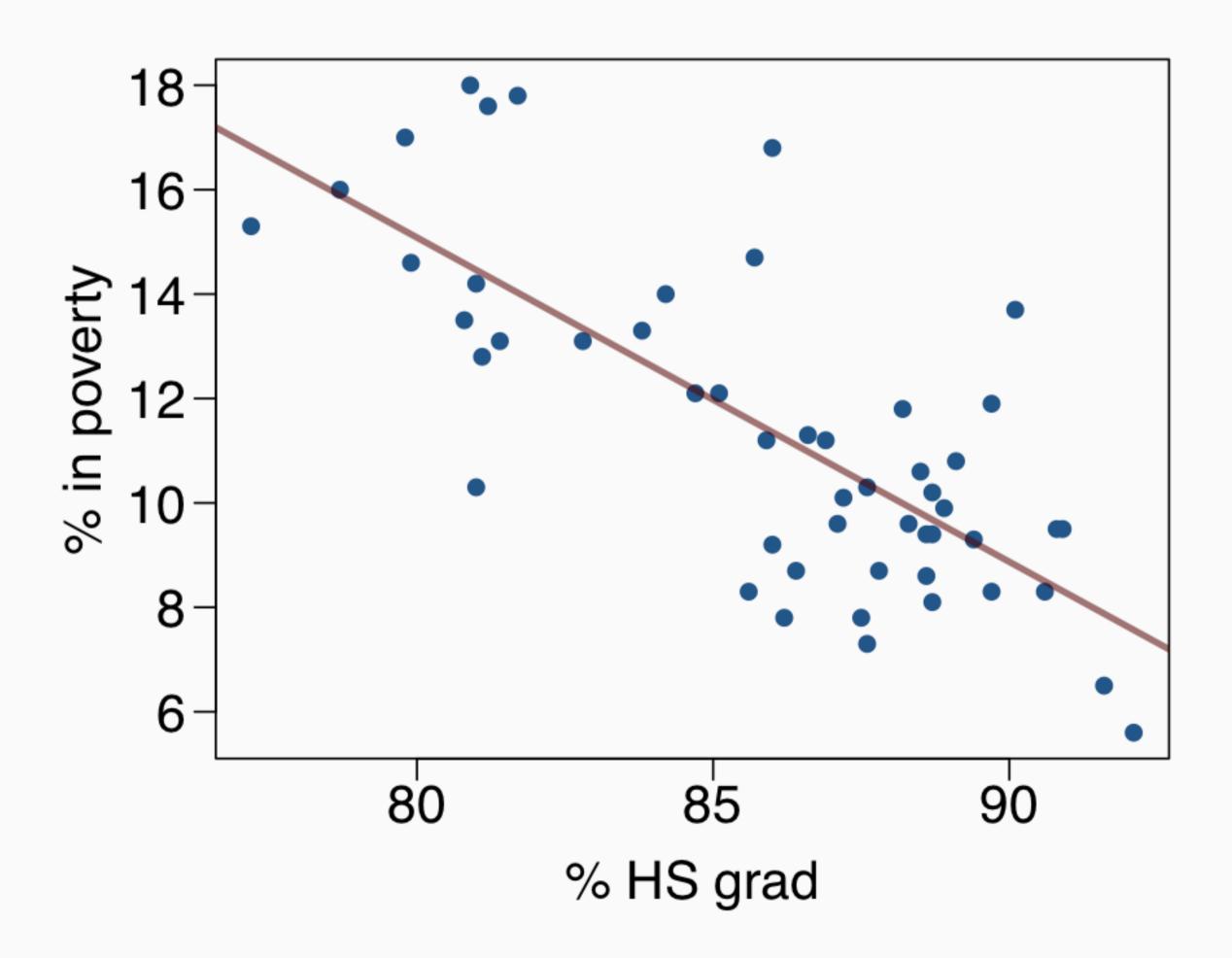
Eyeballing the line

Which of the following appears to be the line that best fits the linear relationship between % in poverty and % HS grad?



Line Equation

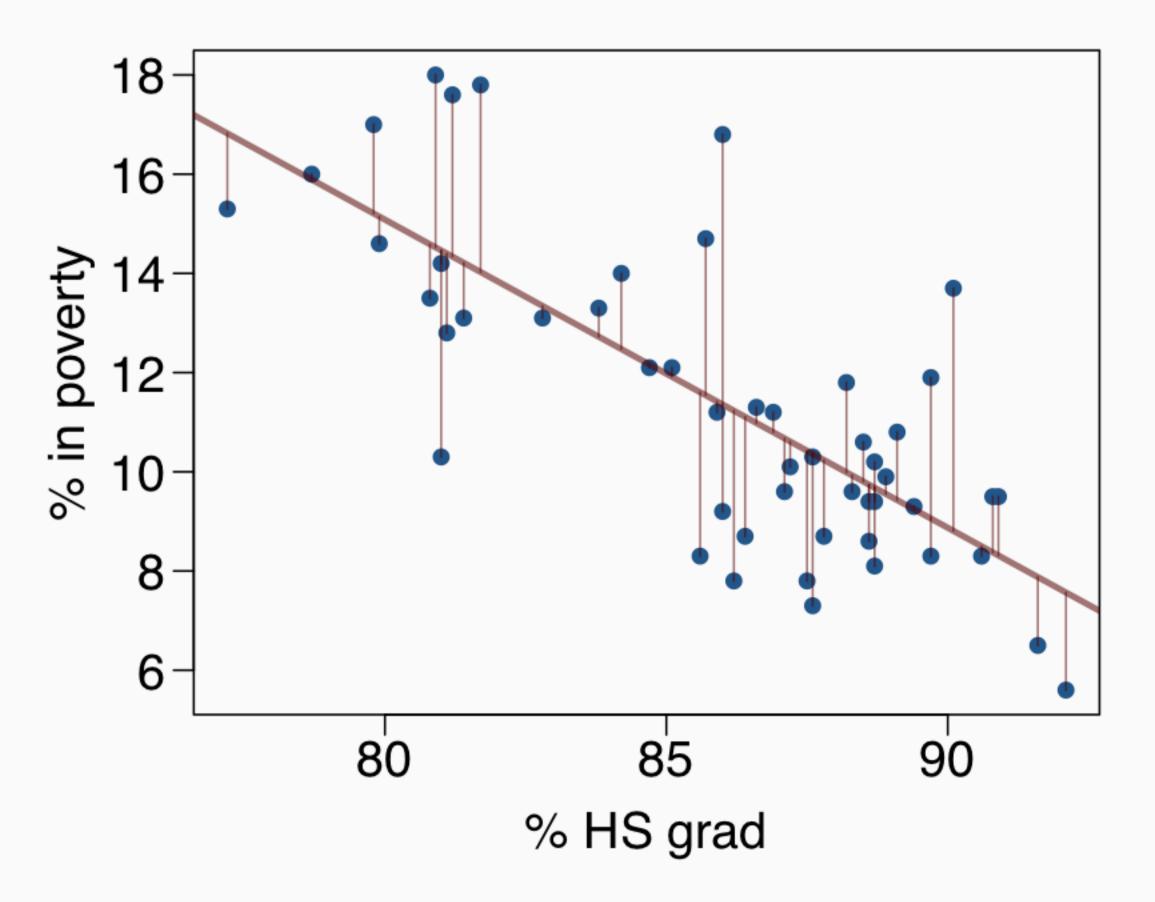
The line shown can be described by an equation of the form $\hat{y}_i = \beta_0 + \beta_1 x_i$, we would like a measure of the quality of its fit.



Residuals

Just like with ANOVA, we can think about each value (y_i) as being the result of our model (\hat{y}_i) and some unexplained error (e_i) - this error is what we call a residual.

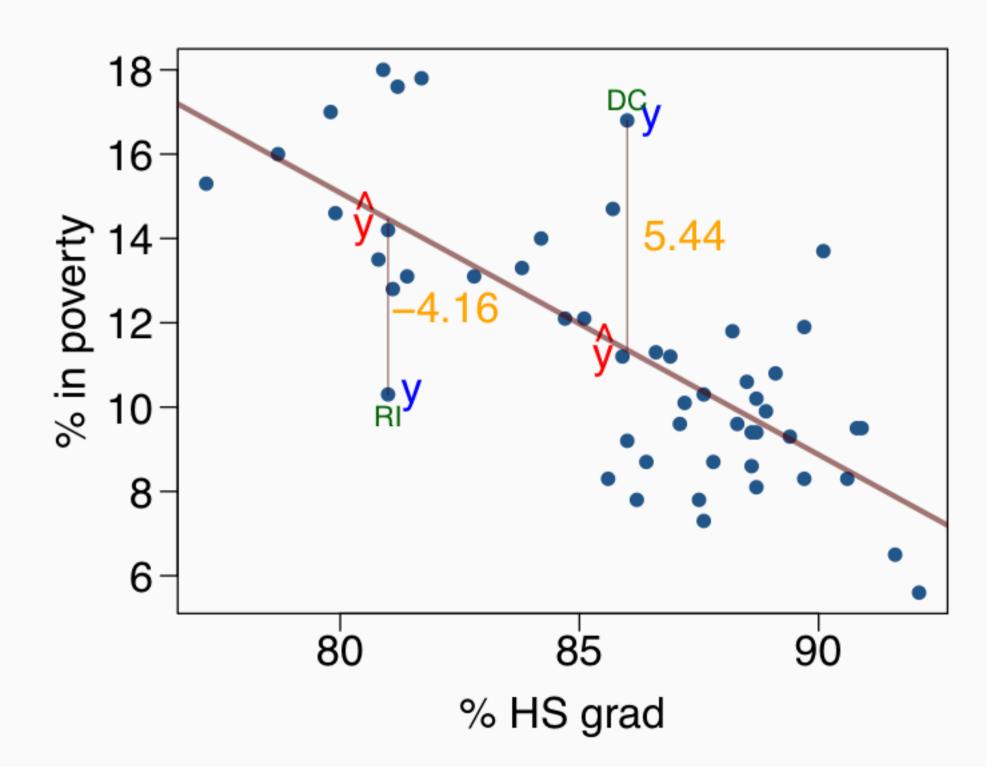
$$y_i = \hat{y}_i + e_i = \beta_0 + \beta_1 x_i + e_i$$



Residual Examples

We can think about a residual being the difference between our observed outcome (y_i) minus our predicted outcome.

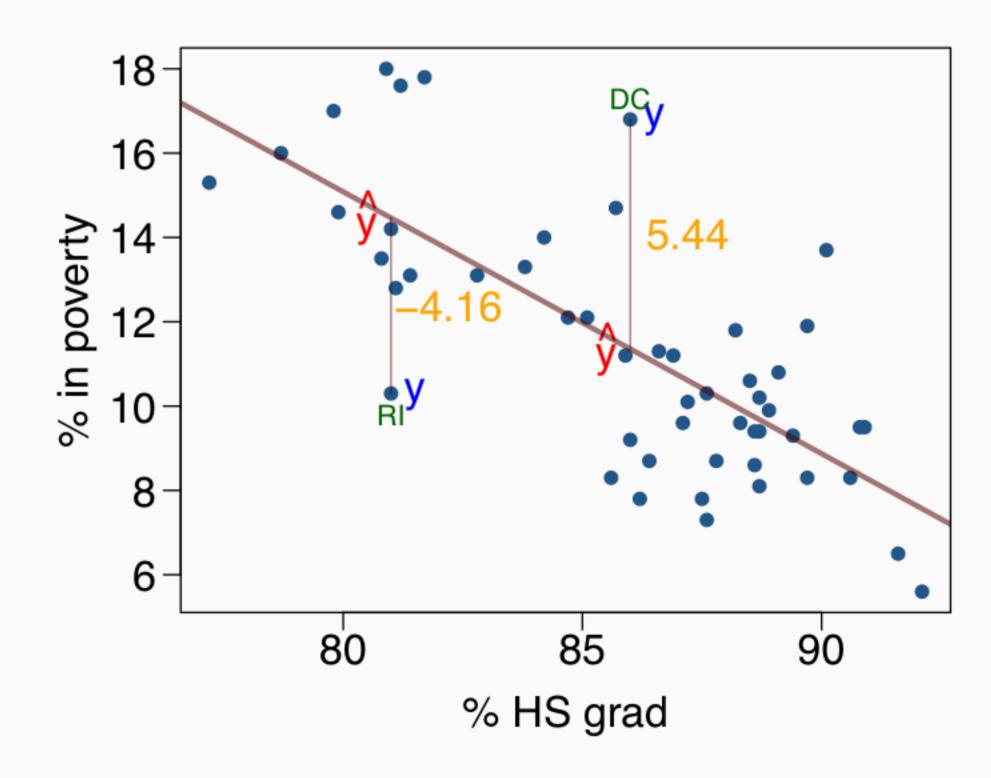
$$e_i = y_i - \hat{y}_i = y_i - \beta_0 - \beta_1 x_i$$



Residual Examples

We can think about a residual being the difference between our observed outcome (y_i) minus our predicted outcome.

$$e_i = y_i - \hat{y}_i = y_i - \beta_0 - \beta_1 x_i$$

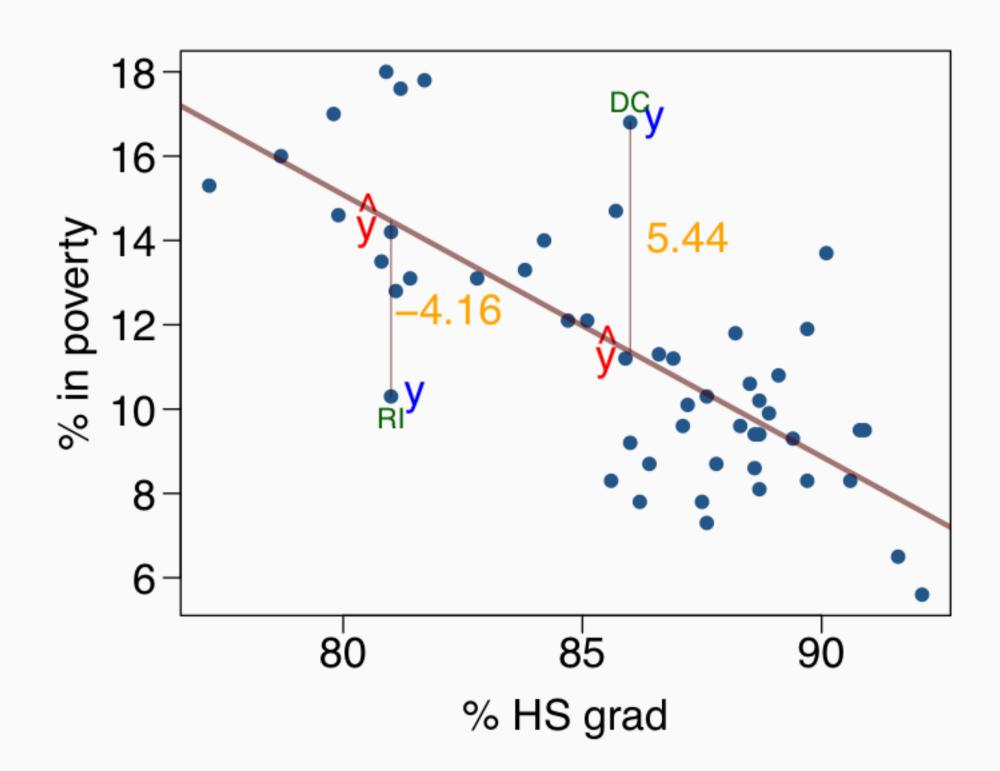


% living in poverty in DC is 5.44% more than predicted.

Residual Examples

We can think about a residual being the difference between our observed outcome (y_i) minus our predicted outcome.

$$e_i = y_i - \hat{y}_i = y_i - \beta_0 - \beta_1 x_i$$



% living in poverty in DC is 5.44% more than predicted.

% living in poverty in RI is 4.16% less than predicted.

 We want a line that has small residuals - any idea what criteria we should use?

- We want a line that has small residuals any idea what criteria we should use?
 - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- We want a line that has small residuals any idea what criteria we should use?
 - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

Why least squares?

- We want a line that has small residuals any idea what criteria we should use?
 - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
 - 1. Most commonly used

- We want a line that has small residuals any idea what criteria we should use?
 - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
 - 1. Most commonly used
 - 2. Square is a nicer function than absolute value

- We want a line that has small residuals any idea what criteria we should use?
 - Minimize the sum of squared residuals least squares

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
 - 1. Most commonly used
 - 2. Square is a nicer function than absolute value
 - 3. In many applications, a residual twice as large as another is more than twice as bad

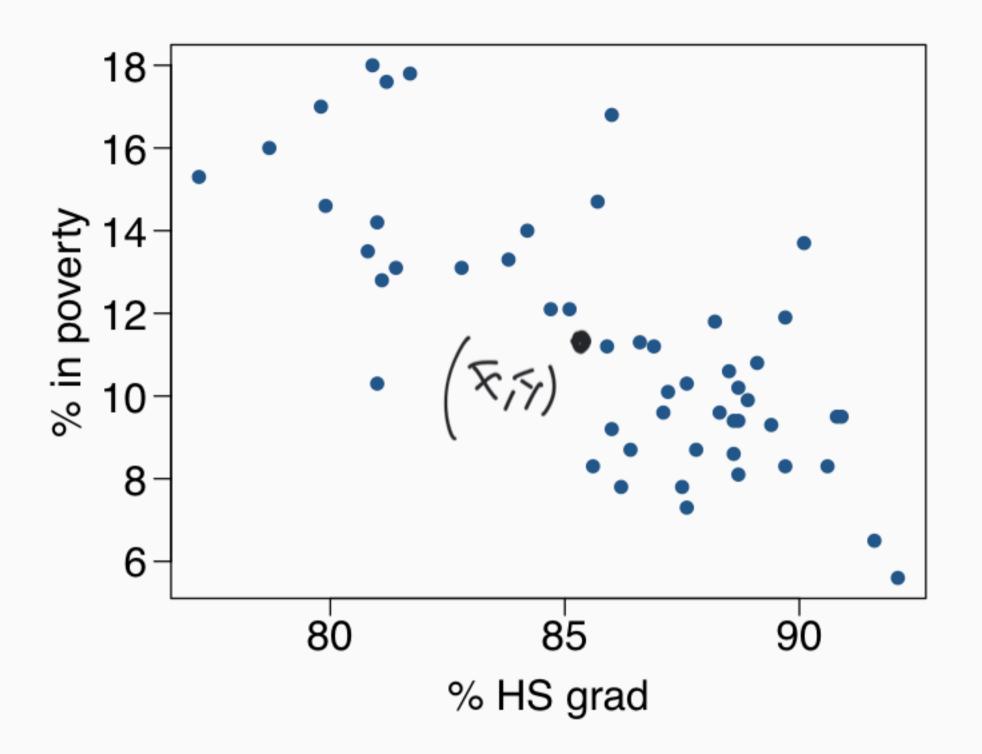
The least squares line

$$\hat{y_i} = \beta_0 + \beta_1 x_i$$

Notation:

- Intercept:
 - Parameter: β_0
 - Point estimate: b_0
- Slope:
 - Parameter: β_1
 - Point estimate: *b*₁

Data / Sample Statistics



	% HS grad	% in poverty
	(x)	(y)
mean	$\bar{x} = 86.01$	$\bar{y} = 11.35$
sd	$s_x = 3.73$	$s_y = 3.1$
	correlation	R = -0.75

What values of b_0 and b_1 will minimize the sum of squared residuals?

$$\underset{b_0, b_1}{\operatorname{argmin}} \sum_{i=1}^{n} \epsilon_i^2 = \underset{b_0, b_1}{\operatorname{argmin}} \sum_{i=1}^{2} (y_i - b_0 - b_1 x_i)^2$$

Slope

The slope of the bivariate least squares regression line is given by

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sigma_X \sigma_y}{\sigma_X^2} Cor(X, Y) = \frac{\sigma_y}{\sigma_X} \rho$$
$$b_1 = \frac{S_y}{S_x} R$$

Slope

The slope of the bivariate least squares regression line is given by

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sigma_X \sigma_y}{\sigma_X^2} Cor(X, Y) = \frac{\sigma_y}{\sigma_X} \rho$$
$$b_1 = \frac{S_y}{S_X} R$$

In context:

$$b_1 = \frac{3.1}{3.73} \times -0.75 = -0.62$$

Slope

The slope of the bivariate least squares regression line is given by

$$\beta_1 = \frac{Cov(X, Y)}{Var(X)} = \frac{\sigma_X \sigma_y}{\sigma_X^2} Cor(X, Y) = \frac{\sigma_y}{\sigma_X} \rho$$
$$b_1 = \frac{S_y}{S_X} R$$

In context:

$$b_1 = \frac{3.1}{3.73} \times -0.75 = -0.62$$

Interpretation:

For each % point increase in HS graduate rate, we would *expect* the % living in poverty to decrease *on average* by 0.62% points.

Intercept

The intercept is where the line intersects the y-axis. To calculate the intercept for the least squares line we use the fact that the regression line will always pass through (\bar{x}, \bar{y}) .

$$b_0 = \bar{y} - b_1 \bar{x}$$

Intercept

The intercept is where the line intersects the y-axis. To calculate the intercept for the least squares line we use the fact that the regression line will always pass through (\bar{x}, \bar{y}) .

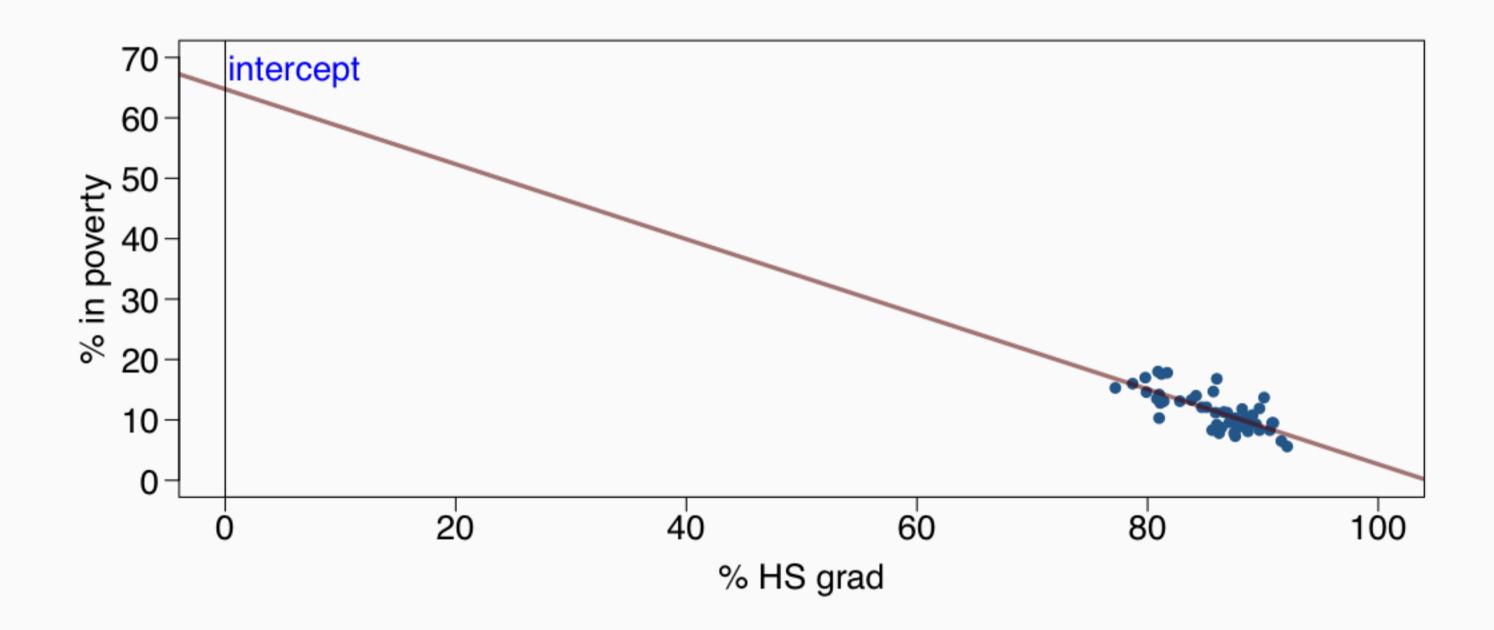
$$b_0 = \bar{y} - b_1 \bar{x}$$



Intercept

The intercept is where the line intersects the y-axis. To calculate the intercept for the least squares line we use the fact that the regression line will always pass through (\bar{x}, \bar{y}) .

$$b_0 = \bar{y} - b_1 \bar{x}$$



In context:

$$b_0 = 11.35 - (-0.62) \times 86.01 = 64.68$$

Interpreting Intercepts

Which of the following is the correct interpretation of the intercept?

For each % point increase in HS graduate rate, % living in poverty is expected to increase on average by 64.68%.

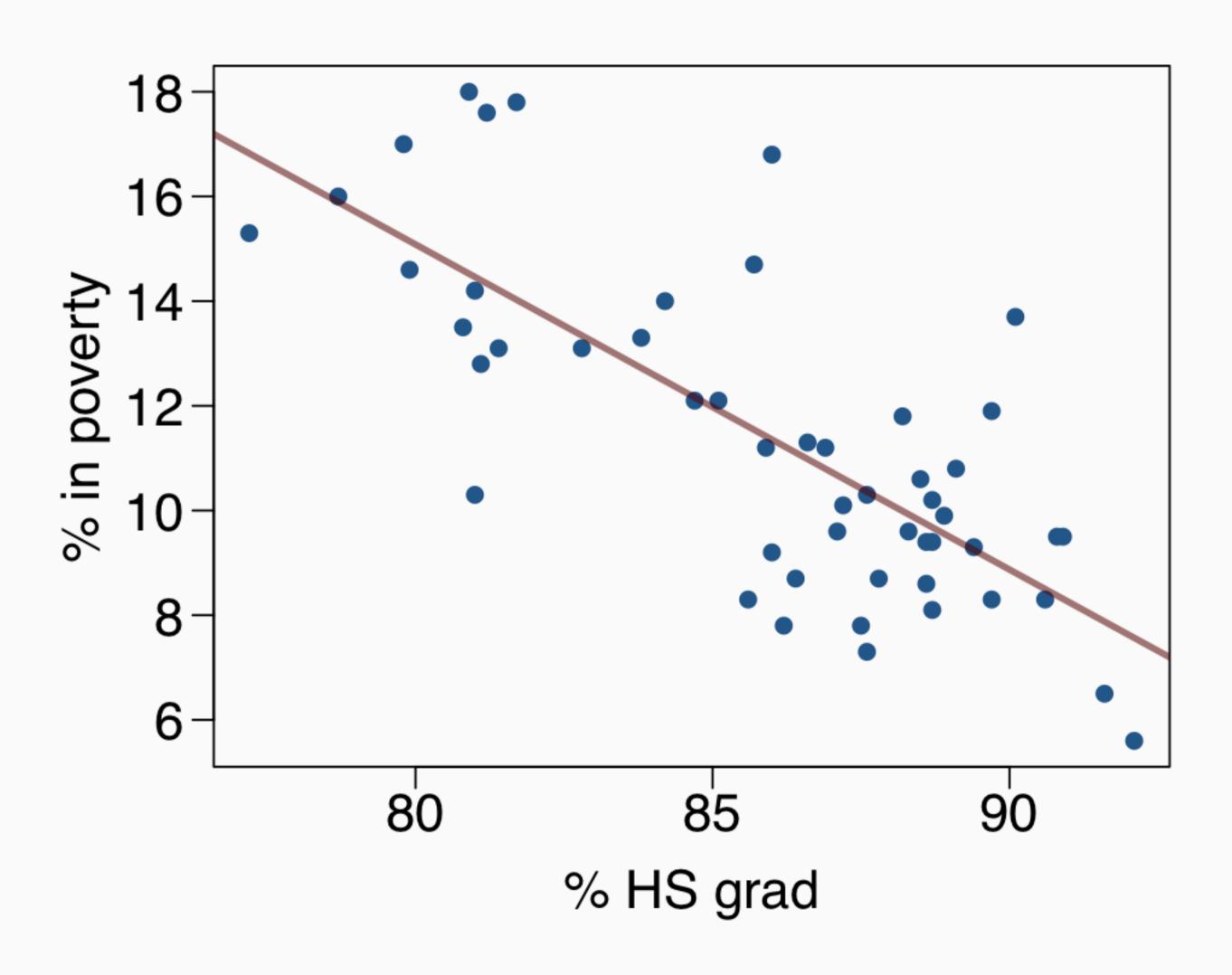
For each % point decrease in HS graduate rate, % living in poverty is expected to increase on average by 64.68%.

Having no HS graduates leads to 64.68% of residents living below the poverty line.

- (d) States with no HS graduates are expected on average to have 64.68% of residents living below the poverty line.
- (x) In states with no HS graduates % living in poverty is expected to increase on average by 64.68%.

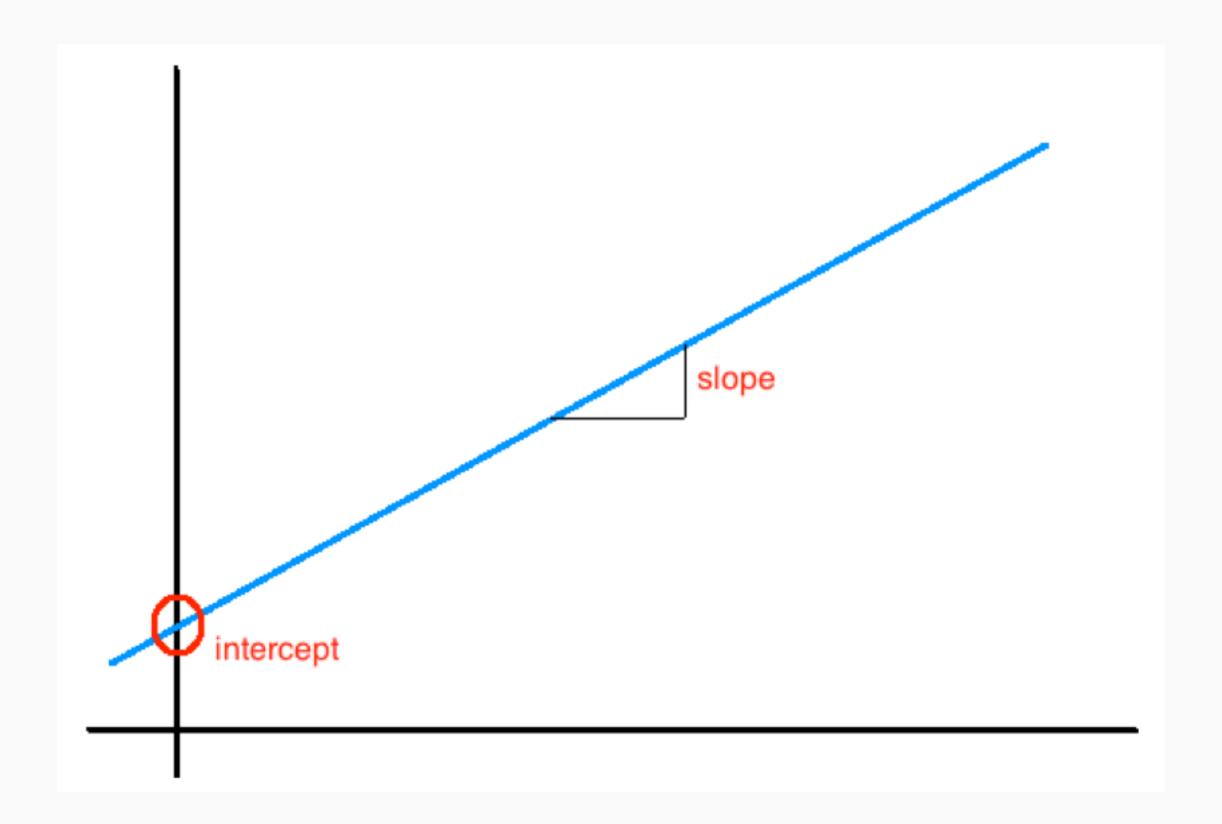
Regression line

$$[\% in poverty] = 64.68 - 0.62 [\% HS grad]$$



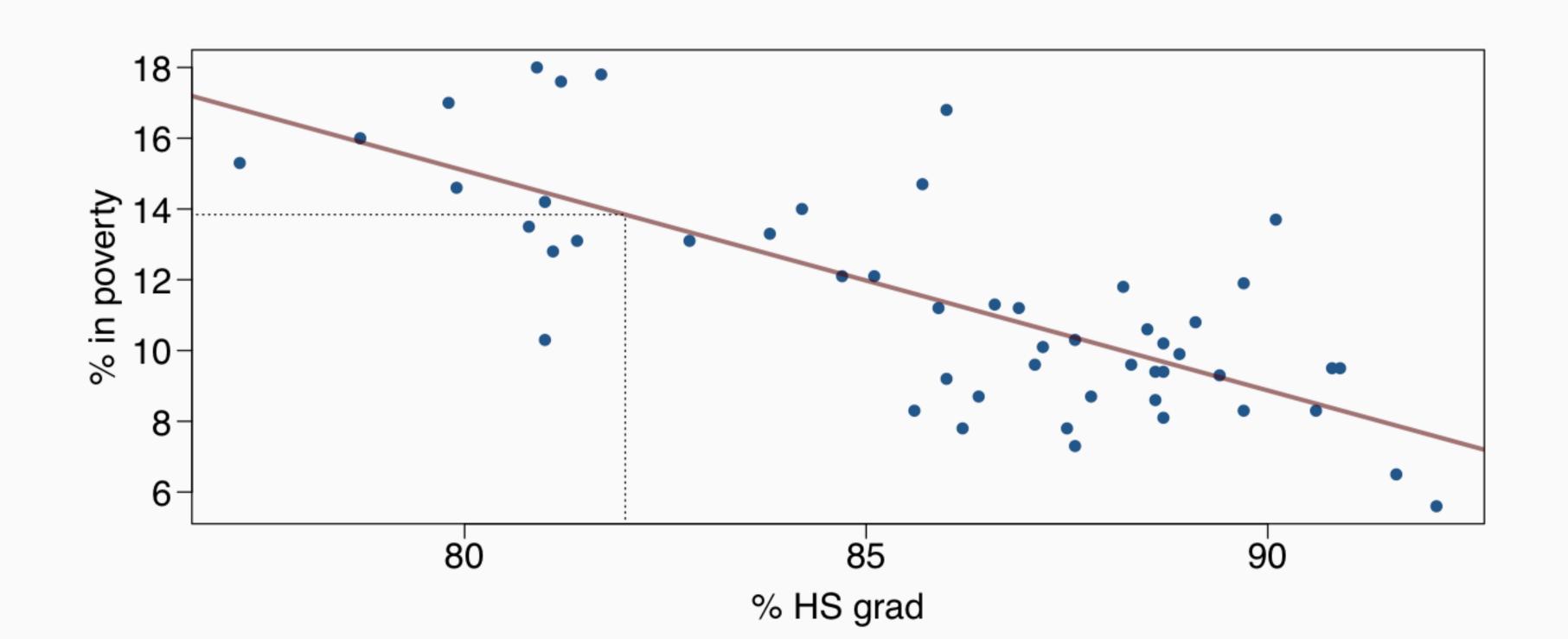
Interpretation of slope and intercept

- Intercept: When x = 0, y is expected to equal the intercept on average.
- Slope: For each unit increase in x, y is expected to increase/decrease on average by the slope.



Prediction

- Using the linear model we are able to predict the value of the response variable at any arbitrary value of the predictor variable by plugging in the value of x in the linear model equation.
- There will be some uncertainty associated with the predicted value - we'll talk more about this next time.

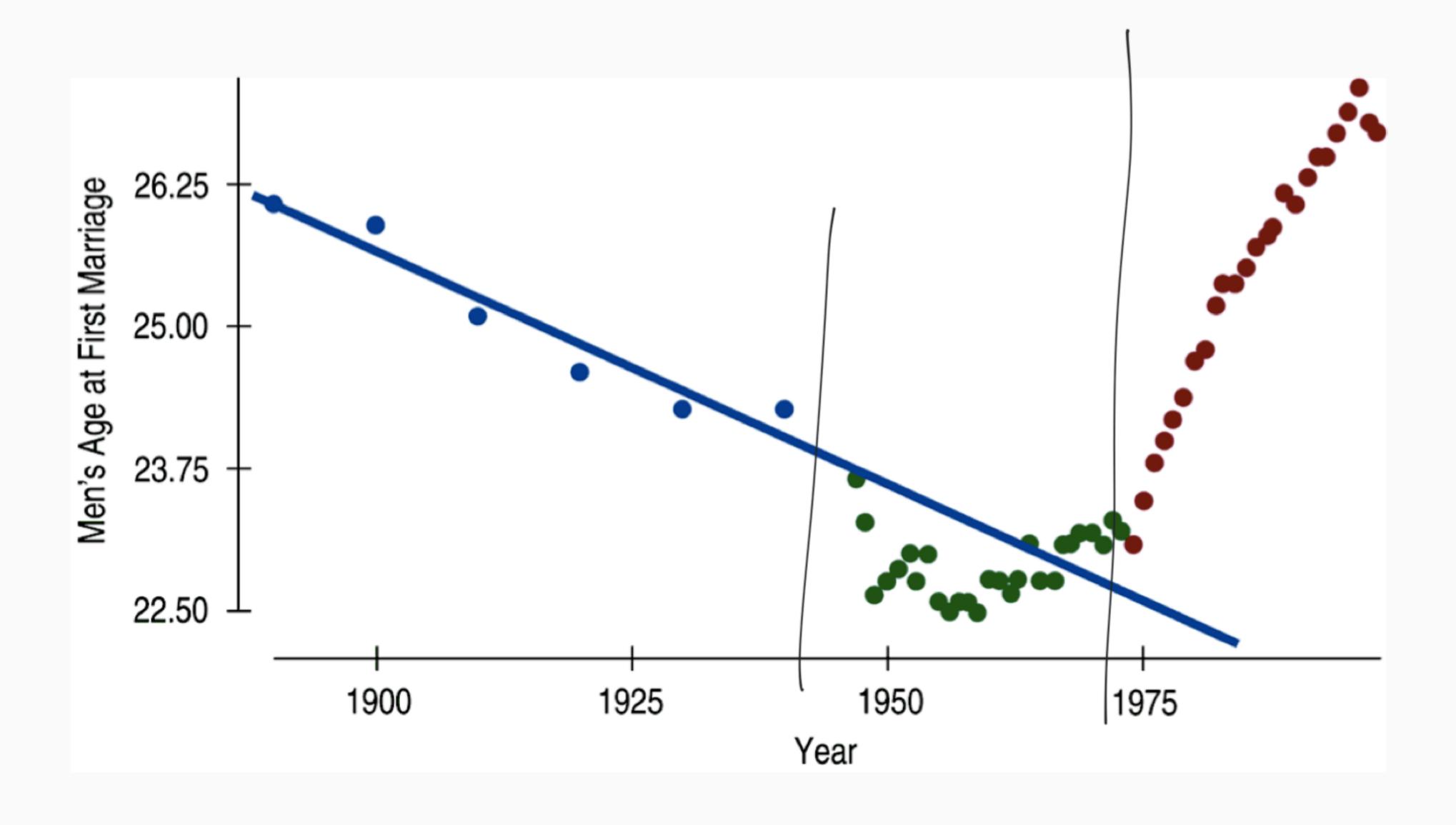


Extrapolation

- Applying a model estimate to values outside of the range of the original data is called *extrapolation*.
- Sometimes the intercept might be an extrapolation.



Examples of extrapolation



Examples of extrapolation

Health

Science &

Environment

Technology

Entertainment

Also in the news

However, former British Olympic sprinter Derek Redmond

"I can see the gap closing between men and women but I

can't necessarily see it being overtaken because mens' times

told the BBC: "I find it difficult to believe.

are also going to improve."

32

Examples of extrapolation

Momentous sprint at the 2156 Olympics?

Women sprinters are closing the gap on men and may one day overtake them.

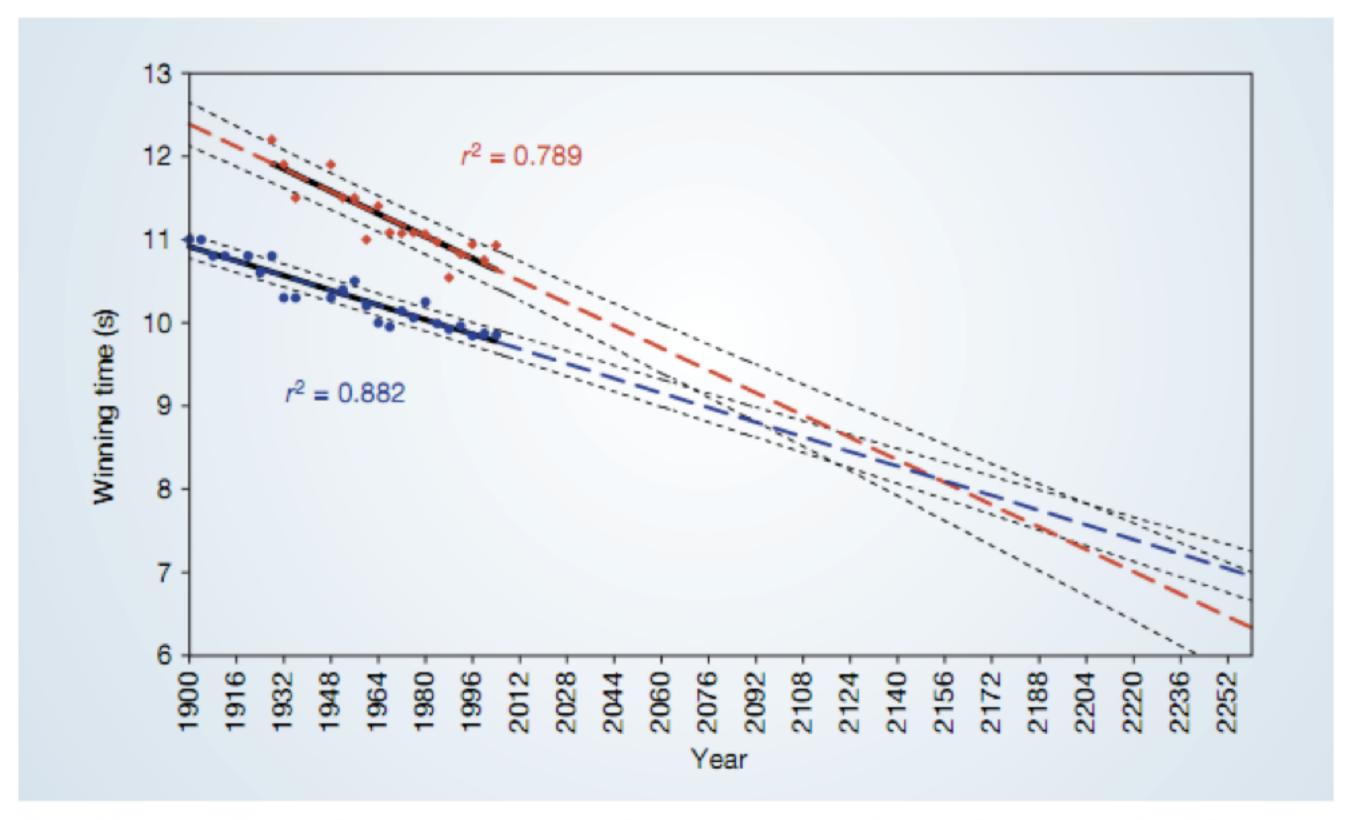
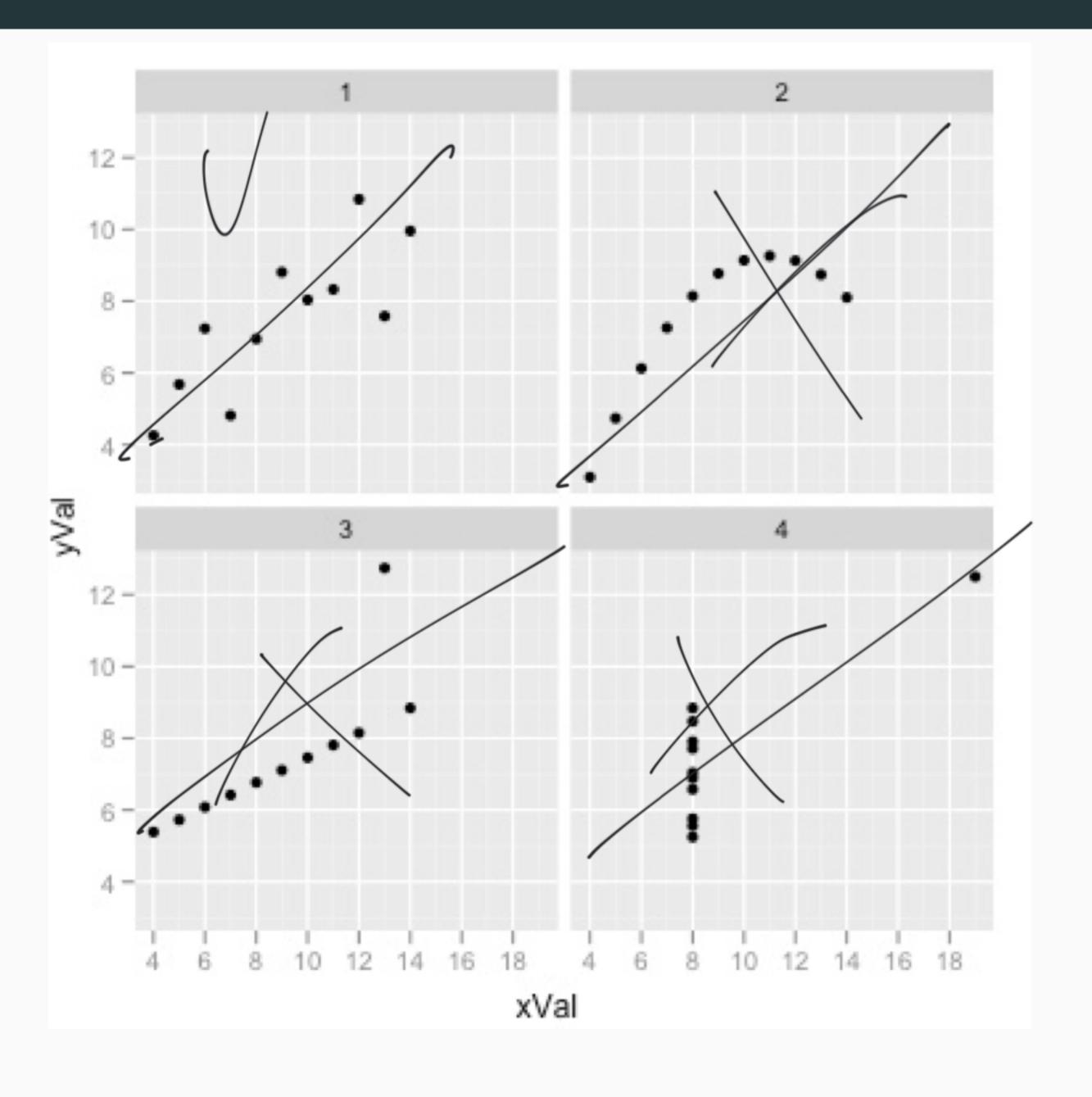


Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regression lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and women, respectively) and 95% confidence intervals (dotted black lines) based on the available points are superimposed. The projections intersect just before the 2156 Olympics, when the winning women's 100-metre sprint time of 8.079 s will be faster than the men's at 8.098 s.

Anscombe's Quartet



Anscombe's Quartet - Data

x1	у1	x2	y2	x3	y3	х4	у4
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	0.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89
,		_		•			

Anscombe's Quartet - Data

x1	у1	x2	y2	х3	уЗ	х4	y4
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.10	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.10	4	5.39	19	12.50
12	0.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

All four datasets have the same regression line:

$$y = 3 + 0.5x$$

• R² is calculated by squaring the correlation coefficient.

- R² is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the R^2 equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).

- R² is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the R^2 equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).
- $1 R^2$ is therefore the amount variability that is not "explained" by the model.

- R² is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the R^2 equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).
- $1 R^2$ is therefore the amount variability that is not "explained" by the model.
- Sometimes referred to as the coefficient of determination.

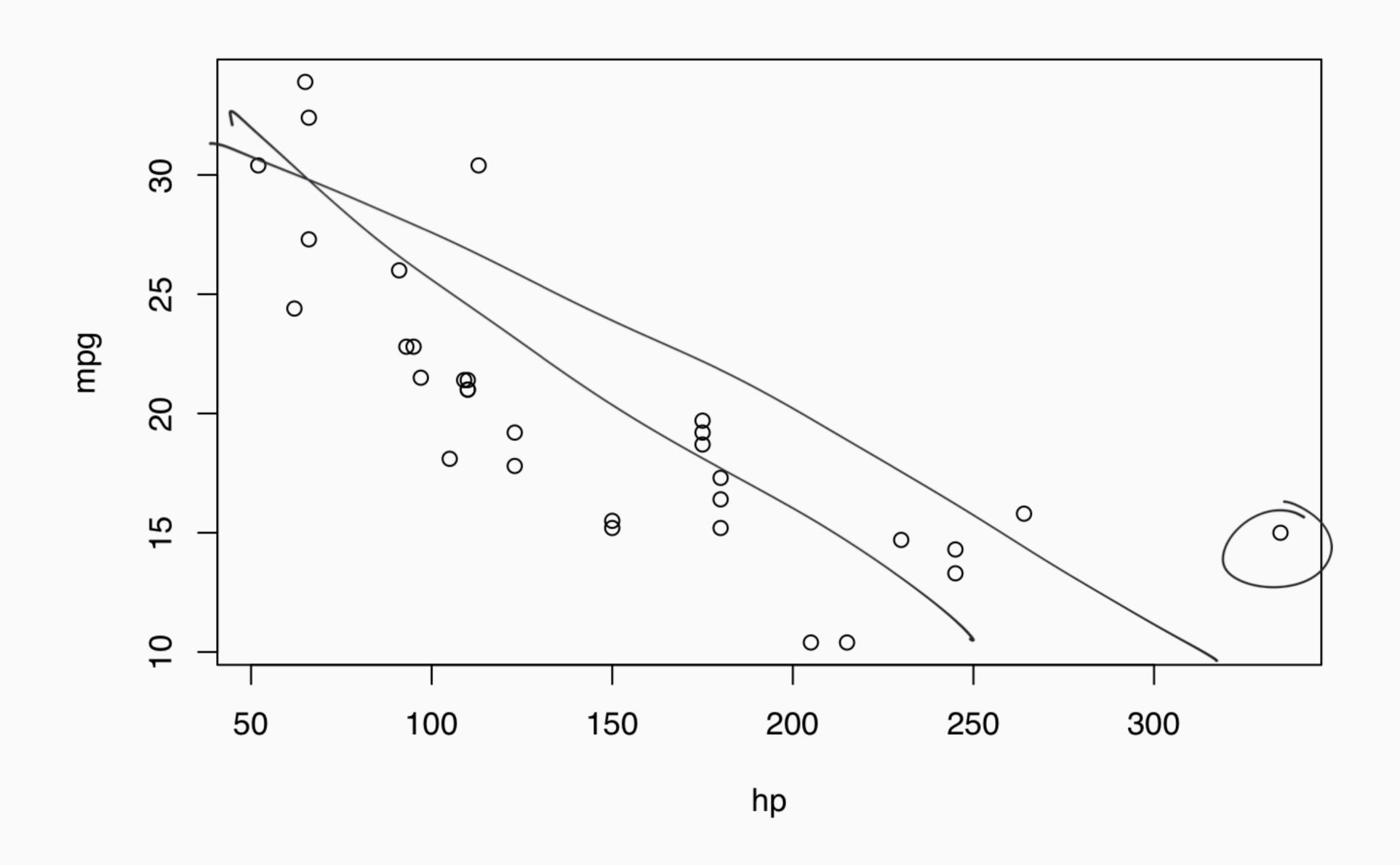
- R² is calculated by squaring the correlation coefficient.
- It has a useful interpretation specifically the R^2 equals the percent of variability in the response variable (y) that is explained by the predictor variable (x).
- $1 R^2$ is therefore the amount variability that is not "explained" by the model.
- Sometimes referred to as the coefficient of determination.
- · For the model we've been working with,

$$R^2 = (-0.75)^2 = 0.5625$$

Modeling numerical variables

mtcars

Data set from Motor Trend for 1973-74 model year cars.

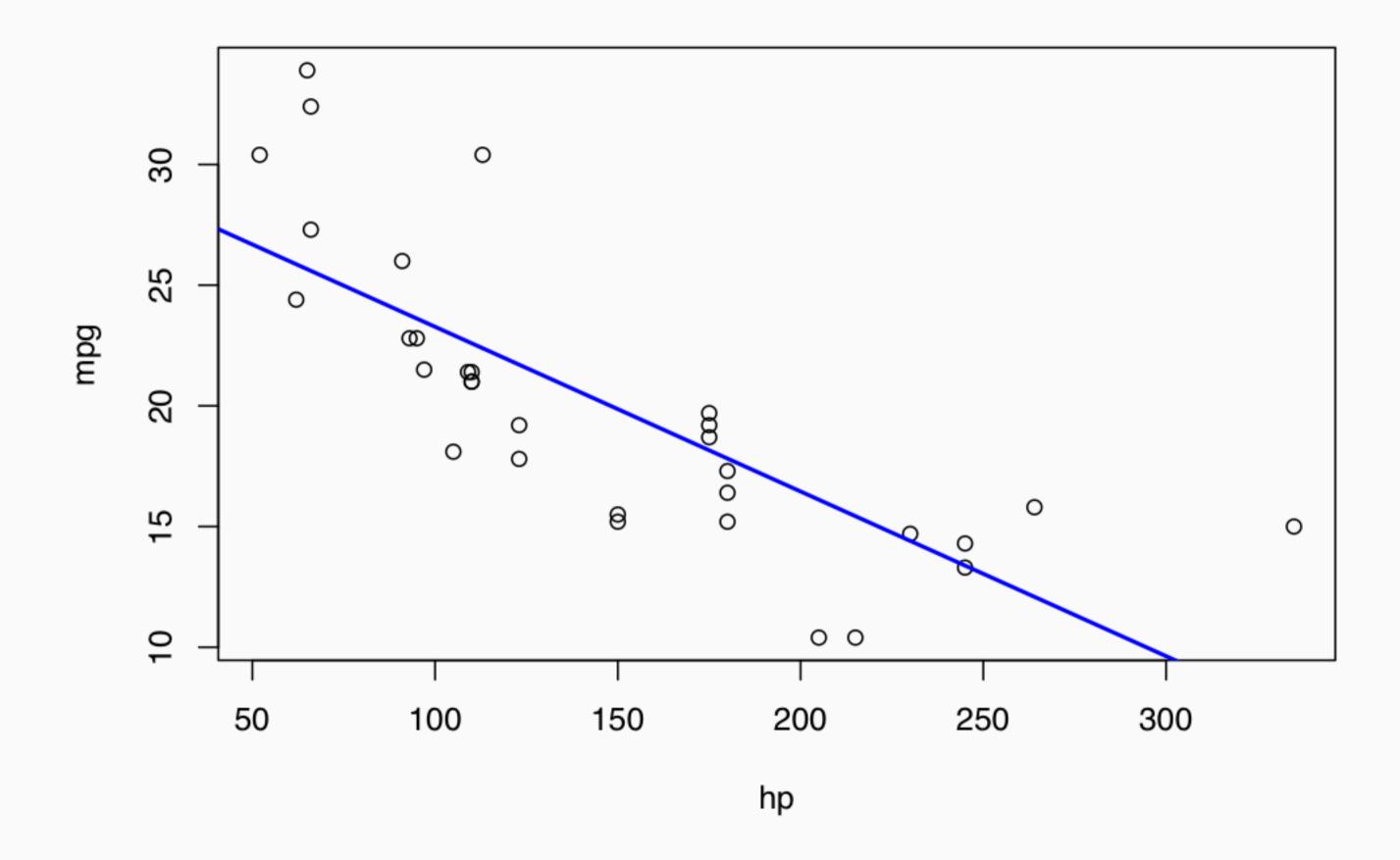


Least Squares fit

Find the least squares line that best describes these data.

		mpg	hp	
	mean	20.09	146.69	
	sd	6.03	68.56	
		R =		
$b_1 = \frac{S_y}{S_x} R =$	6.0.	3	(-0.77	(6)=-0.068
y = bot bix =	=> b.	- 7 -	b, ×	
•		_ LO. C	0.0°) - (-0.0	068) (146.67)
		~30		

mtcars - line



	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	30.0989	1.6339	18.42	0.0000
hp	-0.0682	0.0101	-6.74	0.0000