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Modeling numerical variables






Modeling numerical variables

- So far we have worked with single numerical and
categorical variables, and explored relationships between
numerical and categorical, and two categorical variables.

- Today we will learn to quantify the relationship between
two numerical variables.

- Next week we will learn to model numerical variables
using many predictor (independent) variables (including
both numerical and categorical) at once.



Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS
oraduate rate in all 50 US states and DC and the % of residents
who live below the poverty line (income below $23,050 for a
family of 4 in 2012).
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS
oraduate rate in all 50 US states and DC and the % of residents
who live below the poverty line (income below $23,050 for a
family of 4 in 2012).
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS
oraduate rate in all 50 US states and DC and the % of residents
who live below the poverty line (income below $23,050 for a
family of 4 in 2012).
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS
oraduate rate in all 50 US states and DC and the % of residents
who live below the poverty line (income below $23,050 for a
family of 4 in 2012).
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS
oraduate rate in all 50 US states and DC and the % of residents
who live below the poverty line (income below $23,050 for a
family of 4 in 2012).
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS
oraduate rate in all 50 US states and DC and the % of residents
who live below the poverty line (income below $23,050 for a

family of 4 in 2012).
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Relationship?
— linear
—— nhegative
— moderately strong




Covariance and Correlation




Covariance

We have previously discussed variance as a measure of
uncertainty of a sampled variable

var(X) = o = >~ 06— jux)’

=1

we can generalize this to two variables,

,] [
Cov(X,Y) = n Z(Xi — px) (Vi — py)
i=1
This quantity i1s called Covariance, and It Is a measure of the
degree to which X and Y tend to be large (or small) at the same

time.



Covariance, cont.

The magnitude of the covariance 1s not iImmediately useful as
it Is affected by the magnitude of both X and Y.

However, the sign of the covariance tells us something useful
about the relationship between X and Y.
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Covariance, cont.

The magnitude of the covariance 1s not iImmediately useful as
it Is affected by the magnitude of both X and Y.

However, the sign of the covariance tells us something useful
about the relationship between X and Y.

Consider the following conditions:

- Xj > px and y; > uy then (x; — ux)(y; — py) will be positive.
- Xj < px and y; < py then (X; — ux)(y; — py) will be positive.
+ Xj > px and y; < py then (X; — ux)(y; — py) will be negative.
- X; < pux and y; > uy then (x; — ux)(y; — py) will be negative.






Properties of Covariance

- Cov(X, X) = Var(X)

+ Cov(X,Y) = Cov(Y,X)

- Cov(X,Y)=01f Xand Y are independent
- Cov(X,c) =0

+ Cov(aX,bY) = ab Cov(X,Y)

- Cov(X+a,Y+ b) = Cov(X,Y)

- Cov(X,Y 4+ Z) = Cov(X,Y) + Cov(X, Z)



Since Cov(X,Y) depends on the magnitude of X and Y we prefer
to have a measure of association that is independent of the
scale of the variables.



Since Cov(X,Y) depends on the magnitude of X and Y we prefer
to have a measure of association that is independent of the

scale of the variables.

The most common measure of [inear association Is
correlation, which I1s defined as

Cov(X,Y)

Ox Oy

p(X,Y) =



Properties of Correlation

- Correlation describes the strength of the linear
assoclation between two variables.
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Properties of Correlation

- Correlation describes the strength of the linear
assoclation between two variables.

- |t takes values between -1 (perfect negative) and +1
(perfect positive).

- A value of 0 Indicates no linear assoclation.

- We use p to Indicate the population correlation coefficient,
and R or r to indicate the sample correlation coefficient.
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Correlation Examples
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Correlation and Independence

Given random variables X and Y

f Xand Y are independent = Cov(X,Y)=p(X,Y) =0

f Cov(X,Y) =p(X,Y)=0 =~ XandYareindependent

p(X,Y) = 0 Is necessary but not sufficient for independence.

12



Guessing the correlation

Which of the following Is the best guess for the correlation
between % I1n poverty and % HS grad?
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Guessing the correlation

Which of the following Is the best guess for the correlation
between % In poverty and % single mother household?
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Assessing the correlation

Which of the following is has the strongest correlation, I.e.
correlation coefficient closest to +1 or -17

15



Best fit line - least squares regression




Eyveballing the line

Which of the following appears to be the line that best fits the
liInear relationship between % in poverty and % HS grad?

% In poverty

% HS grad

1/



Line Equation

The line shown can be described by an equation of the form
Vi = Bo + Bix;, we would like a measure of the quality of its fit.

% In poverty

% HS grad
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Just like with ANOVA, we can think about each value (y;) as
oeing the result of our model (§;) and some unexplained error
(e;) - this error is what we call a residual.

Vi = 371' T € = 50 T 51 Xi + €
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Residual Examples

We can think about a residual being the difference between
our observed outcome (y;) minus our predicted outcome.

ei =Y _37/' =Y _50 _51Xi

% In poverty

% HS grad
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Residual Examples

We can think about a residual being the difference between
our observed outcome (y;) minus our predicted outcome.

ei:yi_y/i:yi_ﬂo—&xi

% living In poverty in DC
1S 5.44% more than
predicted.

% HS grad
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Residual Examples

We can think about a residual being the difference between
our observed outcome (y;) minus our predicted outcome.

ei:yi_y/i:yi_ﬂo—&xi

% living In poverty in DC
1S 5.44% more than
predicted.

% living In poverty in R
1S 4.16% less than
predicted.

% HS grad

20



A measure for the best line

- We want a line that has small residuals - any idea what
criteria we should use?
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A measure for the best line

- We want a line that has small residuals - any idea what
criteria we should use?

- Minimize the sum of squared residuals - least squares

er +e5+ -+ e

- Why least squares?

1. Most commonly used

2. Square I1s a nicer function than absolute value

3. In many applications, a residual twice as large as another
IS more than twice as bad

2



The least squares line

Notation:

- Intercept:

- Parameter: 5
- Point estimate: by

- Slope:
- Parameter: S
- Point estimate: b;

22



Data / Sample Statistics

18 - % ®

16 ° ) % HS grad % In poverty
§14— . :. o o. . ° (X) (y)
3 12- ‘ o . . mean X = 86.01 y =11.35

Qe % .

< 10- : (S%,<, REAE sd Sy = 3.73 s, = 3.
° g e correlation R = —0.75

6- ° .

% HS grad

What values of by and by will minimize the sum of squared
residuals?

N 2
argmin Z e,-z — argmin Z (Vi — bo — by X;‘)Z
bO, b'] 1.21 bO? b1 [.:1
23



The slope of the bivariate least squares regression line Is given

Dy
Cov(X,Y)  oxoy oy
= = Cor(X,Y) = —
7 Var(X) o %) pr
by = YR
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The slope of the bivariate least squares regression line Is given

Dy
Cov(X,Y)  oxoy oy
— — Cor(X.,Y) = —=
7 Var(X) o %) pr
S
by = =R
Sx
INn context: 3
D- — x —0.75 = —0.62

~ 3.73

24



The slope of the bivariate least squares regression line Is given

Dy
Cov(X,Y)  oxoy oy
— — Cor(X.Y —
7 Var(X) o %) 0xp
S
by = =R
Sx
INn context: 3
D- — x —0.75 = —0.62

Interpretation:
For each % point increase
the % living In poverty to c

~ 3.73

In HS graduate rate, we would expect

ecrease on average by 0.62% points.
24



Intercept

The intercept Is where the line Iintersects the y-axis. To
calculate the intercept for the least squares line we use the
fact that the regression line will always pass through (X, y).

25



Intercept

The Intercept I1s where the line intersects the y-axis. To
calculate the intercept for the least squares line we use the
fact that the regression line will always pass through (X, y).

bo =y — DX

707_intercept

=L
£ 30-

0 20 40 60 80 100
% HS grad
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Intercept

The Intercept I1s where the line intersects the y-axis. To
calculate the intercept for the least squares line we use the
fact that the regression line will always pass through (X, y).

bo =y — DX

707_intercept

=L
£ 30-

I I |

0 20 40 60 80 100
% HS grad

In context:
bo = 11.35 — (—0.62) x 86.01 = 64.68 )



Interpreting Intercepts

Which of the following Is the correct interpretation of the

Intercept?

}7<For each % point increase in

S graduate rate, % living In

poverty IS expected to Increase on average by 64.68%.
For each % point decrease in HS graduate rate, % living In
poverty IS expected to Increase on average by 64.68%.

}t{fHaving no HS graduates leads to 64.68% of residents living
below the poverty line. (Cc\ csa |l S1- }/N\%

(d) )States with no HS graduates are expected on average to
have 64.68% of residents living below the poverty line.

(& In states with no HS graduates % living in poverty is
expected to Increase on average by 64.68%.

26



Regression line

A

1% 1n poverty| = 64.68 — 0.62 |% HS grad]

% In poverty

% HS grad

27



Interpretation of slope and intercept

- [ntercept: When V1S expected to equal
on average.
- Slope: For each Increase In x, v I1s expected to

on average by

slope

‘P
<F intercept

23



- Using the linear model we are able to predict the value of
the response variable at any arbitrary value of the
predictor variable by plugging in the value of x In the
liInear model equation.

- There will be some uncertainty associated with the
predicted value - we'll talk more about this next time.

29
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Extrapolation

- Applying a model estimate to values outside of the range
of the original data Is called extrapolation.
- Sometimes the intercept might be an extrapolation.

70-__|intercept

% In poverty
—- N W B O
o O O O O
I I I I I

o
I

0 20 40 60 80 100
% HS grad
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Examples of extrapolation
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Examples of extrapolation

News Front Page
vy

Africa
Americas
Asia-Pacific
Europe
Middle East
South Asia
uk]

England
Northern Ireland
Scotland
Wales

UK Politics
Education

Magazine
Business
Health

Science &
Environment

Technology
Entertainment
Also in the news

P I3 One-Minute World News

Last Updated: Thursday, 30 September, 2004, 04:04 GMT 05:04 UK
E-mail this to a friend & Printable version

Women 'may outsprint men by 2156’

Women sprinters may be

outrunning men in the 2156 2
Olympics if they continue to R
close the gap at the rate ‘
they are doing, according to
scientists. ;

An Oxford University study
found that women are running
faster than they have ever
done over 100m.

Women are set to become the domur‘art
sprinters

At their current rate of improvement, they should overtake
men within 150 years, said Dr Andrew Tatem.

The study, comparing winning times for the Olympic 100m
since 1900, is published in the journal Nature.

However, former British Olympic sprinter Derek Redmond
told the BBC: "I find it difficult to believe.

"I can see the gap closing between men and women but I
can't necessarily see it being overtaken because mens' times
are also going to improve."

32



Examples of extrapolation

Momentous sprint at the 2156 Olympics?
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Figure 1 The winning Clympic 100-mefre sprint times for men (blue paints) and women (red points), with superimpesed best-fit knear ragres-
son lines (solid black lines) and coefficents of determnation. The regression Ines are exirapo'ated (broken blue and red lings for men and
wormen, respectively) and 95% confidencs intervals (dotted black lings) based on the avalable points arg superimposed. The proactions intar-
sact just befora the 2156 Olympics, when the winning women's 100-matre sprint time of 8.079 s will be fastar than the men's at 8.088 s.
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Anscombe’s Quartet

xVal

34



Anscombe’s Quartet - Data

10 8.04 10 9.14 10 /.46 3 0.508
8 60.95 8 8.14 3 0.77 3 5.76
13 /.58 13 8.74 13 12.74 3 /.71
9 8.3l 9 38.77 9 /.11 3 8.84
11 8.33 11 9.20 11 /.81 3 8.47
14 9.96 14 3.10 14  3.84 3 /.04
o /.24 o 613 0 0.08 3 5.25
L 420 4 3.10 4l 5.39 19 12.50
12 0.84 12 9.13 12 8.15 3 5.50
/  4.82 / 71.20 / 0.42 3 /.91
5 5.68 5 4.7 5 5.73 3 0.89
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Anscombe’s Quartet - Data

All four datasets have the same regression line:

3.04
0.95
/.58
3.81
8.33
9.960
/.24
4.26
0.84
4.82
5.68

10
3
13
9
11
14

9.14 10
8.14 3
3.74 13
8.77 9
9.26 11
3.10 14
0.13 0
3.10 al
9.13 12
/.26 /
L.74 o

/\

y =3+ 0.5X

/.46
0.77

12.74

/.11
/.81
3.84
0.08
5.39
3.15
0.42
5.73

O OO GO OO OO 0O OO
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The strength of the fit of a linear model Is often evaluated
using a value called R”.
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The strength of the fit of a linear model Is often evaluated
using a value called R”.

- R%is calculated by squaring the correlation coefficient.

- It has a useful interpretation - specifcially the R? equals
the percent of variability in the response variable (y) that
is explained by the predictor variable (x).

. 1 — R?is therefore the amount variability that is not
“explained” by the model.

- Sometimes referred to as the coefficient of determination.

- For the model we've been working with,

R® = (—0.75)* = 0.5625 36



Modeling numerical variables




Data set from Motor

rend for 1973-74 model year cars.
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Least Squares fit

Find the least squares line that best describes these data.

mpg  nhp
mean 20.09 146.69
sd 6.03  68.56

n = 32 R = —0.776
Sy

h=——R = 6.0
I S~ Q%S'% (077€> 000

S_/; bcfl”lg ;3 bo—:—\;b b";
— L0 99 - (‘0.0 G 6) (/H‘é,gﬂ)

= 30
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mtcars - line

mpg

Estimate  Std. Error  tvalue Pr(>]t|)

(Intercept)  30.0989 1.6339 18.42  0.0000
hp -0.0682 0.0101 -0./4 0.0000
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