
Lecture 10 - Inference for One Mean

Sta 102
May 27, 2016

Colin Rundel & Mine Çetinkaya-Rundel



Confidence Intervals in the Real
World



A small problem

Lets assume we are interested in understanding the blood
pressure of high school athletes, we collect a large sample
(n=200) from the population and record each student’s blood
pressure in mmHg. Here we do not know either the population
mean (µ) or variance (σ2).

We want to construct a 95% confidence interval based on the
observed sample average, which we do by calculating:

CI95% = X̄± Z⋆ SE

= X̄± 1.96 σ√
n

Anyone see a problem here?
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Missing σ

When working with real samples the population standard deviation
(σ) is almost never known, we address this by plugging in the sample
standard deviation when calculating the standard error. However,
when we do this it changes the sampling distribution.

• We estimate the standard error using the sample standard
deviation, this adds uncertainty to inference process.

• Our new sampling distribution is still symmetric and roughly
bell shaped, but its tails are thicker than the normal
distribution.

• Observations are more likely to fall beyond two SDs from the
mean than with the normal distribution.
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t distribution
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History of the t distribution

First described by William Gosset ...

• Oxford Graduate with a degree in
Chemistry and Mathematics

• Hired by the Guinness Brewery in 1899
• Spent 1906 - 1907 studying with Karl
Pearson

• Published “The probable error of a
mean” in 1908 under the pseudonym
“A. Student”

• Much of his work was promoted by R.A.
Fisher
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Properties of the t distribution

• it is centered at zero⋆, like the standard normal (Z)
distribution.

• it has a single parameter, df (degrees of freedom), which
determines the thickness of the tails.

−4 −2 0 2 4 6

normal
t, df=10
t, df=5
t, df=2
t, df=1

• as df increases the t distribution converges to the Z
distribution. 7



Finding probabilities

As before we can find any probability we are interested by knowing
how to calculate the area under the tail of the t distribution. For
example, if we want to know P(Tdf=19 > 1.16) then we can use:

• R:

1-pt(1.16,df=19)

## [1] 0.1302092

• App: (https://gallery.shinyapps.io/dist_calc/):
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Finding Probabilities - t table

Locate the T value on the appropriate df row, obtain the
probability from the corresponding column heading (one or
two tail).

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
...

...
...

...
...

17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
...

...
...

...
...

400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
∞ 1.28 1.64 1.96 2.33 2.58 9



Finding probabilities - upper tail

Using the table below find:

P(Tdf=19 > 1.16)

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 17 1.33 1.74 2.11 2.57 2.90

18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
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Finding probabilities - upper tail

Using the table below find:

P(Tdf=19 < −2)

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 17 1.33 1.74 2.11 2.57 2.90

18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
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Finding probabilities - two tails

Using the table below find:

P(Tdf=19 < −1.5 or Tdf=19 > 1.5)

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 17 1.33 1.74 2.11 2.57 2.90

18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
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CLT vs. t

From the Central Limit Distribution we have,

X̄ ∼ N(µ, σ2/n)
X̄− µ

σ/
√
n
∼ N(0, 1)

Since σ is unknown we must use s which results in the
following

X̄− µ

s/
√
n
∼ tdf=n−1
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Implications of t distribution for Confidence intervals

Confidence intervals are always of the form

point estimate± CV× SE

If our point estimate is a sample mean and σ is unknown, then
our sample mean follows a t distribution (and not a Z
distribution), the critical value is then given by t⋆df (as opposed
to a Z⋆) and the SE is s/

√
n (and not σ/

√
n).

X̄± t⋆df ×
s√
n
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Finding the critical t (t⋆)

0 t* = ?

df = 9

95%

n = 10, df = 10− 1 = 9

t⋆ is at the intersection of row
df = 9 and two tails column
0.05.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 6 1.44 1.94 2.45 3.14 3.71

7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25
10 1.37 1.81 2.23 2.76 3.17
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Constructing a CI

We would like to calculate a 95% confidence interval for the
average rental price of an apartment in Durham. We sample
craigslist and find

Rent = {625, 733, 895, 929, 775, 1349, 599, 749, 1020, 799,
705, 665, 1282, 1143, 1209, 500, 1495, 1076, 975, 879}

X̄ = 920.1 s = 271 n = 20 SE = s/
√
n = 60.6
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Confidence Intervals as Inference



Example - Grade Inflation

In 2001 the average GPA of students at Duke University was
3.37. Last semester 63 introductory statistics students reported
their GPA on an in class survey. The mean was 3.58, and the
standard deviation 0.53. A histogram of the data is shown
below.

Assuming that this sample is random and representative of all
Duke students, do these data provide convincing evidence that
the average GPA of Duke students has changed over the last
decade and a half?
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Example - Z vs t

Your friend has collected some data as part of a summer REU -
they collected tadpoles from a local different stream and
measured their lengths. From the stream they were able
collect 50 tadpoles which had an average length 2.3 cm and a
standard deviation of 0.2 cm.

They argue that since it is well known that the distribution of
tadpole lengths is normal they should be able to use the Z
distribution when constructing their confidence intervals for
the average lengths. Are they correct? If not, how serious a
mistake are they making? (Construct the CIs both ways for
both steams and compare)
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Recap: Inference using CIs for sample means

If σ is unknown, then X̄−µ
s/
√
n has a t distribution with df = n− 1

when the CLT holds.

Conditions (same as CLT):

• independence of observations (often verified by a random
sample, and if sampling without replacement, n < 10% of
population)

• sample size is large or population not overly skewed or
heavy/light tailed

Confidence interval:

X̄± t⋆df
s√
n
, where df = n− 1
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Hypothesis Tests for one mean



Null Value Hypothesis Testing framework

• We start with a null hypothesis (H0) that represents the status
quo.

• We develop an alternative hypothesis (HA) that represents our
research question (what we’re testing for). It should be
mutually exclusive to H0.

• We conduct the hypothesis test under the assumption that the
null hypothesis is true, either via simulation or theoretical
methods.

• We examine how likely our data (or something more extreme) is
under this assumption, and use that as evidence against the
null hypothesis (and hence for the alternative).
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Example - Grade inflation?

In 2001 the average GPA of students at Duke University was
3.37. Last semester Duke students in a Stats class were
surveyed and ask for their current GPA. This survey had 63
respondents and yielded an average GPA of 3.56 with a
standard deviation of 0.31.

Assuming that this sample is random and representative of all
Duke students, do these data provide convincing evidence that
the average GPA of Duke students has changed over the last
decade?
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Setting the hypotheses

• The population parameter of interest is the average GPA of
current Duke students.

• There may be two explanations why our sample mean is
higher than the average GPA from 2001.

• The true population mean has changed.
• The true population mean remained at 3.37, the difference
between the true population mean and the sample mean
is simply due to natural sampling variability.

• We start with the assumption that nothing has changed.

H0 : µ = 3.37

• We test the claim that average GPA has changed.

HA : µ ̸= 3.37
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Making a decision - p-values

We want to make a decision about whether we think H0 or HA is
correct, to do this in a principled / quantitative way we calculate
what is known as a p-value.

• The p-value is the probability of observing data at least as
favorable to the alternative hypothesis as our observed data,
assuming the null hypothesis is true.

• Small p-value (< α, usually 5%) we claim it is very unlikely to
observe these data (or more extreme) if the null hypothesis
were true, and therefore reject H0.

• Large p-value (> α) we claim it is likely to observe these data if
the null hypothesis were true, and therefore do not reject H0.

• We never accept H0 since we’re not in the business of trying to
prove it. We just want to know if the data provide convincing
evidence against H0.
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What is a p-value

What is a p-value:

• The probability of the observed data (sample statistic) or
something more extreme in favor of the null hypothesis
given the null hypothesis is true.

• Indirect evidence against H0.

What a p-value isn’t:

• A p-value is not the probably H0 is true
• A p-value is not the probably HA is false

26



Conditions for inference - GPA

Back to the GPA example, in order to perform inference on
these data we need to use the CLT, and therefore we need to
check the conditions:

1. Independence:
• We have already assumed this sample is random.
• Assume sampling without replacement, but 63 < 10% of all
current Duke students.

⇒ it appears reasonable to assume that GPA of one
student in this sample is independent of another.
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Conditions for inference - GPA

2. Sample size / skew: The distribution appears to be slightly
left skewed (but not extremely) and n = 63 so we will
assume that the sampling distribution of the sample
means should be nearly normal by the CLT.

2.8 3.0 3.2 3.4 3.6 3.8 4.0
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Calculating the p-value

p-value - probability of observing data at least as favorable to
HA as our current data set, if in fact H0 is true (the true
population mean µ = 3.37).

In this case because we are not making any claims about GPAs
going up or down, we need to consider GPA changes in both
directions. E.g. a sample average GPA of 3.18 is just as much in
favor of HA as a sample average GPA of 3.56.
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Drawing a Conclusion / Inference

p-value = 4.2× 10−6

If the true average GPA of Duke students is 3.37, there is
approximately a 4.2× 10−6 chance of observing a random
sample of 63 Duke students with an average GPA of 3.56 and
above or 3.18 and below.

• This is a very small probability, it seems very unlikely that a 3.56
sample average GPA could have happened by chance.

• Since the p-value is small (lower than 5%) we reject H0.

• Claim - the data provide convincing evidence that Duke
students’ average GPA has changed since 2001. E.g. the
difference between the null value of a 3.37 GPA and observed
sample mean of 3.56 GPA is not due to chance / sampling
variability.
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Example - College applications

A similar survey asked how many colleges each student had applied
to. 206 students responded to this question and the sample yielded
an average of 9.7 college applications with a standard deviation of 7.
The College Board website states that counselors recommend
students apply to 8 colleges. What would be the correct set of
hypotheses be to test if these data provide convincing evidence that
the average number of colleges Duke students apply to is greater
than the number recommended by the College Board.
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College Applications - p-value

p-value - probability of observing data at least as favorable to
HA as our current data set (a sample mean greater than 9.7), if
in fact H0 was true (the true population mean is 8).

µ = 8 x = 9.7
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College Applications - Making a decision

p− value < 0.005

If the true average of the number of colleges Duke students
applied to is 8, there is less than a 0.005 chance of observing a
random sample of 206 Duke students who on average apply to
9.7 or more schools.

• This is a very small probability, it seems very unlikely that
a sample mean of 9.7 or more schools is likely to happen
simply by chance.

• Since p-value is low (lower than 5%) we reject H0.
• The data provide convincing evidence that Duke students
apply on average to more than 8 schools.
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apply on average to more than 8 schools.
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What about a confidence interval?

We can also assess this claim using a confidence interval.

X̄ = 9.7 s2 = 72 n = 206

We construct a 95% confidence interval using
t∗df=205 ≈ t∗df=200 = 1.97,
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Recap: Null Value Hypothesis Testing

Regardless of the sample statistic of interest, all null value
hypothesis testing takes exactly the same form.

1. Set the hypotheses
2. Check assumptions and conditions
3. Calculate a test statistic and a p-value (draw a picture!)
4. Make a decision, and interpret it in context of the research
question
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Recap: Null Value Hypothesis Testing - Sample Means
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2. Check assumptions and conditions
3. Calculate a test statistic and a p-value (draw a picture!)
4. Make a decision, and interpret it in context of the research
question
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Recap: Null Value Hypothesis Testing - Sample Means

1. Set the hypotheses
• H0 : µ = null value
• HA : µ < or > or ̸= null value

2. Check assumptions and conditions
• Independence: random sample/assignment, 10% condition
when sampling without replacement

• Normality/Sample size: nearly normal population or n
large enough, w/ no extreme skew or tail weirdness

3. Calculate a test statistic and a p-value (draw a picture!)

Z =
X̄− µ

σ/
√
n

T = X̄− µ
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n

4. Make a decision, and interpret it in context of the research
question

• If p-value < α, reject H0
• If p-value > α, do not reject H0 36
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