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Recap



Recap - Null Value Hypothesis Testing

Regardless of the sample statistic of interest, all null value
hypothesis testing takes exactly the same form:

1. Define the null and alternative hypotheses
2. Check assumptions and conditions
3. Calculate the appropriate test statistic and use that to
find the p-value

4. Make a decision, and interpret it in context of the research
question

3



Recap - Null Value Hypothesis Testing - Single Mean
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√
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Recap - Null Value Hypothesis Testing - Single Mean

1. Set the hypotheses
• H0 : µ = null value
• HA : µ < or > or ̸= null value

2. Check assumptions and conditions
• Independence: random sample/assignment, 10% condition
when sampling without replacement

• Normality/Sample size: nearly normal population or n
large enough, w/ no extreme skew or tail weirdness

3. Calculate the appropriate test statistic and use that to
find the p-value

Z =
X̄− µ

σ/
√
n

T = X̄− µ

s/
√
n

4. Make a decision, and interpret it in context of the research
question

• If p-value < α, reject H0
• If p-value > α, do not reject H0 4



Recap - Confidence Interval - Single Mean

If σ is unknown, then X̄−µ
s/
√
n has a t distribution with df = n− 1

when the CLT holds.

Conditions (same as NVHT/CLT):

• Independence: random sample/assignment, 10%
condition when sampling without replacement

• Normality/Sample size: nearly normal population or n
large enough, w/ no extreme skew or tail weirdness

Confidence interval:

X̄± t⋆df
s√
n
, where df = n− 1

5



Recap - Confidence Interval - Single Mean

If σ is unknown, then X̄−µ
s/
√
n has a t distribution with df = n− 1

when the CLT holds.

Conditions (same as NVHT/CLT):

• Independence: random sample/assignment, 10%
condition when sampling without replacement

• Normality/Sample size: nearly normal population or n
large enough, w/ no extreme skew or tail weirdness

Confidence interval:

X̄± t⋆df
s√
n
, where df = n− 1

5



Recap - Confidence Interval - Single Mean

If σ is unknown, then X̄−µ
s/
√
n has a t distribution with df = n− 1

when the CLT holds.

Conditions (same as NVHT/CLT):

• Independence: random sample/assignment, 10%
condition when sampling without replacement

• Normality/Sample size: nearly normal population or n
large enough, w/ no extreme skew or tail weirdness

Confidence interval:

X̄± t⋆df
s√
n
, where df = n− 1

5



Statistical vs. Practical Significance



Example - Sample Size

Suppose X̄ = 50, s = 2, H0 : µ = 49.5, and HA : µ > 49.5.

Will the p-value be lower if n = 100 or n = 10, 000?
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Example - Sample Size

Suppose X̄ = 50, s = 2, H0 : µ = 49.5, and HA : µ > 49.5.

Will the p-value be lower if n = 100 or n = 10, 000?

Tn=100 =
50− 49.5

2√
100

=
50− 49.5

2
10

=
0.5
0.2 = 2.5, p-value = 0.007

Tn=10000 =
50− 49.5

2√
10000

=
50− 49.5

2
100

=
0.5
0.02 = 25, p-value ≈ 0
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Example - Sample Size

Suppose X̄ = 50, s = 2, H0 : µ = 49.5, and HA : µ > 49.5.

Will the p-value be lower if n = 100 or n = 10, 000?

Tn=100 =
50− 49.5

2√
100

=
50− 49.5

2
10

=
0.5
0.2 = 2.5, p-value = 0.007

Tn=10000 =
50− 49.5

2√
10000

=
50− 49.5

2
100

=
0.5
0.02 = 25, p-value ≈ 0

As n increases - SE ↓, Z ↑, p-value ↓
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Example - Sample Size 2

Suppose X̄ = 50, s = 2, H0 : µ = 49.9, and HA : µ > 49.9.

Will the p-value be lower if n = 100 or n = 10, 000?
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Example - Sample Size 2

Suppose X̄ = 50, s = 2, H0 : µ = 49.9, and HA : µ > 49.9.

Will the p-value be lower if n = 100 or n = 10, 000?

Tn=100 =
50− 49.9

2
10

=
0.1
0.2 = 0.5, p-value = 0.309

Tn=10000 =
50− 49.9

2
100

=
0.1
0.02 = 5, p-value = 2.87× 10−7
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Statistical vs. Practical Significance

• Real differences between the point estimate and null
value are easier to detect with larger samples

• However, very large samples will result in statistical
significance even for tiny differences between the sample
mean and the null value (effect size), even when the
difference is not practically significant

• This is especially important to research: if we conduct a
study, we want to focus on finding meaningful results (we
want observed differences to be real but also large
enough to matter).

• The role of a statistician is not just in the analysis of data
but also in planning and design of a study.
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Hypothesis Tests for the difference
of two means



Example - GSS

The General Social Survey (GSS) is an annual Census Bureau
survey covering demographic, behavioral, and attitudinal
questions. To facilitate time-trend studies many of the
questions have not changed since 1972. Below is an excerpt
from the 2010 survey. The variables are number of hours
worked per week and highest educational attainment.

degree hrs1
1 BACHELOR 55
2 BACHELOR 45
3 JUNIOR COLLEGE 45
...

1172 HIGH SCHOOL 40 11



Exploratory analysis
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What can we say about the relationship between educational
attainment and hours worked per week?
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Collapsing levels

• Say we are only interested the difference between the
number of hours worked per week by college and
non-college graduates.

• We can combine the levels of education into:
• hs or lower← less than high school or high school
• coll or higher← junior college, bachelor’s, and
graduate

• Here is how you can do this in R:
# create a new empty variable
gss$edu = NA

# if statements to determine levels of new variable
gss$edu[gss$degree == "LESS THAN HIGH SCHOOL" |

gss$degree == "HIGH SCHOOL"] = "hs or lower"
gss$edu[gss$degree == "JUNIOR COLLEGE" |

gss$degree == "BACHELOR" |
gss$degree == "GRADUATE"] = "coll or higher"

# make sure new variable is categorical
gss$edu = as.factor(gss$edu)

13



Collapsing levels

• Say we are only interested the difference between the
number of hours worked per week by college and
non-college graduates.

• We can combine the levels of education into:
• hs or lower← less than high school or high school
• coll or higher← junior college, bachelor’s, and
graduate

• Here is how you can do this in R:
# create a new empty variable
gss$edu = NA

# if statements to determine levels of new variable
gss$edu[gss$degree == "LESS THAN HIGH SCHOOL" |

gss$degree == "HIGH SCHOOL"] = "hs or lower"
gss$edu[gss$degree == "JUNIOR COLLEGE" |

gss$degree == "BACHELOR" |
gss$degree == "GRADUATE"] = "coll or higher"

# make sure new variable is categorical
gss$edu = as.factor(gss$edu)

13



Collapsing levels

• Say we are only interested the difference between the
number of hours worked per week by college and
non-college graduates.

• We can combine the levels of education into:
• hs or lower← less than high school or high school
• coll or higher← junior college, bachelor’s, and
graduate

• Here is how you can do this in R:
# create a new empty variable
gss$edu = NA

# if statements to determine levels of new variable
gss$edu[gss$degree == "LESS THAN HIGH SCHOOL" |

gss$degree == "HIGH SCHOOL"] = "hs or lower"
gss$edu[gss$degree == "JUNIOR COLLEGE" |

gss$degree == "BACHELOR" |
gss$degree == "GRADUATE"] = "coll or higher"

# make sure new variable is categorical
gss$edu = as.factor(gss$edu)

13



Exploratory analysis - another look

x̄ s n
coll or higher 41.8 15.14 505
hs or lower 39.4 15.12 667
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Parameter and point estimate

We want to be able to make useful statments the difference
between average hours worked per week by Americans with
and without a college degree. What is the parameter of
interest and its point estimate?

• Parameter of interest: Average difference between the
number of hours worked per week by all Americans with a
college degree and those with a high school degree or
lower.

µc − µhs

• Point estimate: Average difference between the number of
hours worked per week by sampled Americans with a
college degree and those with a high school degree or
lower.

x̄c − x̄hs
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Difference of Means and the CLT

We can think about our observations as being samples from
two distributions A and B,

X1, X2, . . . , Xm ∼ A
Y1, Y2, . . . , Yn ∼ B.

We now want to know what the distribution of x̄− ȳ will be so
that we can perform inference.

From our work with a single sample means, we know that
(from the CLT)

x̄ ∼ N(µ = E(A), σ2 = Var(A)/m),

ȳ ∼ N(µ = E(B), σ2 = Var(B)/n)
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that we can perform inference.

From our work with a single sample means, we know that
(from the CLT)

x̄ ∼ N(µ = E(A), σ2 = Var(A)/m),
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Difference of Means and the CLT (cont.)

Proposition - the sum or difference of normal RVs is also
normally distributed. (Not terribly hard to prove, but requires
more probability theory than we’ve covered).

This proposition then tells us that

x̄− ȳ ∼ N (E(x̄− ȳ), Var(x̄− ȳ)) ,
where

E(x̄− ȳ) = E(x̄)− E(ȳ) = µx − µy

Var(x̄− ȳ) = Var(x̄) + Var(ȳ) = σ2x
nx

+
σ2y
ny

Did I make any assumptions here?

Yes - variance result requires that x̄ and ȳ are independent. We
call this independence between groups.
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call this independence between groups. 17



Checking assumptions & conditions

1. Independence:
1.1 Independence within groups:

• Both the college graduates and those with HS degree or
lower are sampled randomly.

• 505 < 10% of all college graduates and 667 < 10% of all
students with a high school degree or lower.

We can assume that the number of hours worked per week
by one college graduate in the sample is independent of
another, and the number of hours worked per week by
someone with a HS degree or lower in the sample is
independent of another as well.

1.2 Independence between groups:
Since the sample is random, the college graduates in the
sample are independent of those with a HS degree or
lower.

18
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Checking assumptions & conditions

2. Sample size / Nearly Normal:
Both distributions look reasonably symmetric, and the
sample sizes are large.

Therefore we can reasonably conclude that the sampling
distribution of average number of hours worked per week by
college graduates and those with HS degree or lower are
nearly normal. Additionally, we then also can conclude that
the sampling distribution of the difference of the averages will
also be nearly normal.

19



Confidence interval for difference between two means

• All confidence intervals have the same form:

point estimate±ME

• Always, ME = critical value× SE of point estimate
• In this case the point estimate is x̄− ȳ
• Since the population σ for the difference is unknown, the
critical value is t⋆. We will define df = min(nx − 1, ny − 1)
which is wrong (but in the conservative direction).

• So the only new concept is the standard error of the
difference between two means...

SE =
√
Var(x̄− ȳ) =

√
σ2x
nx

+
σ2y
ny
≈

√
s2x
nx

+
s2y
ny
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Let’s put things in context

Calculate the standard error of the average difference between
the number of hours worked per week by college graduates
and those with a HS degree or lower.

x̄ s n
college or higher 41.8 15.14 505
hs or lower 39.4 15.12 667
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Let’s put things in context

Calculate the standard error of the average difference between
the number of hours worked per week by college graduates
and those with a HS degree or lower.

x̄ s n
college or higher 41.8 15.14 505
hs or lower 39.4 15.12 667

SE =

√
s2c
nc

+
s2hs
nhs

=

√
15.142
505 +

15.122
667 = 0.89
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Confidence interval for the difference (cont.)

Estimate (using a 95% confidence interval) the average
difference between the number of hours worked per week by
Americans with a college degree and those with a high school
degree or lower.

x̄c = 41.8 x̄hs = 39.4 SE = 0.89

df = min(505− 1, 667− 1) = 504 t⋆df=504 = 1.96

22



Confidence interval for the difference (cont.)

Estimate (using a 95% confidence interval) the average
difference between the number of hours worked per week by
Americans with a college degree and those with a high school
degree or lower.

x̄c = 41.8 x̄hs = 39.4 SE = 0.89

df = min(505− 1, 667− 1) = 504 t⋆df=504 = 1.96

(x̄c − x̄hs)± t⋆ × SE(x̄c−x̄hs) = (41.8− 39.4)± 1.96× 0.89
= 2.4± 1.74 = (0.66, 4.14)
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Confidence interval for the difference (cont.)

Estimate (using a 95% confidence interval) the average
difference between the number of hours worked per week by
Americans with a college degree and those with a high school
degree or lower.

x̄c = 41.8 x̄hs = 39.4 SE = 0.89

df = min(505− 1, 667− 1) = 504 t⋆df=504 = 1.96

(x̄c − x̄hs)± t⋆ × SE(x̄c−x̄hs) = (41.8− 39.4)± 1.96× 0.89
= 2.4± 1.74 = (0.66, 4.14)

We are 95% confident that college grads work on average
between 0.66 and 4.14 more hours per week than those with a
HS degree or lower. 22



Hypothesis Test

If instead we wanted to conduct a hypothesis, what would the
hypotheses be for testing if there is a difference between the
average number of hours worked per week by college
graduates and those with a HS degree or lower?

23



Hypothesis Test

If instead we wanted to conduct a hypothesis, what would the
hypotheses be for testing if there is a difference between the
average number of hours worked per week by college
graduates and those with a HS degree or lower?

H0: µc = µhs
There is no difference in the average number of hours worked
per week by college graduates and those with a HS degree or
lower. Any observed difference between the sample means is
due to natural sampling variation (chance).
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Calculating the test-statistic and the p-value

H0: µc − µhs = 0
HA: µc − µhs ̸= 0

x̄c − x̄hs = 2.4, SEx̄c−x̄hs = 0.89

average differences

−2.4 0 2.4

T =
(x̄c − x̄hs)− (µc − µhs)

SE

=
2.4− 0
0.89 = 2.70

P(T > 2.70) = 1− 0.9965 = 0.0035
p− value = 2× P(T > 2.70) = 0.007

Reject H0 - the data provide convincing evidence of a difference
between the average number of hours worked per week by college
graduates and those with a HS degree or lower.
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Inference using difference of two means

• Conditions:
• independence within groups (random sample / n < 10% of
population if sampling w/o replacement)

• independence between groups
• Sample sizes (n1 and n2) large enough relative to skew and
or thick/thin tails in each sample.

• Hypothesis testing:

Tdf =
point estimate− null value

SE =
(µ1 − µ2)− (x̄1 − x̄2)√

s21/n1 + s22/n2
• Confidence interval:

CI = point estimate±CV×SE = (x̄1−x̄2)±t∗df
√
s21/n1 + s22/n2

df =
(s21/n1 + s22/n2)2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)
≈ min(n1 − 1, n2 − 1)
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Diamond Example



Example - Diamonds

• Weights of diamonds are measured in carats.
• 1 carat = 100 points, 0.99 carats = 99 points, etc.
• The difference between the size of a 0.99 carat diamond
and a 1 carat diamond is undetectable to the naked
human eye, but the price of a 1 carat diamond tends to be
much higher than the price of a 0.99 diamond.

• We are going to test to see if there is a difference between
the average prices of 0.99 and 1 carat diamonds.

• In order to be able to compare equivalent units, we divide
the prices of 0.99 carat diamonds by 99 and 1 carat
diamonds by 100, and compare the average point prices.

27



Data

carat = 0.99 carat = 1

20

30

40

50

60

70

80

0.99 carat 1 carat
pt99 pt100

x̄ 44.50 53.43
s 13.32 12.22
n 23 30

These data are a random sample from the diamonds data set in the ggplot2 R package. 28



Parameter and point estimate

• Parameter of interest: Average difference between the
point prices of all 0.99 carat and 1 carat diamonds.

µpt99 − µpt100

• Point estimate: Average difference between the point
prices of sampled 0.99 carat and 1 carat diamonds.

x̄pt99 − x̄pt100
• Hypotheses: testing if the average per point price of 1
carat diamonds (pt100) is higher than the average per point
price of 0.99 carat diamonds (pt99)

H0 : µpt99 = µpt100
HA : µpt99 < µpt100
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Hypothesis test

0.99 carat 1 carat
pt99 pt100

x̄ 44.50 53.43
s 13.32 12.22
n 23 30
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Hypothesis test

0.99 carat 1 carat
pt99 pt100

x̄ 44.50 53.43
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n 23 30

T = point estimate− null value
SE

=
(44.50− 53.43)− 0√

13.322
23 + 12.222

30

=
−8.93
3.56

= −2.508
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What is the correct df for this hypothesis test?
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Hypothesis test

0.99 carat 1 carat
pt99 pt100

x̄ 44.50 53.43
s 13.32 12.22
n 23 30

T = point estimate− null value
SE

=
(44.50− 53.43)− 0√

13.322
23 + 12.222

30

=
−8.93
3.56

= −2.508

What is the correct df for this hypothesis test?

df = min(npt99 − 1,npt100 − 1)
= min(23− 1, 30− 1)
= min(22, 29) = 22
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p-value

What is the correct p-value for the hypothesis test?

T = −2.508 df = 22

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 21 1.32 1.72 2.08 2.52 2.83

22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
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Synthesis

What is the conclusion of the hypothesis test? How (if at all)
would this conclusion change your behavior if you went
diamond shopping?
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Synthesis

What is the conclusion of the hypothesis test? How (if at all)
would this conclusion change your behavior if you went
diamond shopping?

• p-value is small so we rejected H0. The data provide
convincing evidence to suggest that the per point price of
0.99 carat diamonds is lower than the per point price of 1
carat diamonds.

• Maybe buy a 0.99 carat diamond? It looks like a 1 carat,
but is significantly cheaper.
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Critical value

What is the appropriate t⋆ for a confidence interval for the
average difference between the point prices of 0.99 and 1 carat
diamonds that would be equivalent to our hypothesis test?

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010
df 21 1.32 1.72 2.08 2.52 2.83

22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
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Confidence interval

Calculate the interval, and interpret it in context.

point estimate±ME

(x̄pt99 − x̄pt1)± t⋆df × SE = (44.50− 53.43)± 1.72× 3.56
= −8.93± 6.12
= (−15.05,−2.81)

We are 90% confident that the average point price of a 0.99
carat diamond is $15.05 to $2.81 lower than the average point
price of a 1 carat diamond.
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Paired Tests of Two Means



Example - Reading and Writing

200 randomly selected high school students took a reading
and writing test and their scores are shown below. At a first
glance, does there appear to be a difference between the
average reading and writing test score?

id read write
1 70 57 52
2 86 44 33
3 141 63 44
4 172 47 52
...

...
...

...
200 137 63 65

sc
or
es

0

20

40

60

80

100

read write

Do you think reading and writing scores are independent?
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Analyzing paired data

When two sets of observations have this special
correspondence (not independent), they are said to be paired.

To analyze paired data, we will only examine the difference in
outcomes of each pair of observations.

diff = read− write

id read write diff
1 70 57 52 5
2 86 44 33 11
3 141 63 44 19
4 172 47 52 -5
...

...
...

...
...

200 137 63 65 -2
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Parameter and point estimate

Parameter of interest: Average difference between the reading
and writing scores of all high school students.

µdiff

Point estimate: Average difference between the reading and
writing scores of sampled high school students.

x̄diff
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Parameter and point estimate

Parameter of interest: Average difference between the reading
and writing scores of all high school students.
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Point estimate: Average difference between the reading and
writing scores of sampled high school students.

x̄diff
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Setting the hypotheses

What are the hypotheses for testing if there is a difference
between the average reading and writing scores?

H0: There is no difference between the average reading and
writing score.

µdiff = 0

HA: There is a difference between the average reading and
writing score.

µdiff ̸= 0
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Nothing new here

We have already done this kind of analysis previously.

• We have data from one numeric variable - the difference.
• We are testing to see if this variable is or is not equal to 0.

diff
x̄ -0.545
s 8.89
n 200

H0 : µdiff = 0
HA : µdiff ̸= 0

T = X̄− µ

SE =
−0.545− 0
8.89/

√
200

= −0.877

p-value = P(T < −0.877 or T > 0.877)
= 2× P(T < −0.877) = 2× 0.19 = 0.38
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Example - Zinc

Trace metals in drinking water affect the flavor and unusually
high concentrations can pose a health hazard. Data were
collected by measuring zinc concentration at the bottom and
at the surface of 10 randomly sampled wells in Wake country.

We would like to evaluate whether the true average
concentration of zinc at the bottom of the well water exceeds
that of the surface water. Data are given below.

well zinc location
1 0.43 bottom
2 0.266 bottom
3 0.567 bottom
4 0.531 bottom
5 0.707 bottom
6 0.716 bottom
7 0.651 bottom

well zinc location
8 0.589 bottom
9 0.469 bottom
10 0.723 bottom
1 0.415 surface
2 0.238 surface
3 0.39 surface
4 0.41 surface

well zinc location
5 0.605 surface
6 0.609 surface
7 0.632 surface
8 0.523 surface
9 0.411 surface
10 0.612 surface 41



Tidying the data

We prefer data where each row represents a unit of
observation - in this case a well. What does that look like?
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Tidying the data

We prefer data where each row represents a unit of
observation - in this case a well. What does that look like?

well zinc bottom zinc top
1 0.43 0.415
2 0.266 0.238
3 0.567 0.39
4 0.531 0.41
5 0.707 0.605
6 0.716 0.609
7 0.651 0.632
8 0.589 0.523
9 0.469 0.411
10 0.723 0.612
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Tidying the data

We prefer data where each row represents a unit of
observation - in this case a well. What does that look like?

well zinc bottom zinc top diff
1 0.43 0.415 0.015
2 0.266 0.238 0.028
3 0.567 0.39 0.177
4 0.531 0.41 0.121
5 0.707 0.605 0.102
6 0.716 0.609 0.107
7 0.651 0.632 0.019
8 0.589 0.523 0.066
9 0.469 0.411 0.058
10 0.723 0.612 0.111

42



Inference

Lets use a confidence interval to evaluate the difference in
zinc concentration between the bottom and top of a well.

x̄diff = 0.08, s = 0.052, n = 10

95% Confidence Interval:

PE± CV× SE

x̄diff ± t⋆df=9 ×
s√
n

0.08± 2.26× 0.052√
10

(0.043, 0.118)
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