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One-way ANOVA



Example - Alfalfa

Researchers were interested in the effect that acid has on the growth rate of
alfalfa plants. They created three treatment groups in an experiment: low
acid, high acid, and control. The alfalfa plants were grown in a Styrofoam
cups arranged near a window and the height of the alfalfa plants was
measured after five days of growth. The experiment consisted of 5 cups for
each of the 3 treatments, for a total of 15 observations.

High Acid  Low Acid  Control
1.30 1.78 2.67
1.15 1.25 2.25
0.50 1.27 1.46
0.30 0.55 1.66
1.30 0.80 0.80
Vi 0.910 1.130 1.768
n 5 5 5
w=1269




Alfalfa Hypotheses

We would like to establish if the acid treatments are affecting
the alfalfa’s growth. Since we have a numerical response and
categorical explanatory variable (> 2 levels) we will use an
ANOQVA.

What should our hypotheses be?



Alfalfa Hypotheses

We would like to establish if the acid treatments are affecting
the alfalfa’s growth. Since we have a numerical response and
categorical explanatory variable (> 2 levels) we will use an
ANOQVA.

What should our hypotheses be?

Ho: pr = pL = pic
Ha: At least one pair of means differ



Treatment Effect

Last time we mentioned that it is possible to write down a
model for each data point using the form

Yij = 1 + €jj
where i € {H, L, C} is the treatment and j € {1,2,3,4,5} is the
index of the observation within that treatment.
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where 7, = 1, — p is the treatment effect of treatment /.



Treatment Effect

Last time we mentioned that it is possible to write down a
model for each data point using the form

Yij = 1 + €jj
where i € {H, L, C} is the treatment and j € {1,2,3,4,5} is the
index of the observation within that treatment.

We can rewrite this in terms of the grand mean u as follows
Yij =+ 7t €

where 7, = 1, — p is the treatment effect of treatment /.

Using treatment effect we can rewrite our null hypothesis

Hoppn=p=pc=p = Homi=mn=1m=0



Alfalfa ANOVA Table - Sum Sq
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Treatment
Residuals
Total
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df SumSg MeanSq Fvalue Pr(>F)

Treatment
Residuals
Total

kR n;
SST=>"> (vj—9)

i=1 j=1
= (1.3 =127 + (115 = 1.27)* + - - - + (0.80 — 1.27)* = 5.88

R
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Alfalfa ANOVA Table - Sum Sq

df SumSg MeanSq Fvalue Pr(>F)

Treatment 1.99
Residuals 3.89
Total 5.88

kR n;
SST=>"> (vj—9)

i=1 j=1
= (1.3 =127 + (115 = 1.27)* + - - - + (0.80 — 1.27)* = 5.88
R
SSG = ni(y; — )’
i=1

=5x(0.91—1.269)? +5 x (1.13 — 1.269)> + 5 x (1.768 — 1.269)> = 1.99
SSE = SST — SSG = 3.893



Alfalfa ANOVA Table - DF

df SumSg MeanSq Fvalue Pr(>F)
Treatment 1.986
Residuals 3.893

Total 5.879
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Alfalfa ANOVA Table - DF

df SumSg MeanSq Fvalue Pr(>F)
Treatment 2 1.986
Residuals 12 3.893
Total 14 5.879

dfr=n—-1=15-1=14
df=k—-1=3-1=2
dff=n—k=15-3=12
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Alfalfa ANOVA Table - Mean Sq, F, P-value

df SumSg MeanSq Fvalue Pr(>F)

Treatment 2 1.986 0.993 3.067 0.0843
Residuals 12 3.893 0.324
Total 14 5.879

MSG = SSG/dfs = 1.986/2 = 0.993
MSE = SSE/dfe = 3.907/12 = 0.324
F = MSG/MSE = 0.993/0.326 = 3.067
P-value = P(> F) = 0.0843



Alfalfa ANOVA Table - Mean Sq, F, P-value

df SumSg MeanSq Fvalue Pr(>F)

Treatment 2 1.986 0.993 3.067 0.0843
Residuals 12 3.893 0.324
Total 14 5.879

MSG = SSG/dfs = 1.986/2 = 0.993
MSE = SSE/dfr = 3.907/12 = 0.324
F = MSG/MSE = 0.993/0.326 = 3.061
P-value = P(> F) = 0.0843
Based on these results we fail to reject Hy, there is not

sufficient evidence to suggest that at least one pair of mean
growth values are significantly different.



Randomized Block Design



Random Sampling / Assignment

Random sampling removes nuisance factors/variables (things that
affect your outcome that you are not interested in).
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Imagine we are interested in exploring whether increasing the
dosage of a Statin will reduce the risk of a heart attack. We randomly
sample patients already on a Statin and randomly assign them to
either maintain their current dosage or increase their dosage by 20%.
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Random Sampling / Assignment

Random sampling removes nuisance factors/variables (things that
affect your outcome that you are not interested in).

Imagine we are interested in exploring whether increasing the
dosage of a Statin will reduce the risk of a heart attack. We randomly
sample patients already on a Statin and randomly assign them to
either maintain their current dosage or increase their dosage by 20%.

- Possible that some of the patients in this sample may have had
a previous heart attack,

- Significant risk factor for a future heart attack
- Their presence may alter our outcome

- Control for this effect by excluding them

10



Exclusion

- Works if the number of patients with a previous heart attack is
low

- Can only exclude so many nuisance factors before we run out of
available population

- Restricts generalizability
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factor(s) are held constant

- Variation within the block should be less than the variation
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Exclusion

- Works if the number of patients with a previous heart attack is
low

- Can only exclude so many nuisance factors before we run out of
available population

- Restricts generalizability

Blocking

- Samples grouped into homogeneous blocks where the nuisance
factor(s) are held constant

- Variation within the block should be less than the variation
between blocks

- Randomized treatment assignment within each block

“Block what you can; randomize what you cannot.” T



Blocking and Alfalfa

In the description for the alfalfa acid rain experiment we are
told that the Styrofoam cups are arranged next to a window.

What are some potential nuisance factors that could have
affected the experiment’s outcome?

Do any of them lend themselves to blocking?

12



Blocking and Alfalfa

In the description for the alfalfa acid rain experiment we are
told that the Styrofoam cups are arranged next to a window.

What are some potential nuisance factors that could have
affected the experiment’s outcome?

Do any of them lend themselves to blocking?

Block 1 Block 2 Block 3 Block 4  Block 5
% high control control control high
2 control low high low low
= low high low high control

12



Blocked Alfalfa

We will consider the simplest case of randomized block design
where each block contains only one observation of each

treatment.
High Acid  Low Acid Control | Block Mean
Block 1 1.30 1.78 2.67 1.917
Block 2 1.15 1.25 2.25 1.550
Block 3 0.50 1.27 1.46 1.077
Block 4 0.30 0.55 1.66 0.837
Block 5 1.30 0.80 0.80 0.967
Trmt mean 0.910 1.130 1.768
n 5 5 5
w=1.269

13



Block Data Model

When employing blocks we can think of each data point as

Yijg = 1+ Ti + D + €ijk
where

7 Is the treatment effect for treatment |
is the block effect of block j
€jj 1S the residual of observation k in block j with treatment i

this is very similar to the one-way anova model we saw
previous with the addition of the /.

14



Randomized Block ANOVA Table

With the introduction of the blocks there are now two
hypotheses we would like to evaluate:

Ho(treatment) : 7y =7, =7¢ =0 Ha : At least one 77 # 0
Ho(block) : 1=, =03 =6, =05 =0 Ha:Atleastone 5 #0

In order to test these hypotheses we will extend the ANOVA
table we have been using.

15



Randomized Block ANOVA Table

With the introduction of the blocks there are now two
hypotheses we would like to evaluate:

Ho(treatment) : 7y =7, =7¢ =0 Ha : At least one 77 # 0
Ho(block) : 1=, =03 =6, =05 =0 Ha:Atleastone 5 #0

In order to test these hypotheses we will extend the ANOVA
table we have been using.

df SumSgq MeanSq Fvalue Pr(>F)

Group dfs SSG MSG Fs
Block  dfp SSB MSB Fs
Error  dfe SSE MSE

Total dft SST
15



Randomized Block ANOVA Table

df Sum Sq Mean Sq Fvalue
Group k—1 SN — ) SSG/dfs  MSG/MSE
b _ _

Block b —1 =1 m;(y.; — V)? SSB/dfg  MSB/MSE
Error n—kR—b+1 SST—SSG—SSB SSE/dfe
Total  n—1 >0 20 Vi — ¥)?

- n - # observations - y-grand mean

+ k- groups - yi. - group mean for group i

- b - # blocks

- n; - # observations in group i * ¥ - block mean for block j

- m; - # observations in block j



Randomized Block ANOVA Table - Alfalfa

We already know some of the values from our previous
one-way ANOVA, and it is easy to find the other df values.

df  Sum Sq Mean Sq  Fvalue

Group MSG/MSE
Block 4 X7 mj(Vej—¥)* SSB/dfs MSB/MSE
Error 8  SST—SSG—SSB  SSE/dfe

Total



Sum of Squares Blocks

b
SSB =" " m(y; - y)
J=1



Sum of Squares Blocks

b
SSB = m(¥;—7)
J=1

High Acid  Low Acid  Control | Block Mean
Block 1 1.30 1.78 2.67 1917 =y
Block 2 1.15 1.25 2.25 1.550 =y,
Block 3 0.50 1.27 1.46 1.077 =y.3
Block 4 0.30 0.55 1.66 0.837 =y.4
Block 5 1.30 0.80 0.80 0.967 =V.5
Trmt mean 0.910 1.130 1.768
n 5 5 5
y=




Sum of Squares Blocks

b
SSB =" " m(y; - y)
J=1

High Acid  Low Acid  Control | Block Mean
Block 1 130 178 267 | 1917 =y,
Block 2 1.15 1.25 225 | 1.550 =7,
Block 3 0.50 1.27 1.46 1.077 =¥3
Block 4 0.30 0.55 166 | 0837 =7
Block 5 130 0.80 080 | 0.967 =75
Trmt mean 0.910 1.130 1.768
n 5 5 5
y=

SSB =3 x (1.917 — )’ +3 x (1.550 — )

+3 x (1.077 — )’ +3 % (0.837 — )

+3 % (0.967 — )

=1.260 + 0.237 4 0.111 + 0.560 + 0.274 = 2.441



Completing the table

df  Sum Sq Mean Fvalue
5q
Group 2 1.986 0.993 MSG/MSE
Block 4 2.441 SSB/dfs  MSB/MSE

Error 8 SST — SSG — SSB SSE/df
Total 14 53879

19



Completing the table

df  Sum Sq Mean Fvalue
5q
Group 2 1.986 0.993 MSG/MSE
Block 4 2.441 SSB/dfs  MSB/MSE
Error 8 1.452 SSE/dfe

Total 14 5.879
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Completing the table

df  Sum Sq Mean Fvalue
5q
Group 2 1.986 0.993 MSG/MSE
Block 4 2.441 0.6703 MSB/MSE
Error 8 1.452 0.1815

Total 14 5.879

19



Completing the table

df  Sum Sq Mean Fvalue
5q
Group 2 1.986 0.993 5.471
Block 4 2.441 0.6703 3.362
Error 8 1.452 0.1815

Total 14 5.879

19



Calculating P-values

The two F values that we have calculated can be used to
evaluate the two hypotheses we started with.

- Treatment effect
Ho : v = 7. = 76, Ha : At least one pair of treatment effects differ
- Block effect
Ho: Bi=p2=...= s, Ha: Atleast one pair of block effects differ
To calculate the P-value for each hypothesis we use Fg and Fg

respectively to find P(> F) for an F distribution with the
appropriate degrees of freedom.

20



Treatment Effect

We have calculated that F; = 5.471, to find the P-value we need
to the probability of observing a value equal to or larger than
this from an F distribution with 2 and 8 degrees of freedom.

Using R we find that
pf(5.471, df1=2, df2=8, lower.tail=FALSE)

## [1] 0.03181681

Therefore, P(> Fg) = 0.0318, which leads us to reject Hyp - there
is sufficient evidence to suggest that at least one pair of
treatment effects differ.

21



Block Effect

Similarly, we have Fg = 3.362 and to find the P-value we need
to the probability of observing a value equal to or larger than
this from an F distribution with 4 and 8 degrees of freedom.

Using R we find that
pf(3.362, dfl=4, df2=8, lower.tail=FALSE)

## [1] 0.06790077

Therefore, P(> Fg) = 0.0679, which leads us to fail to reject Ho
- there is not sufficient evidence to suggest that at least one
pair of block effects differ.

22



How did blocking change our result?

+ One-way ANOVA
df  SumSq MeanSq Fvalue Pr(>F)

Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324
Total 14 5879

- Randomized Block ANOVA
df  SumSq MeanSq Fvalue P(>F)
Group 2 1.986 0.993 5471 0.0318
Block 4 2.441 0.6103 3.362 0.0679
Error 8 1.452 0.1815
Total 14 5879
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How did blocking change our result?

+ One-way ANOVA
df  SumSq MeanSq Fvalue Pr(>F)

Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324
Total 14 5879

- Randomized Block ANOVA
df  SumSq MeanSq Fvalue P(>F)
Group 2 1.986 0.993 5471 0.0318
Block 4 2.441 0.6103 3.362 0.0679
Error 8 1.452 0.1815
Total 14 5879

Blocking decreases dfg, which increases MSE (bad).

Blocking also decreases SSE, which decreases MSE (good).
23



Two-way ANOVA




From Randomized Block to Two-way ANOVA

All of the approaches we have just learned to handle blocking
will also apply in the case where we would like to assess the
effect of a second factor / predictor on our outcome variable.

Instead of examining treatment and block effects we instead
examine two treatment effects.

None of the procedures or calculations change, only what we
call things.

25



Two-way ANOVA Model

When employing two-way ANOVA we can think of each data
point as

Yijk = H + Ti + Dj + €ijr
where

71 is the effect of level i of treatment 1
is the effect of level j of treatment 2
€jjr 1S the residual of observation k in with treatment 1 level |

and treatment 2 level j

this is exactly the same as the randomized block ANOVA model
except the ;s now refer to the effect of the second factor

instead of a block effect.
26



Example - Spruce Moths

A scientist is interested in Scent  sugar Chemical

. . Top 28 35 32

efficacy of various lure types in 19 2 29

attracting Spruce moths to a 32 33 16

trap. They are also interested in 15 21 18

2 13 17 20

the.effect of location of the trap Widdle - . -

on its efficacy as well. 12 38 40

42 44 18

Data on the right reflects the 25 27 e

21 22 36

number of mths caught by each o o i 5

trap and location type. 21 17 39

38 31 41

. 32 29 31

Factor 1 |‘s the lure type (3 levels) o 5 i

Factor 2 is the location (4 levels) Ground | 17 18 22

There are 5 observations per . 27 25

B 23 15 14

condition 19 29 16
14 16 1 7




Mean caught by Treatment

Ground Lower Middle Top | Lure Mean

Chemical 1920 36.00 3180 23.00 27.50
Scent 17.00 32.80 2780 21.40 24.75
Sugar 21.00 31.20 33.40 25.60 27.80

Loc Mean 19.07 3333 3100 2333 26.68

28



Mean caught by Treatm
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Example - Spruce Moths - Hypotheses

Similar to the randomized block ANOVA, we have two
hypothese to evaluate (one for each factor).

Lure effect:

Ho : 7ch = Tsc = sy, Ha : at least one pair of 7s differ

Location effect:

Ho: B = BL = Buw = Br, Ha: atleast one pair of gs differ

30



Example - Spruce Moths - ANOVA Table

Df SumSq MeanSq Fvalue Pr(>F)

Lure 0.3859
Location 1981.38 0.0000
Residuals

Total 524298

31



Example - Spruce Moths - ANOVA Table

Df SumSg MeanSq Fvalue Pr(>F)
Lure 2 113.03 56.52 0.97 0.3859
Location 3 1981.38 660.46 11.33 0.0000
Residuals 54 3148.57 58.31
Total 59 524298
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Example - Spruce Moths - ANOVA Table

Df SumSg MeanSq Fvalue Pr(>F)
Lure 2 113.03 56.52 0.97 0.3859
Location 3 1981.38 660.46 11.33 0.0000
Residuals 54 314857 5831
Total 59 5242098

Conclusions:

- Fail to reject Ho(Lure), there is not sufficient evidence to
suggest the different lures have an effect.

- Reject Ho(Location), there is sufficient evidence to suggest
the locations have an effect.

31



Difference between a blocking variable and a factor

We have just seen that computationally the two are treated
the same when conducting an ANOVA.

What then is the difference?

- Factors are conditions we impose on the experimental
units.

- Blocking variables are characteristics / innate properties
of the experimental units.

32



Example - Lighting

A study is designed to test the effect of type of light on exam
performance of students. 180 students are randomly assigned to
three classrooms: one that is dimly lit, another with yellow lighting,
and a third with white fluorescent lighting and given the same exam.

What are the factor(s) and/or block(s) for this experiment? What
type of ANOVA would be appropriate?
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Example - Lighting

A study is designed to test the effect of type of light on exam
performance of students. 180 students are randomly assigned to
three classrooms: one that is dimly lit, another with yellow lighting,
and a third with white fluorescent lighting and given the same exam.

What are the factor(s) and/or block(s) for this experiment? What
type of ANOVA would be appropriate?

The researcher also believes that light levels might have a different
effect on males and females, so wants to make sure both genders
are represented equally under the different light conditions.

After this modifications what are the factor(s) and/or block(s) for
this experiment? What type of ANOVA would be appropriate?

33
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