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One-way ANOVA



Example - Alfalfa

Researchers were interested in the effect that acid has on the growth rate of
alfalfa plants. They created three treatment groups in an experiment: low
acid, high acid, and control. The alfalfa plants were grown in a Styrofoam
cups arranged near a window and the height of the alfalfa plants was
measured after five days of growth. The experiment consisted of 5 cups for
each of the 3 treatments, for a total of 15 observations.

High Acid Low Acid Control
1.30 1.78 2.67
1.15 1.25 2.25
0.50 1.27 1.46
0.30 0.55 1.66
1.30 0.80 0.80

ȳi 0.910 1.130 1.768
n 5 5 5

µ = 1.269
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Alfalfa Hypotheses

We would like to establish if the acid treatments are affecting
the alfalfa’s growth. Since we have a numerical response and
categorical explanatory variable (> 2 levels) we will use an
ANOVA.

What should our hypotheses be?

H0: µH = µL = µC

HA: At least one pair of means differ
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Treatment Effect

Last time we mentioned that it is possible to write down a
model for each data point using the form

yij = µi + ϵij

where i ∈ {H, L, C} is the treatment and j ∈ {1, 2, 3, 4, 5} is the
index of the observation within that treatment.

We can rewrite this in terms of the grand mean µ as follows

yij = µ+ τi + ϵij

where τi = µi − µ is the treatment effect of treatment i.

Using treatment effect we can rewrite our null hypothesis

H0: µH = µL = µC = µ ⇒ H0: τH = τL = τC = 0
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Alfalfa ANOVA Table - Sum Sq

df Sum Sq Mean Sq F value Pr(>F)
Treatment
Residuals
Total
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Alfalfa ANOVA Table - Sum Sq

df Sum Sq Mean Sq F value Pr(>F)
Treatment
Residuals
Total

SST =
k∑
i=1

ni∑
j=1

(yij − ȳ)2

SSG =
k∑
i=1

ni(ȳi − ȳ)2

SSE = SST− SSG =
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Alfalfa ANOVA Table - Sum Sq

df Sum Sq Mean Sq F value Pr(>F)
Treatment 1.99
Residuals 3.89
Total 5.88

SST =
k∑
i=1
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Alfalfa ANOVA Table - DF

df Sum Sq Mean Sq F value Pr(>F)
Treatment 1.986
Residuals 3.893
Total 5.879
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Alfalfa ANOVA Table - DF

df Sum Sq Mean Sq F value Pr(>F)
Treatment 1.986
Residuals 3.893
Total 5.879

dfT = n− 1
dfG = k− 1
dfE = n− k
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Alfalfa ANOVA Table - DF

df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1.986
Residuals 12 3.893
Total 14 5.879

dfT = n− 1 = 15− 1 = 14
dfG = k− 1 = 3− 1 = 2
dfE = n− k = 15− 3 = 12
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Alfalfa ANOVA Table - Mean Sq, F, P-value

df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1.986
Residuals 12 3.893
Total 14 5.879
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Alfalfa ANOVA Table - Mean Sq, F, P-value
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Alfalfa ANOVA Table - Mean Sq, F, P-value

df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324
Total 14 5.879

MSG = SSG/dfG = 1.986/2 = 0.993
MSE = SSE/dfE = 3.907/12 = 0.324

F = MSG/MSE = 0.993/0.326 = 3.061
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Alfalfa ANOVA Table - Mean Sq, F, P-value

df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324
Total 14 5.879

MSG = SSG/dfG = 1.986/2 = 0.993
MSE = SSE/dfE = 3.907/12 = 0.324

F = MSG/MSE = 0.993/0.326 = 3.061
P-value = P(> F) = 0.0843

Based on these results we fail to reject H0, there is not
sufficient evidence to suggest that at least one pair of mean
growth values are significantly different.
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Randomized Block Design



Random Sampling / Assignment

Random sampling removes nuisance factors/variables (things that
affect your outcome that you are not interested in).

Imagine we are interested in exploring whether increasing the
dosage of a Statin will reduce the risk of a heart attack. We randomly
sample patients already on a Statin and randomly assign them to
either maintain their current dosage or increase their dosage by 20%.

• Possible that some of the patients in this sample may have had
a previous heart attack,

• Significant risk factor for a future heart attack

• Their presence may alter our outcome

• Control for this effect by excluding them

10
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Controls

Exclusion
• Works if the number of patients with a previous heart attack is
low

• Can only exclude so many nuisance factors before we run out of
available population

• Restricts generalizability

Blocking
• Samples grouped into homogeneous blocks where the nuisance
factor(s) are held constant

• Variation within the block should be less than the variation
between blocks

• Randomized treatment assignment within each block

“Block what you can; randomize what you cannot.”
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Blocking and Alfalfa

In the description for the alfalfa acid rain experiment we are
told that the Styrofoam cups are arranged next to a window.

What are some potential nuisance factors that could have
affected the experiment’s outcome?

Do any of them lend themselves to blocking?

438 Chapter 11 Comparing the Means of Many Independent Samples

distance away from the window (block 1 being the closest through block 5, the
farthest). Within each block the three treatments were randomly assigned, as shown
in Figure 11.6.1.11

!

Example 11.6.1 is an illustration of a randomized blocks design. To carry out a ran-
domized blocks design, the experimenter creates or identifies suitable blocks of ex-
perimental units and then randomly assigns treatments within each block in such a
way that each treatment appears in each block.* In Example 11.6.1, the rows of cups
at each of the five distances from the window serve as blocks. In general, we create
blocks in order to reduce or eliminate variability caused by extraneous variables, so
that the precision of the experiment is increased. We want the experimental units
within a block to be homogenous; we want the extraneous variability to occur
between the blocks. Here are more examples of randomized blocks designs in bio-
logical experiments.

Blocking by Litter How does experience affect the anatomy of the brain? In a typical
experiment to study this question, young rats are placed in one of three environ-
ments for 80 days:

T1: Standard environment. The rat is housed with a single companion in a standard
lab cage.

T2: Enriched environment. The rat is housed with several companions in a large
cage, furnished with various playthings.

T3: Impoverished environment. The rat lives alone in a standard lab cage.

At the end of the 80-day experience, various anatomical measurements are made on
the rats’ brains.

Suppose a researcher plans to conduct the above experiment using 30 rats. To
minimize variation in response, all 30 animals will be male, of the same age and
strain. To reduce variation even further, the researcher can take advantage of the
similarity of animals from the same litter. In this approach, the researcher would ob-
tain three male rats from each of 10 litters. The three littermates from each litter
would be assigned at random: one to T1, one to T2, and one to T3.12

!

Another way to visualize the experimental design is in tabular form, as shown
in Table 11.6.1. Each “Y” in the table represents an observation on one rat. Using
the layout of Table 11.6.1, the experimenter can compare the responses of rats that
received different treatments but are in the same litter. Such comparisons are not
affected by any difference (genetic and other) that may exist between one litter
and another.

Example
11.6.2

*Strictly speaking, the design we discuss is termed a randomized complete blocks design because every treat-
ment appears in every block. In an incomplete blocks design, each block contains some, but not necessarily all, of
the treatments.

W
in

do
w high

Block  1 Block  2 Block  3 Block  4 Block  5

control
low

control
low
high

control
high
low

control
low
high

high
low

control

Organization of blocks for alfalfa experiment

Figure 11.6.1 Design of
the alfalfa experiment
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Blocked Alfalfa

We will consider the simplest case of randomized block design
where each block contains only one observation of each
treatment.

High Acid Low Acid Control Block Mean
Block 1 1.30 1.78 2.67 1.917
Block 2 1.15 1.25 2.25 1.550
Block 3 0.50 1.27 1.46 1.077
Block 4 0.30 0.55 1.66 0.837
Block 5 1.30 0.80 0.80 0.967

Trmt mean 0.910 1.130 1.768
n 5 5 5

µ = 1.269
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Block Data Model

When employing blocks we can think of each data point as

yijk = µ+ τi + βj + ϵijk

where

τi is the treatment effect for treatment i
βj is the block effect of block j
ϵijk is the residual of observation k in block j with treatment i

this is very similar to the one-way anova model we saw
previous with the addition of the βjs.
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Randomized Block ANOVA Table

With the introduction of the blocks there are now two
hypotheses we would like to evaluate:

H0(treatment) : τH = τL = τC = 0 HA : At least one τi ̸= 0
H0(block) : β1 = β2 = β3 = β4 = β5 = 0 HA : At least one βi ̸= 0

In order to test these hypotheses we will extend the ANOVA
table we have been using.

df Sum Sq Mean Sq F value Pr(>F)
Group dfG SSG MSG FG
Block dfB SSB MSB FB
Error dfE SSE MSE
Total dfT SST
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Randomized Block ANOVA Table

df Sum Sq Mean Sq F value

Group k− 1
∑k

i=1 ni(ȳi· − ȳ)2 SSG/dfG MSG/MSE

Block b− 1
∑b

j=1mj(ȳ·j − ȳ)2 SSB/dfB MSB/MSE

Error n− k− b+ 1 SST− SSG− SSB SSE/dfE

Total n− 1
∑

i
∑

j
∑

k(yijk − ȳ)2

• n - # observations
• k - # groups
• b - # blocks
• ni - # observations in group i
• mj - # observations in block j

• ȳ - grand mean

• ȳi· - group mean for group i

• ȳ·j - block mean for block j
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Randomized Block ANOVA Table - Alfalfa

We already know some of the values from our previous
one-way ANOVA, and it is easy to find the other df values.

df Sum Sq Mean Sq F value

Group 2 1.986 0.993 MSG/MSE

Block 4
∑b

j=1mj(ȳ•j − ȳ)2 SSB/dfB MSB/MSE

Error 8 SST− SSG− SSB SSE/dfE

Total 14 5.879
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Sum of Squares Blocks

SSB =
b∑
j=1

mj(ȳ·j − ȳ)2

High Acid Low Acid Control Block Mean
Block 1 1.30 1.78 2.67 1.917 = ȳ·1
Block 2 1.15 1.25 2.25 1.550 = ȳ·2
Block 3 0.50 1.27 1.46 1.077 = ȳ·3
Block 4 0.30 0.55 1.66 0.837 = ȳ·4
Block 5 1.30 0.80 0.80 0.967 = ȳ·5

Trmt mean 0.910 1.130 1.768
n 5 5 5

ȳ = 1.269

SSB = 3× (1.917− 1.269)2 + 3× (1.550− 1.269)2

+ 3× (1.077− 1.269)2 + 3× (0.837− 1.269)2

+ 3× (0.967− 1.269)2

=1.260+ 0.237+ 0.111+ 0.560+ 0.274 = 2.441
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mj(ȳ·j − ȳ)2
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Completing the table

df Sum Sq Mean
Sq

F value

Group 2 1.986 0.993 MSG/MSE
Block 4 2.441 SSB/dfB MSB/MSE
Error 8 SST− SSG− SSB SSE/dfE
Total 14 5.879
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Sq

F value
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Block 4 2.441 SSB/dfB MSB/MSE
Error 8 1.452 SSE/dfE
Total 14 5.879
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Completing the table

df Sum Sq Mean
Sq

F value

Group 2 1.986 0.993 MSG/MSE
Block 4 2.441 0.6103 MSB/MSE
Error 8 1.452 0.1815
Total 14 5.879
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Calculating P-values

The two F values that we have calculated can be used to
evaluate the two hypotheses we started with.

• Treatment effect

H0 : τH = τL = τG, HA : At least one pair of treatment effects differ

• Block effect

H0 : β1 = β2 = . . . = β5, HA : At least one pair of block effects differ

To calculate the P-value for each hypothesis we use FG and FB
respectively to find P(> F) for an F distribution with the
appropriate degrees of freedom.
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Treatment Effect

We have calculated that FG = 5.471, to find the P-value we need
to the probability of observing a value equal to or larger than
this from an F distribution with 2 and 8 degrees of freedom.

Using R we find that

pf(5.471, df1=2, df2=8, lower.tail=FALSE)

## [1] 0.03181681

Therefore, P(> FG) = 0.0318, which leads us to reject H0 - there
is sufficient evidence to suggest that at least one pair of
treatment effects differ.
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Block Effect

Similarly, we have FB = 3.362 and to find the P-value we need
to the probability of observing a value equal to or larger than
this from an F distribution with 4 and 8 degrees of freedom.

Using R we find that

pf(3.362, df1=4, df2=8, lower.tail=FALSE)

## [1] 0.06790077

Therefore, P(> FB) = 0.0679, which leads us to fail to reject H0
- there is not sufficient evidence to suggest that at least one
pair of block effects differ.
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How did blocking change our result?

• One-way ANOVA
df Sum Sq Mean Sq F value Pr(>F)

Treatment 2 1.986 0.993 3.061 0.0843
Residuals 12 3.893 0.324
Total 14 5.879

• Randomized Block ANOVA
df Sum Sq Mean Sq F value P(>F)

Group 2 1.986 0.993 5.471 0.0318
Block 4 2.441 0.6103 3.362 0.0679
Error 8 1.452 0.1815
Total 14 5.879

Blocking decreases dfE, which increases MSE (bad).
Blocking also decreases SSE, which decreases MSE (good).
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Two-way ANOVA



From Randomized Block to Two-way ANOVA

All of the approaches we have just learned to handle blocking
will also apply in the case where we would like to assess the
effect of a second factor / predictor on our outcome variable.

Instead of examining treatment and block effects we instead
examine two treatment effects.

None of the procedures or calculations change, only what we
call things.
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Two-way ANOVA Model

When employing two-way ANOVA we can think of each data
point as

yijk = µ+ τi + βj + ϵijk

where

τi is the effect of level i of treatment 1
βj is the effect of level j of treatment 2
ϵijk is the residual of observation k in with treatment 1 level i

and treatment 2 level j

this is exactly the same as the randomized block ANOVA model
except the βjs now refer to the effect of the second factor
instead of a block effect.
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Example - Spruce Moths

A scientist is interested in
efficacy of various lure types in
attracting Spruce moths to a
trap. They are also interested in
the effect of location of the trap
on its efficacy as well.

Data on the right reflects the
number of moths caught by each
trap and location type.

Factor 1 is the lure type (3 levels)
Factor 2 is the location (4 levels)
There are 5 observations per
condition

Scent Sugar Chemical
Top 28 35 32

19 22 29
32 33 16
15 21 18
13 17 20

Middle 39 36 37
12 38 40
42 44 18
25 27 28
21 22 36

Lower 44 42 35
21 17 39
38 31 41
32 29 31
29 37 34

Ground 17 18 22
12 27 25
23 15 14
19 29 16
14 16 1 27



Mean caught by Treatment

Ground Lower Middle Top Lure Mean
Chemical 19.20 36.00 31.80 23.00 27.50

Scent 17.00 32.80 27.80 21.40 24.75
Sugar 21.00 31.20 33.40 25.60 27.80

Loc Mean 19.07 33.33 31.00 23.33 26.68
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Mean caught by Treatment
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Example - Spruce Moths - Hypotheses

Similar to the randomized block ANOVA, we have two
hypothese to evaluate (one for each factor).

Lure effect:

H0 : τCh = τSc = τSu, HA : at least one pair of τs differ

Location effect:

H0 : βG = βL = βM = βT, HA : at least one pair of βs differ
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Example - Spruce Moths - ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)
Lure 0.3859
Location 1981.38 0.0000
Residuals
Total 5242.98
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Example - Spruce Moths - ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)
Lure 2 113.03 56.52 0.97 0.3859
Location 3 1981.38 660.46 11.33 0.0000
Residuals 54 3148.57 58.31
Total 59 5242.98
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Example - Spruce Moths - ANOVA Table

Df Sum Sq Mean Sq F value Pr(>F)
Lure 2 113.03 56.52 0.97 0.3859
Location 3 1981.38 660.46 11.33 0.0000
Residuals 54 3148.57 58.31
Total 59 5242.98

Conclusions:

• Fail to reject H0(Lure), there is not sufficient evidence to
suggest the different lures have an effect.

• Reject H0(Location), there is sufficient evidence to suggest
the locations have an effect.
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Difference between a blocking variable and a factor

We have just seen that computationally the two are treated
the same when conducting an ANOVA.

What then is the difference?

• Factors are conditions we impose on the experimental
units.

• Blocking variables are characteristics / innate properties
of the experimental units.
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Example - Lighting

A study is designed to test the effect of type of light on exam
performance of students. 180 students are randomly assigned to
three classrooms: one that is dimly lit, another with yellow lighting,
and a third with white fluorescent lighting and given the same exam.

What are the factor(s) and/or block(s) for this experiment? What
type of ANOVA would be appropriate?

The researcher also believes that light levels might have a different
effect on males and females, so wants to make sure both genders
are represented equally under the different light conditions.

After this modifications what are the factor(s) and/or block(s) for
this experiment? What type of ANOVA would be appropriate?
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