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Linear regression with categorical
predictors



Poverty vs. region (east, west)

str(poverty)

## 'data.frame':^^I51 obs. of 7 variables:
## $ State : Factor w/ 51 levels "Alabama","Alaska",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Metro : num 55.4 65.6 88.2 52.5 94.4 84.5 87.7 80.1 100 89.3 ...
## $ Graduates: num 79.9 90.6 83.8 80.9 81.1 88.7 87.5 88.7 86 84.7 ...
## $ Poverty : num 14.6 8.3 13.3 18 12.8 9.4 7.8 8.1 16.8 12.1 ...
## $ FemaleHH : num 14.2 10.8 11.1 12.1 12.6 9.6 12.1 13.1 18.9 12 ...
## $ region2 : Factor w/ 2 levels "east","west": 1 2 2 2 2 2 1 1 1 1 ...
## $ region4 : Factor w/ 4 levels "northeast","midwest",..: 4 3 3 4 3 3 1 4 4 4 ...
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Poverty vs. region (east, west)

poverty %>%
group_by(region2) %>%
summarize(mean=mean(Poverty),

med=median(Poverty),
sd=sd(Poverty),
iqr=IQR(Poverty))

## Source: local data frame [2 x 5]
##
## region2 mean med sd iqr
## (fctr) (dbl) (dbl) (dbl) (dbl)
## 1 east 11.17037 10.3 3.085427 4.6
## 2 west 11.55000 10.7 3.168459 4.0
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Poverty vs. region (east, west)

##
## Call:
## lm(formula = Poverty ~ region2, data = poverty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5704 -2.2000 -0.8704 2.0398 6.4500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.1704 0.6013 18.576 <2e-16 ***
## region2west 0.3796 0.8766 0.433 0.667
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.125 on 49 degrees of freedom
## Multiple R-squared: 0.003813,^^IAdjusted R-squared: -0.01652
## F-statistic: 0.1875 on 1 and 49 DF, p-value: 0.6669
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Poverty vs. region (east, west)

̂% poverty = 11.17+ 0.38× 1west

• Explanatory variable: region

• Reference level: east

• Intercept: estimated average % poverty in eastern states is
11.17%

• This is the value we get if we plug in 0 for the explanatory
variable

• Slope: estimated average % poverty in western states is
0.38% higher than eastern states.

• Estimated average % poverty in western states is 11.17 +
0.38 = 11.55%.
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Poverty vs. Region (Northeast, Midwest, West, South)

##
## Call:
## lm(formula = Poverty ~ region4, data = poverty)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.359 -1.559 -0.025 1.574 6.508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.5000 0.8682 10.943 1.62e-14 ***
## region4midwest 0.0250 1.1485 0.022 0.982725
## region4west 1.7923 1.1294 1.587 0.119220
## region4south 4.1588 1.0736 3.874 0.000331 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.604 on 47 degrees of freedom
## Multiple R-squared: 0.3361,^^IAdjusted R-squared: 0.2938
## F-statistic: 7.933 on 3 and 47 DF, p-value: 0.0002205 7



Poverty vs. Region (Northeast, Midwest, West, South)

Which region (Northeast, Midwest, West, South) is the
reference level?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.50 0.87 10.94 0.00

region4midwest 0.03 1.15 0.02 0.98
region4west 1.79 1.13 1.59 0.12
region4south 4.16 1.07 3.87 0.00

Interpretation:

• Predict 9.50% poverty in Northeast
• Predict 9.53% poverty in Midwest
• Predict 11.29% poverty in West
• Predict 13.66% poverty in South
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Poverty vs. Region (Northeast, Midwest, West, South)

poverty %>%
group_by(region4) %>%
summarize(mean=mean(Poverty),

med=median(Poverty),
sd=sd(Poverty),
iqr=IQR(Poverty))

## Source: local data frame [4 x 5]
##
## region4 mean med sd iqr
## (fctr) (dbl) (dbl) (dbl) (dbl)
## 1 northeast 9.50000 9.60 2.381701 2.50
## 2 midwest 9.52500 9.55 1.415579 1.55
## 3 west 11.29231 10.80 2.647471 3.40
## 4 south 13.65882 14.20 3.233431 3.90
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Poverty vs. Region (Northeast, Midwest, West, South)

summary(aov(poverty$Poverty~poverty$region4))

## Df Sum Sq Mean Sq F value Pr(>F)
## poverty$region4 3 161.4 53.81 7.933 0.00022 ***
## Residuals 47 318.8 6.78
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm(Poverty ~ region4, data=poverty))

...
## Residual standard error: 2.604 on 47 degrees of freedom
## Multiple R-squared: 0.3361, Adjusted R-squared: 0.2938
## F-statistic: 7.933 on 3 and 47 DF, p-value: 0.0002205
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Linear models with multiple predic-
tors



Weights of books

weight (g) volume (cm3) cover
1 800 885 hc
2 950 1016 hc
3 1050 1125 hc
4 350 239 hc
5 750 701 hc
6 600 641 hc
7 1075 1228 hc
8 250 412 pb
9 700 953 pb
10 650 929 pb
11 975 1492 pb
12 350 419 pb
13 950 1010 pb
14 425 595 pb
15 725 1034 pb

w

l

h
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Weights of hard cover and paperback books

Can you identify a trend in the relationship between volume
and weight of hardcover and paperback books?
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Paperbacks generally weigh less than hardcover books.
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Modeling weights of books using volume and cover type

book_mlr = lm(weight ~ volume + cover, data = allbacks)
summary(book_mlr)

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 197.96284 59.19274 3.344 0.005841 **
## volume 0.71795 0.06153 11.669 6.6e-08 ***
## cover:pb -184.04727 40.49420 -4.545 0.000672 ***
##
##
## Residual standard error: 78.2 on 12 degrees of freedom
## Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154
## F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
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Linear model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

̂weight = 197.96+ 0.72 volume− 184.05 cover:pb

1. For hardcover books: plug in 0 for cover
̂weight = 197.96+ 0.72 volume− 184.05× 0

= 197.96+ 0.72 volume
2. For paperback books: plug in 1 for cover

̂weight = 197.96+ 0.72 volume− 184.05× 1
= 13.91+ 0.72 volume
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Visualising the linear model
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Interpretation of the regression coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

• Slope of volume: All else held constant, for each 1 cm3

increase in volume we would expect weight to increase on
average by 0.72 grams.

• Slope of cover: All else held constant, the model predicts
that paperback books weigh 184 grams less than
hardcover books, on average.

• Intercept: Hardcover books with no volume are expected
on average to weigh 198 grams.

• Obviously, the intercept does not make sense in context. It
only serves to adjust the height of the line.
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Prediction

What is the correct calculation for the predicted weight of a
paperback book that has a volume of 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00
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Prediction

What is the correct calculation for the predicted weight of a
paperback book that has a volume of 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

197.96+ 0.72× 600− 184.05× 1 = 445.91 grams
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A note on interactions

̂weight = 197.96+ 0.72 volume− 184.05 cover:pb
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paperback This model assumes that

hardcover and paperback
books have the same slope for
the relationship between their
volume and weight. If this isn’t
reasonable, then we would
include an “interaction”
variable in the model.
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Example of an interaction

summary( lm(weight ~ volume + cover + volume:cover, data = allbacks) )

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 161.58654 86.51918 1.868 0.0887 .
## volume 0.76159 0.09718 7.837 7.94e-06 ***
## coverpb -120.21407 115.65899 -1.039 0.3209
## volume:coverpb -0.07573 0.12802 -0.592 0.5661
##
## Residual standard error: 80.41 on 11 degrees of freedom
## Multiple R-squared: 0.9297, Adjusted R-squared: 0.9105
## F-statistic: 48.5 on 3 and 11 DF, p-value: 1.245e-06

̂weight = 161.58+ 0.76 volume− 120.21 cover:pb− 0.076 volume× cover:pb
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Example of an interaction - interpretation

Estimate Std. Error t value Pr(>|t|)
(Intercept) 161.5865 86.5192 1.87 0.0887

volume 0.7616 0.0972 7.84 0.0000
coverpb -120.2141 115.6590 -1.04 0.3209

volume:coverpb -0.0757 0.1280 -0.59 0.5661

Regression equations for hardbacks:
̂weight = 161.58+ 0.76 volume− 120.21× 0− 0.076 volume× 0

= 161.58+ 0.76 volume

Regression equations for paperbacks:
̂weight = 161.58+ 0.76 volume− 120.21× 1− 0.076 volume× 1

= 41.37+ 0.686 volume
21



Example of an interaction - Results
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R2 and Adjusted R2



Another look at R

For a linear regression we have defined the correlation
coefficient to be

R = Cor(X, Y) = Cov(X, Y)
σXσY

This definition works fine for the simple linear regression case
where X and Y are numeric variables, but does not work for
regression with a categorical predictor or for multiple
regression.

A more useful, and equivalent, definition is R = Cor(Y, Ŷ), which
will work for all regression examples we will see in this class.
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Another look at R, cont.

Claim: Cor(X, Y) = Cor(Y, Ŷ)

Remember: Cor(X, Y) = Cov(X,Y)
σXσY

, Ŷ = b0 + b1 X,
Var(aX+ b) = a2 Var(X),
Cov(aX+ b, Y) = a Cov(X, Y)

Cor(Y, Ŷ) = Cov(Y, Ŷ)√
Var(Y)Var(Ŷ)

=
Cov(Y, b0 + b1 X)√
σ2YVar(b0 + b1 X)

=
b1 Cov(Y, X)
σY
√
b21Var(X)

=
b1 Cov(Y, X)
b1 σYσX

= Cor(X, Y)
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Another look at R2

Can we still claim that R2 for a MLR is still a measure of
variability “explained” by the model?

This definition comes from an ANOVA-like approach where we
partition total uncertainty into model uncertainty and residual
(error) uncertainty.

SST = SSG+ SSE
k∑
i=1

ni∑
j=1

(yij − ȳ)2 =
k∑
i=1

ni∑
j=1

(ȳi − ȳ)2 +
k∑
i=1

ni∑
j=1

(yij − ȳi)2

For a MLR we can do the same thing we did with SLR just using
the more complex ŷi

SST = SSR+ SSE
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2
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(ŷi − ȳ)2 +
n∑
i=1

(yi − ŷi)2 26



Another look at R2

After a fair bit of algebra we can show that,

R2 = Cor(Y, Ŷ)2 = Cov(Y, Ŷ)2

Var(Y)Var(Ŷ)

=

∑n
i=1(Ŷi − Ȳ)2∑n
i=1(Yi − Ȳ)2

=
SSR
SST

=
SST− SSE

SST = 1− SSE
SST

27



Revisit: Modeling poverty

Poverty
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Predicting poverty using % female householder

summary(lm(poverty ~ female_house, data = poverty))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.31 1.90 1.74 0.09

female_house 0.69 0.16 4.32 0.00
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Another look at R2 - from last week

anova(lm(poverty ~ female_house, data = poverty))

Df Sum Sq Mean Sq F value Pr(>F)
female_house 1 132.57 132.57 18.68 0.00
Residuals 49 347.68 7.10
Total 50 480.25

SSTot =
∑

(y− ȳ)2 = 480.25→ total variability

SSErr =
∑

e2i = 347.68 → unexplained variability

SSReg = SSTotal − SSError → explained variability

= 480.25− 347.68 = 132.57

R2 = explained variability
total variability =

132.57
480.25 = 0.28 ✓
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Predicting poverty using % female hh + % metro

pov_mlr = lm(Poverty ~ FemaleHH + Graduates, data = poverty)
summary(pov_mlr)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.3203 9.8470 5.923 3.29e-07
FemaleHH 0.1439 0.1583 0.909 0.368
Graduates -0.5656 0.1001 -5.651 8.51e-07

anova(pov_mlr)

Df Sum Sq Mean Sq F value Pr(>F)
FemaleHH 1 132.57 132.568 30.479 1.341e-06
Graduates 1 138.91 138.906 31.936 8.511e-07
Residuals 48 208.77 4.349

R2 = explained variability
total variability =

132.57+ 138.91
480.25 = 0.565
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R2 vs. adjusted R2

R2

Model 1 (poverty vs. FemaleHH) 0.276
Model 2 (poverty vs. Graduates) 0.5578
Model 3 (poverty vs. FemaleHH + Graduates) 0.565

• We would like to have some criteria to evaluate if adding
an additional variable makes a difference in the
explanatory power of the model.

• When any variable is added to the model R2 increases.

• Adjusted R2 is based on R2 but it penalizes the addition of
variables.
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R2 vs. adjusted R2

R2 Adjusted R2

Model 1 (poverty vs. FemaleHH) 0.276 0.261
Model 2 (poverty vs. Graduates) 0.5578 0.549
Model 3 (poverty vs. FemaleHH + Graduates) 0.565 0.547

• We would like to have some criteria to evaluate if adding
an additional variable makes a difference in the
explanatory power of the model.

• When any variable is added to the model R2 increases.

• Adjusted R2 is based on R2 but it penalizes the addition of
variables. 32



Adjusted R2

Adjusted R2

R2adj = 1−
(
SSError
SSTotal

× n− 1
n− k− 1

)
where n is the number of cases and k is the number of
predictors / slopes (explanatory variables excluding the
intercept) in the model.

• Because k is never negative, R2adj will always be less than
or equal to R2.

• R2adj applies a penalty for the number of predictors
included in the model.

• Therefore, we prefer models with higher R2adj
33



Calculate adjusted R2

Df Sum Sq Mean Sq F value Pr(>F)
FemaleHH 1 132.57 132.57 22.84 0.0000
Graduates 1 138.91 138.906 31.936 8.511e-07
Residuals 48 208.77 4.349
Total 50 480.25

R2adj = 1−
(
SSError
SSTotal

× n− 1
n− k− 1

)

= 1−
(
208.77
480.25 × 51− 1

51− 2− 1

)
= 1−

(
208.77
480.25 × 50

48

)
= 1− 0.453
= 0.547
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Predicting poverty using % female hh + % metro

pov_mlr = lm(Poverty ~ FemaleHH + Metro, data = poverty)
summary(pov_mlr)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.3127 2.0710 3.53 0.0009
FemaleHH 0.8480 0.1516 5.59 0.0000

Metro -0.0807 0.0234 -3.45 0.0012

anova(pov_mlr)

Df Sum Sq Mean Sq F value Pr(>F)
FemaleHH 1 132.57 132.57 22.84 0.0000
Metro 1 69.12 69.12 11.91 0.0012
Residuals 48 278.56 5.80

R2 = explained variability
total variability =

132.57+ 69.12
480.25 = 0.42
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R2 vs. adjusted R2

R2

Model 1 (poverty vs. FemaleHH) 0.276 0.261
Model 2 (poverty vs. Metro) 0.042 0.022
Model 3 (poverty vs. FemaleHH + Metro) 0.420 0.396
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Collinearity and parsimony



We saw that adding the variable FemaleHH to the model with
Graduates only marginally increased adjusted R2, i.e. did not add
much useful information to the model. Why?

Poverty
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Collinearity between explanatory variables (cont.)

• Two predictor variables are said to be collinear when they
are correlated, and this collinearity (also called
multicollinearity) complicates model estimation.

• All else being equal we want the simplest model that
explains as much as possible - what we call the most
parsimonious model.

• Adding collinear variables rarely adds much to the model
in terms of explanatory power, and in some cases
inclusion of collinear variables can result in biased
estimates of the slope parameters.

• While it’s impossible to avoid all collinearity, often
experiments are designed to control for correlated
predictors.
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Model diagnostics



Modeling children’s test scores

Predicting cognitive test scores of three- and four-year-old
children using characteristics of their mothers. Data are a
subsample from the National Longitudinal Survey of Youth.

kid_score mom_hs mom_iq mom_work mom_age
1 65 yes 121.12 yes 27
...
5 115 yes 92.75 yes 27
6 98 no 107.90 no 18
...

434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007)

Cambridge University Press.
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Model output

summary(lm(kid_score ~ mom_hs + mom_iq + mom_work + mom_age, data = cognitive))

##
## Call:
## lm(formula = kid_score ~ mom_hs + mom_iq + mom_work + mom_age,
## data = cognitive)
##
## Residuals:
## Min 1Q Median 3Q Max
## -53.134 -12.624 2.293 11.250 50.206
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.82261 9.18765 2.266 0.0239 *
## mom_hs 5.56118 2.31345 2.404 0.0166 *
## mom_iq 0.56208 0.06077 9.249 <2e-16 ***
## mom_work 0.13373 0.76763 0.174 0.8618
## mom_age 0.21986 0.33231 0.662 0.5086
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.17 on 429 degrees of freedom
## Multiple R-squared: 0.215,^^IAdjusted R-squared: 0.2077
## F-statistic: 29.38 on 4 and 429 DF, p-value: < 2.2e-16
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Conditions for MLR Inference

In order to conduct inference for multiple regression we
require the following conditions:

(1) Unstructured / nearly normal residuals

(2) Constant variability of residuals

(3) Independent residuals

43



Nearly normal residuals

Histogram of residuals
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Unstructured / Constant variability of residuals

Why do we use the fitted (predicted) values in MLR?
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Constant variability of residuals (cont.)
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Independent residuals

• If we suspect that order of data collection may influence
the outcome (mostly in time series data):
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• If not, think about how data are sampled.
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