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Maximum Likelihood

Likelihood

Last time, as part of discussing Bayesian inference we defined P(X |θ) as
the likelihood, which is the probability of the data, X , given the model
parameters θ.

In the case where the observations are iid

f (x |θ) =
n∏

i=1

f (xi |θ)

Our inference goal is still the same, given the observed data (x1, . . . , xn)
we want to come up with an estimate for the parameters θ̂
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Maximum Likelihood

Maximum Likelihood

The maximum likelihood approach is straight forward, if we don’t know θ
we might as well guess a value that maximizes the likelihood, or in other
words pick the value of θ that has the greatest probability of producing
the observed data.

To do this we construct a likelihood function by considering the likelihood
as a function of the parameter(s) given the data

L(θ|X ) = f (x |θ) =
n∏

i=1

f (xi |θ)

The maximum likelihood estimate (estimator), θ̂MLE , is therefore given by

θ̂MLE = arg max
θ

L(θ|X )
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Maximum Likelihood

Why use the MLE?

The maximum likelihood estimator has the following properties:

Consistency - as the sample size tends to infinity the MLE tends to
the ‘true’ value of the parameter(s)

Asymptotic normality - as the sample size increases, the distribution
of the MLE tends to the normal distribution

Efficiency - as the sample size tends to infinity, there are not any
other consistent estimator with a lower mean squared error
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Maximum Likelihood

Example - Discrete Parameter Space

Assume that you have a box where you keep trick coins (biased towards heads or tails),

the labels have fallen off three of them: one of which comes up heads 25% of the time,

one which comes up head 75% of the time, and one that was fair (heads 50% of the

time). If you pick one of the coins at random and flip it 100 times and you get 65 heads

what coin do you think it is?

θ ∈ {0.25, 0.5, 0.75}

L(θ|X = 65) = P(X = 65|θ) =
(100
65

)
θ65(1− θ)35

L(θ = 0.25|X = 65) =
(100
65

)
0.2565(1− 0.25)35 ≈ 0

L(θ = 0.50|X = 65) =
(100
65

)
0.5065(1− 0.50)35 = 0.00086

L(θ = 0.75|X = 65) =
(100
65

)
0.7565(1− 0.75)35 = 0.00702
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Maximum Likelihood

Example - Continuous Parameter Space

Consider the same situation but the labels has fallen off of only one coin and you have

no idea how biased it might be. You once again flip the coin 100 times and get 65 heads

what would MLE be for θ?
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Maximum Likelihood

Maximum log-Likelihood

For the previous examples it was easy to write down the likelihood function and find its
derivative. For many common likelihoods this can be difficult, or at the very least
tediuous. Consider the case of n observations from a normal distribution with known
variance σ2 the likelihood function has the form

L(µ|X , σ2) =

(
1√
2πσ

)n

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2
]

Such problems can be simplified by instead maximizing the log-likelihood function,
`(θ|X ) which is equivalent as log is a monotone function.

`(θ|X ) = logL(θ|X ) =
n∑

i=1

log f (xi ,θ)

θ̂MLE = arg max
θ

L(θ|X ) = arg max
θ

`(θ|X )
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Maximum Likelihood

Example - Normal with known Variance

Let X1, . . . ,Xn
iid∼ N (µ, σ2) then the MLE of µ is
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Maximum Likelihood

Example - Normal with known Mean

Let X1, . . . ,Xn
iid∼ N (µ, σ2) then the MLE of σ2 is
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Maximum Likelihood

Example - Poisson

Let X1, . . . ,Xn
iid∼ Pois(λ) then the MLE of λ is
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Maximum Likelihood

Example - Exponential

Let X1, . . . ,Xn
iid∼ Exp(λ) then the MLE of λ is
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Maximum Likelihood

Example - Uniform - Open vs Closed

Let X1, . . . ,Xn
iid∼ Unif(0, θ) then the MLE of θ is

f (x |θ) =

{
1
θ

if 0 ≤ x ≤ θ
0 otherwise

L(λ|X ) =
1

θn

Clearly, L(λ|X ) is a decreasing function of θ, therefore to maximize L we need to
minimize θ but we have additional constraints on θ from the likelihood: 0 ≤ x ≤ θ.

Therefore, θ̂MLE = max(x1, . . . , xn).

What would happen if we had defined the uniform on the open interval (0, θ)?
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Maximum Likelihood

Example - Uniform - Uniqueness

Let X1, . . . ,Xn
iid∼ Unif(θ, θ + 1) then the MLE of θ is

f (x |θ) =

{
1 if θ ≤ x ≤ θ + 1

0 otherwise

Based on our previous result we maximizing L does not depend on θ but we still have to
choose a θ such that θ ≤ xi ≤ θ + 1 for all xi .

From the lower bound it is clear that θ ≤ min(x1, . . . , xn) and from the upper bound
θ ≥ max(x1, . . . , xn)− 1. Obviously, there are many potential values that will satisfy
these conditions.
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Maximum Likelihood

Example - Gamma - Fixed λ

Let X1, . . . ,Xn
iid∼ Gamma(k, 1) then the MLE of k is

f (x |k, λ = 1) =
1

Γ(k)
xk−1e−x
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Maximum Likelihood

Example - Gamma - Known k

Let X1, . . . ,Xn
iid∼ Gamma(k, λ) then the MLE of k is

f (x |k, λ) =
λk

Γ(k)
xk−1e−λx
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